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ESSENTIAL LAMINATIONS AND HAKEN NORMAL
FORM

MARK BRITTENHAM

We show that if a 3-manifold M contains an essential
lamination, then for any triangulation of M there exists
an essential lamination which is in Haken normal form
with respect to that triangulation.

0. Introduction. The notion of (Haken) normal form w.r.t. a
triangulation of a 3-manifold traces back to Kneser's work in the
1930's on surfaces in 3-manifolds. Haken studied it extensively in
the 1960's, and showed [8] how to use it to create finite algorithms
for the determination of various properties of embedded surfaces.
This has since culminated, in the work of Jaco and Oertel [10], in
an algorithm to determine if an irreducible 3-manifold is a Haken
manifold, i.e., if it contains a 2-sided incompressible surface.

In [7] a generalization of the incompressible surface, the essential
lamination, was introduced. There it was shown that a 3-manifold
M containing an essential lamination has some of the same desir-
able properties of a 3-manifold containing an incompressible surface,
the most notable property being that M has universal cover R3.
Since then, it has also been shown [6] that, in some sense, 'most'
3-manifolds contain essential laminations.

The purpose of this paper is to prove a Haken normal form result
for essential laminations.

The reader is referred to [7] for definitions and basic properties
concerning essential laminations. In this paper the word 'lamina-
tion' will mean a lamination which is carried by a branched surface,
i.e., it has 'air' between its leaves. Since we will ultimately be inter-
ested only in the existence of an essential lamination with certain
properties, this additional restriction will cause no difficulties; we
can 'blow air' between the leaves of a foliation (see [7]) to obtain a
lamination in our sense.
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Generalizing the definition for a compact surface [8], we will say
that a lamination C CM is in Haken normal form w.r.t. a trian-
gulation r of M if C is in general position w.r.t. r, and for every
3-simplex Δ of r, £ΓΊΔ is a lamination consisting of compact disks,
each of which meets the 1-skeleton of Δ, and such that each disk D
of CπA meets each 1-simplex of Δ at most once.

Then we have the following theorem:

NORMAL LIMIT THEOREM. 7/M3 contains an essential lamina-
tion £, and τ is a triangulation of M, then there exists an essential
lamination CQ in M which is in Haken normal form w.r.t. τ.

COROLLARY. M contains an essential lamination iff it contains
one which is carried with full support by one of a finite, construct!
ble, collection of normal branched surfaces.

In general, the lamination Co is not isotopic to £; it is, when C is
measured [9], or, more generally, has no holonomy [3]. But it does
arise out of a 'limit' of isotopic copies of £, as described below.

Ultimately, we would like to see an algorithm found to determine
if an irreducible 3-manifold contains an essential lamination, as in
[10]. This paper can be taken to be a first step in that direction. In
a sequel [2], we show how this result can be used to prove the same
result for more general cell decompositions of 3-manifolds. From
this point of view, a key step in developing an algorithm would be
to replace "normal branched surfaces" in the corollary above with
"normal essential branched surfaces".

I have been told that David Gabai has also proved a version of
the main result of this paper.

The proof of the theorem is in broad outline very similar to the ar-
guments found in [1]. We shall describe an algorithm for performing
a (typically infinite time) isotopy of £, controlled along the intersec-
tion of C with the 1-skeleton τ^ of r. After identifying a collection
of points which are left fixed by all of the isotopies, we then study
what happens when we take the 'limit' of these isotopies. At this
point the proof diverges markedly from [1]; seeing that pieces of the
lamination stabilize around these fixed points is easier, but in the
situation encountered here, the union of these stable pieces is not a
lamination - it is a disjoint union of 1-to-l immersed surfaces, but
it is not, in general, a closed set.
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Making the limit into a lamination requires cutting and pasting
a finite number of the leaves in the limit; then by passing to a
sublamination, to avoid possible compressible tori, one finds the
lamination guaranteed by the theorem.

This result, as well as those of [1] and [2], illustrates a technique
for attacking problems whose solutions for incompressible surfaces
relies on induction (on the number of points of intersection with a
1-dimensional object). The technique used here is, in fact, simply
a different way of thinking about this induction process; instead, it
is something we might call 'eventual stability under a sequence of
isotopies'. For a compact surface S this amounts to the same thing
as induction, since (in the case of this paper, for instance) once the
number of points of S ί Ί r ^ is at a minimum, the entire surface must
eventually stabilize around these points to a normal surface. Such
reformulations of methods which, for incompressible surfaces, rely
on the compactness of the object, rather than their closedness, will,
it is certain, play an important role in furthering the development
of the theory of essential laminations.

The author would like to thank the referee for his/her many useful
comments.

1. The isotopies. We will assume that the reader is familiar
with the procedure for putting an incompressible surface in an irre-
ducible 3-manifold M into Haken normal form w.r.t. a triangulation
of M, see [8] or [11]; and confine our discussion here to dealing with
the difficulties that arise when adapting this process to essential lam-
inations. Since if C contains a compact leaf, we can apply Haken's
algorithm to it to get an essential surface in normal form, we can
assume, for convenience, that C contains no compact leaves. The
only terminology for essential laminations which we use that cannot
be found in [7] is that of a monogon number for a lamination w.r.t a
1-complex K; this is a number e so that for some fixed branched sur-
face B, with branched-surface neighborhood N(B) carrying C with
KfΊN(B)=a collection of I-fibers of N(B), any two points of N(B)(ΊK
which are within e of one another are contained in the same I-fiber
of N(B). We shall routinely abuse notation by using the same sym-
bol to represent an isotopy of a lamination and the embedding of
the lamination that results at the end of the isotopy.
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Given an essential lamination £, we can put it in general position
w.r.t. a triangulation r, by putting a branched surface B carrying
£ in general position w.r.t. r, and then embedding £ in a fibered
neighborhood N(B). Consider the lamination λ = £ n d Δ 3 C Δ 3 , where
Δ 3 is a 3-simplex of r. This 1-dimensional lamination consists of a fi-
nite number of parallel families of loops in <9Δf=S2; λ cannot contain
a non-compact leaf, because the existence of such a leaf would ei-
ther imply the existence of spiralling (non-trivial holonomy) around
a null-homotopic loop in £, or a monogon for λ (which would give an
end-compressing disk for £) . By a process entirely analogous to §2.b
of [1], we can by an isotopy I of £ arrange that I(£)ΠΔf is a (finite)
collection of parallel families of disks, and I(£)ndΔf C£ndΔf. This
process is most easily envisioned as a surgery on all of the parallel
families in λ, using a surgery disk parallel to either disk that the
loops of λ bound in <9Δf one then throws away any 2-spheres that
this surgery creates. As in [1], this surgery process can be realized
as an isotopy.

Rename I(£)=£; £(Ί<9Δf=λ still consists of a finite number of
families λj of parallel loops, and each of these parallel families fur-
ther break down into finite families λjj of loops which are inessen-
tially isotopic to one another in the cell decomposition of <9Δf, i.e.,
any two loops cobound an annulus in dAf which is made up of
rectangles in each of the faces of Δf; see Figure la.

By boundary-surgeries, realized as an isotopy of £, we can now,
working family by family, arrange that each loop of CΠdAf meets
each 1-simplex of <9Δf at most once (see Figure lb). Finally, by
isotopy one pushes any disk D of £ΠΔ 3 which now entirely misses
the 1-skeleton of Δf out of Δf.

Using this isotopy I, we have arranged that I(£)ΠΔf consists of
a collection of normal compact disks. Also, by the structure of the
isotopy (see Figure lb), we have the following very useful property
for I: I(£)Πτ^)CCΓ\τ^\ and the isotopy I is fixed on all points of

The idea now is to string isotopies like the one above together to
give an 'isotopy' for £, which attempts to put £ into normal form.

A triangulation r of M has a finite number of 3-simplices which
we number Δ 3 , . . . , Δ 3 . By the above, we can perform an isotopy
Ii of £ so that I i (£)nΔ 3 consists of normal disks. Then we build
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FIGURE 1.

an isotopy I2,i of Ii(£) so that I2 ji(/i(£))lΊΔ2 = I 2 (£)nΔ2 con-
sists of normal disks. Notice, however, that since I2,i may require
boundary-surgeries, which push problems out of Δ2, and hence pos-
sibly into Δ?, we can no longer insure that I2(£)ΠΔ^ consists of
normal disks. Continuing inductively, working cyclically through
the 3-simplices Δf, we can build an isotopy I r j r_i of I r_i(£) so
that I r j r »i(/ r _i(£))nΔf= I r (£)nΔf is a collection of normal disks,
for rΞi(mod n). Notice that this collection of isotopies I r sat-
isfies I r (£)nr( 1 ^CI r _ 1 (£)nr( 1 \ and the isotopy I r is fixed on all
points of lτ(C)Πτ^\ We will adopt the notation that, for r>s,
Ir,s=Ir°l7 l r = Ir,r-l θ / r _ l r _ 2 O . . . O / S + 1 ) S , SO I r > s θ I s = I r .

If for some s, I s(£) is in normal form w.r.t. r, then for all r>s,
I r s = I d , since the isotopies move only portions of C which are not
in normal form. We can then set £ 0 — I S ( £ ) J giving the lamination
required for the theorem. In what follows now we will therefore
assume that for no r is ϊτ(C) in normal form; note that this is equiv-
alent to I r + n (£)ΠτW^I r (£) Πr ( 1 ), for all r. Now we will observe
how these isotopies effect £, as r continues to get larger and larger.
What we will find is that pieces of the IΓ(£) begin to stabilize, be-
coming fixed under all further isotopies. These pieces will form the
'core' of the essential lamination £0 of the theorem.
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2. Stability. Given the sequence of isotopies described in the
previous section, consider the sets Iτ(C)Πτ^=Cτ. Each is a closed
set, and is non-empty; for if C r=0, then it is easy to see that
lr(C)Γ)dAf is a collection of loops all in the interiors of the faces
of <9Δf, for all i. But then I r + n(£)fΊ<9Δf would be empty, for all
i, implying that the essential lamination IΓ + n (£) is contained in a
ball, which is impossible (see §5 below).

Since C r+iCC r, it follows that C=ΠC r is a non-empty closed set;
it is the intersection of a nested sequence of non-empty closed sets
in the compact set r ^ . C is by construction the set of points of
Io(C)Πτ^=CΠτ^which are fixed by all of the isotopies I r; it is the
set of stable points of the isotopies I r. The points of C represent the
'seeds' of the lamination Co; the next lemma begins to show how
Co will grow out of these points.

LEMMA. Given XGC, and a 2-simplex Δ 2 of r with xζdA2, then
for some s the arc as ofϊs(C)Γ\A2 containing x is stable, i.e., as is
fixed under all isotopies IΓ)S; r>s.

Proof. It suffices to show that for some s, the arc as has its other
endpoint also in C; the arc must then be stable, because by con-
struction the only way an arc in a loop of some lτ(C)ΠdAf can move
is if one of its endpoints is removed from lT(C)Πr^ι\ So we will as-
sume that for no s is the other endpoint xs of the arc as contained
in C, i.e., for some r>s, X g ^ I r ^ n r ^ , and show how this leads to
a contradiction.

The first thing we must understand is how the arc as evolves under
further isotopies. Because one endpoint, x, is fixed, as can change
only by 'splicing'; a small neighborhood of xs in α s is removed, and
an arc in a small neighborhood of dA2 is added to it, joining as to
another similarly shortened arc. This could happen a finite number
of times. The union of as and these arcs is aΓ (see Figure 2). This
is described as a 'conservative isotopy' in [1].

Now our hypothesis implies that splicing must be occurring in-
finitely often, which in turn implies that the number of points in
αΓΓVγ must be getting arbitrarily high, where 7 is the 'neighbor
loop' parallel to dA2 which cuts off an annulus where all of this
splicing is occurring (see Figure 2). It therefore follows that, for
some r, two points of αrΓl7 must lie within e of one another along
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FIGURE 2.

7, where 6 is a monogon number for C w.r.t. 7. But then there
are also points a, b of αΓΓl7 consecutive along 7 with this property.
Then the short arc of 7 between a and b together with the arc of α r

between them form a simple loop in Δ 2 , bounding a disk D in Δ 2 .
Reversing the isotopies carried out so far, and applying them to the
arc of ar together with the disk D, exhibits a homotopy of a verti-
cal arc in N(B), rel its boundary, into a leaf of £. This, however,
contradicts [7, Theorem l(d)], which says that such homotopies are
impossible. D

LEMMA. Given xeC and Δf with xedAf, then there exists an s
such that x is contained in a stable normal disk ΔX)i ofls(C)Γ\Af,
i.e., ΔX)i is fixed under all further isotopies IΓ)S; r>s.

Proof. It suffices to show that, for some s, x is contained in a
disk ΔX ) i of Is(£)ΓiΔf with Δ x ? i Πr ( 1 ) CC, since then <9ΔX)i is stable.
Then since a disk can be moved by the isotopies only if its boundary
moves, ΔX)i must be stable. But this is straightforward, given the
previous lemma. The points x lies in two faces of <9Δf pick one, Δ 2 .
For some s, the arc as of IS(£)(ΊΔ2 containing x is stable; its other
endpoint x s is in C. Set xs=yχ; it is contained in another 2-simplex
Δ 2 of dAf, and we can apply the previous lemma to yx in this other
2-simplex to get y2EC joined to yx by an arc of some IΓ(£)ΠΔ 2 . The
point y2 is now contained in still another 2-simplex of dAf, and this
process can be continued.
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But at some point in every n isotopies the union of these arcs,
because they are stable, is contained in the boundary of a normal
disk D of some IΓ(£)nΔf. This disk D meets τ^ in at most 4
points, and therefore meets C in at most 4 points. Consequently,
the chain above must eventually close, hence yj=x, for some i<4. So
eventually x is contained in a stable normal loop of some I r(£)n9Δf,
which in turn bounds a stable normal disk in IΓ + n (£)nΔf. D

3. The intermediate lamination £'. We now have that for
each xGC, and each i such that xE<9Δf, there is an s for which x is
contained in a stable normal disk ΔXji of I s(£)ιΊΔf. Now consider
the set |JΔχ5i=X, where the union is taken over all xGC and all i
as above. X is a union of disks which are normal w.r.t. r, and
XΓ\T(

1)= C. X can also be thought of as a disjoint union of 1-to-l
immersed surfaces in M; 2-disk neighborhoods for points in X can
easily be seen by examining the cases xGint(Δf), xedAf\τ^ι\ and
x£τ(ι\ X even has a local product structure, because it falls into
blocks of parallel normal disks. Moreover:

LEMMA. Every leaf o/X is τrι-injectiυe in M.

Proof. Let L be an leaf of X, and 7 a loop in L null-homotopic in
M. By general position we may assume that 7 is self-transverse and
immersed in L, and misses the 1-skeleton of r. 7 is compact, so it
meets only finitely many of the normal disks D^ comprising X. By
choosing an s large enough so that the disks that 7 meets are stable
normal disks for I s, we can assume that 7CIS(£) . Consequently,
7CL /CIS(£) for some leaf L' of I s (£). L' is πi-injective in M, so
there is a null-homotopy F:D2—»L' with F |#D2=:7.

Consider 7CL'. A small regular neighborhood of 7, N(7)CL', sep-
arates L' into a finite number of connected components; L'\int(N(7))
= L[ U . . . U Vr. Some collection L'1 ?... , L's of them are compact,
and by setting S^L^ U. . . U I/5UN(7), we have that S is compact,
7CS, and L/\int(S) has no compact components. It then follows
from standard facts (since <9S is πi-injective in L'\int(S)) that SCL'
is πi-injective in L', and so we can assume that the image of the
null-homotopy F above in fact lies in S.

But now for large enough r>s, Ir,s(S)C£': S is compact, and its
boundary, which is contained in <9N(7), is stable. So the ordinary
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induction for Haken normal form of compact surfaces can be applied
to S to show that eventually the isotopies for C must stabilize on
S. It then follows that Ir5s°F maps D 2 into X, i.e., into L, giving a
null-homotopy for 7. D

In general, however, X is not a lamination - it fails to be a closed
set. However, it does meet the 1-skeleton of each 3-simplex in a
closed set. So it is a relatively simple task to categorize the kinds
of bad limiting behavior that can be taking place in X; they occur
only at interfaces between normal disk types, and only in one of 3
ways; see Figure 3.

One can rule out bad behavior between two parallel normal disks;
in this case the portion of <9Δf between the two disks is an an-
nulus, made up of 3 or 4 rectangles, and an analysis like that in
[1, Lemma 5.3] shows that once two parallel stable disks are within e
of one another along τ^ι\ none of the disks in between can be moved
by a boundary-surgery. The first such surgering disk, together with
a tail over to the point along r^ where the two leaves were closest,
would give a disk violating [7, Theorem l(d)], as before. Therefore
any leaves between the two disks which move disappear completely
under a surgery, since they must be in 2-spheres which are thrown
out. The disks which remain in X between the two parallel disks
are therefore in a nested intersection of the disks which remain after
each surgery, and hence form a closed set.

So bad limiting behavior can occur only when it involves disks of
different normal types. Keeping in mind that XΠr^ is already a
closed set, inspection leads to the catalogue of limiting behavior in
Figure 3.

It then follows that X = the closure of X is the union of X and a
finite number Δ?,Δ^,...,Δ£ of normal disks. Let Γ=(|JΔ?)nXCτ( 2);

FIGURE 3.
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ΐ L

FIGURE 4.

this is the set of points where X fails to be a lamination (see Figure
3). Γ is a finite graph, possibly containing some isolated vertices.
What we wish to do now is to alter X to make it a lamination. The
graph Γ acts very much like the branch locus of a branched surface,
and we wish to do a splitting of X along Γ to obtain a lamination.

In general, a branched surface cannot be split open to become a
lamination. But because the branch curves already have leaves of
X limiting vertically down upon them, this allows us to see that a
crucial parity condition is satisfied, and will allow us to build our
lamination.

First we perform a preliminary 'double split' along the leaves
L of X which intersect Γ: replace each leaf L with LU<9N(L) (see
Figure 4). Replacing L with <9N(L) is what is ordinarily known as a
splitting along L, so we are splitting X along L, but also keeping L
(for reasons which will become apparent later). The graph Γ is then
contained in U<9N(L); in particular, each component of Γ is isolated
in X, in the transverse direction, on one side.

The next step is to alter Γ to a collection of disjoint circles. Call an
edge of Γ a 'double cusp edge' if in both of the 3-simplices containing
it, the edge is contained in one of our finite number of normal disks
in X\X. Such edges can be split open; see Figure 5. In particular,
since every hanging edge of Γ (one which contains a vertex with

FIGURE 5.
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valency one) is of this type, such edges can be removed. After these
splittings Γ may contain some isolated vertices; we then split along
them, as well. After these preliminaries, Γ will be a graph with
every vertex having valency at least two.

Every vertex v of Γ lies in a 2-disk neighborhood D in a leaf L of
X, and in this disk we can assign normal orientations to the edges of
Γ at v, pointing out of the 3-simplex that the 2-simplex that creates
the edge is in (Figure 6). By the preliminary splitting, this is well-
defined. Because each of the disks we have added to X to get X is
limited upon by parallel normal disks - that is the only reason they
were added - on the side away from L, we can conclude that the
normal orientations of the edges must alternate as we travel around
v in the disk D (see Figure 6). For in travelling around v in L,
when we cross an edge of Γ, we pass (as we follow the orientation)
from a part of L which is not limited upon by leaves of X to a part
which is. Therefore, the next edge of Γ that we encounter must have
the opposite orientation, in order for us to pass from points having
leaves limiting on them to points that do not, as we cross the edge.
In particular, there must be an even number of edges. So we have
a situation as shown in Figure 7, and then by either flattening X
out at v, or splitting at v (it doesn't matter which) we can remove
v from Γ , in so doing splicing adjacent edges together. Induction
on the number of vertices in Γ of valency >3 finishes the argument.

The object that we now have is what is known as a pre-lamination;
it is a branched 2-manifold all of whose branch curves are circles.

r1xo
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FIGURE 7.

Such an object can be turned into a lamination by splitting open
the singular leaves. In fact, our pre-lamination has a very simple
form - in consists of a collection of surfaces, with a finite number of
compact surfaces (made up of our added 2-simplices) glued to them
along disjoint circles. In particular, these added surfaces are never
glued to one another. This pre-lamination can therefore be turned
into a lamination simply by deleting those portions of our leaves
<9N(L) which are isolated on both sides. More precisely, consider
the union of the <9N(L) cut open along the loops Γ, and let Y be the
collection of components of (J(<9N(L))\Γ which are isolated on both
sides in X; see Figure 8. £'=X\Y is then a lamination; it is a closed
set because we have only removed pieces of X which nothing limits
on transversely, and it has the local product structure because the
only places where X failed to be a lamination were along Γ, but by
construction the piece of <9N(L) to one side of the circle was isolated
on both sides, so has been removed.

FIGURE 8.
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£ is therefore a lamination, which by construction is in Haken
normal form w.r.t. the triangulation r, since it is a union of normal
disks. £ need not be an essential lamination; however, we will
see in the next section that £ must in fact contain an essential
sublamination.

4. Finding £o For convenience we will distinguish between
leaves of £ which contain components of Γ from those which do
not, calling the former split-and-paste leaves and the latter ordi-
nary leaves. Notice that by the lemma above, all ordinary leaves
are τri-injective in M, since each is isotopic to a leaf of X.

LEMMA. Every split-and-paste leafL of £ is limited on by ordi-
nary leaves.

Proof. If not, then for any xGL there is an arc A meeting £
transversely and containing x in its interior, which meets only split-
and-paste leaves of CJ. But since every split-and-paste leaf is a
limited upon by other leaves, by construction, these must all be
split-and-paste leaves, as well. So the set £'ΓlA is a perfect set.
Because there must be a sequence of points limiting on x, £Γ\A is
also infinite. An infinite, perfect set in an interval is uncountable;
but each leaf of CJ can meet A in only a countable number of points,
since in the leaf these points represent a discrete set in an open
surface. It follows that there must be an uncountable (in particular,
infinite) number of split-and-paste leaves. But since there are only
finitely many split-and-paste leaves (since Γ had only finitely many
components), we arrive at a contradiction. D

Consider the (possibly empty) collection T of leaves of £ which
are compressible tori. Since all ordinary leaves are TΓI-inject ive,
hence incompressible, the leaves of T are all split-and-paste leaves.
There are, consequently, only finitely many of them; T=T\ U . . . U
Tjfc. Because M is irreducible, such a torus T; either bounds a solid
torus or is contained in a 3-ball; in either case, T» separates M.
Because T; is a split-and-paste leaf, it is isolated in £ on one side.

Notice also that by the split-and-paste construction, for every
such torus, there is an ordinary leaf on the isolated side (the 'L' of
'LUN(L)') which can be joined to the torus by an arc meeting no
other leaves of £.
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Now split M open along Ί \ to get M i = M | Ί V One of the two
components of Mi, call it N l 5 has boundary ==Tχ which is iso-
lated in £ ; nNi, i.e., £'nint(Ni) is a lamination in N^ Further-
more, 7i=Tnint(Ni) has fewer components than T. If we now
continue, choosing a component of 71 and splitting, by induction
we will eventually find a component N of some M| U(Tij) which has
boundary UΓ^) isolated in £'ΠN, and with TlΊint(N)=0. Conse-
quently, £o=>Cnint(N)CNCM is a lamination in N; since N is a
closed subset of M, Co is also a lamination in M. By construction,
£o contains no compressible tori. It is also non-empty, because it
contains the ordinary leaves described above on the isolated sides
of each of the T^.

PROPOSITION.

(a) CQ contains no spheres,

(b) d(M\Co) is incompressible in M\Co,

(c) Every leaf of Co is end-incompressible, and

(d) M\£o is irreducible.

Proof, (a): If Co contains a sphere leaf L', then it contains an
sphere leaf L which is an ordinary leaf. For if L' were a split-and-
paste leaf, then there are ordinary leaves limiting on it; but since L'
is simply-connected, it lifts to the nearby leaves in its normal fence,
so nearby leaves must cover L' , and hence be spheres themselves.
But any compact ordinary leaf L of Co is made up of only finitely
many normal disks, so LCIΓ(£) for some r, i.e., C contains a leaf
isotopic to L. But for L=S 2, this contradicts the essentiality of C\
C contains no spheres.

(b): Let 7 be a simple loop in <9(M|£0), bounding a disk D in
M|£o If 7 is contained in an ordinary leaf of Co, then this result
follows immediately from the πi-injectivity of that leaf. So we may
suppose that 7 is contained in a split-and-paste leaf L of Co-

CLAIM. L has trivial holonomy around 7; the normal fence A of
7 meets all nearby leaves in closed loops.

Proof of Claim. After an isotopy in L, we may assume that 7
meets the 1-skeleton r^ of r. Now if there is non-trivial holonomy
around 7, then there is a loop of An£o> possibly equal to 7, with
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D τ

a non-compact arc a of An£o spiralling down towards it. This
loop 7 is also contained in a split-and-paste leaf L', because a null-
homotopic loop in an ordinary leaf bounds a disk in that leaf, so
has no holonomy around it. Since there are ordinary leaves limiting
on L', there must be points in AίΊ£o, contained in ordinary leaves,
arbitrarily close to a point of α; such points must also be in half-
infinite arcs limiting on 7. So we may assume that a above is in an
ordinary leaf.

But such an arc, in spiralling down on 7, must eventually pass
within e of itself along a 1-simplex σ1 of the 1-skeleton r' 1 ' , where e
is a monogon number for £. The arc β in 7 between two such points
meets only finitely many normal disks of £Q> a n d so is contained in
some IΓ(£). Make the disk D + , consisting of the compressing disk D
and the positive half of the normal fence A, transverse to IΓ(£) by a
small isotopy, which we may assume is fixed on the compact end of
the arc a containing β. Then D+ΓΊlr(£) must consist of circles and
arcs, because IΓ(£) is essential, and β is contained in one such arc, δ.
If we look at δ Π 77, where η is the arc of σ1 between the endpoints of
/?, and choose two points of the intersection which are consecutive on
77, the subarcs of β and η which they split off form a loop, bounding
a disk in D + ; see Figure 9. Once again, however, this disk violates
[7, Theorem l(d)], a contradiction. This establishes the claim.

Since L must be limited on by ordinary leaves, it follows that near
7 there must be loops in the normal fence, contained in ordinary
leaves, which bound disks in the leaves of £Q containing them. Reeb
stability implies that the set of loops of CQΠA in the normal fence
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A which bound disks in their leaves is open in £oΠA, so the set Λ
of loops which do not is closed. Such loops are contained in the
split-and-paste leaves, so they meet a transverse arc in a closed,
countable set. Therefore there is one such loop 70 which is isolated
in Λ. But then 70 together with the loops, in ordinary leaves, in a
short normal fence around it represent an embedded vanishing cycle
for Co . Therefore, by arguments like those in [7, Lemma 2.8], the
leaf of £ 0 containing 70 is a torus T bounding a solid torus. But
this contradicts the construction of £ 0 ; it contains no compressible
tori.

(c): Let e be a monogon number for a branched surface B car-
rying £. Since £ can have only finitely many compact split-and-
paste leaves, we can find a branched surface B' carrying £ such
that 9hN(B/)CL/ and N(B')|L' has no compact components. If Do
is a end-compressing disk for £', then since the union of fibers of
N(B')|£' of length not less than e/3 is compact, and M\int(N(B'))
is compact, eventually the tail of Do contains a fiber f of N(B')|£' of
length less than e/3. Without loss of generality, we may assume that

(by dragging Do there; every component of N(B')|£' meets
If the leaf L of £ containing 9D0 is a split-and-paste leaf, then

there are ordinary leaves limiting on it, and so there is an arc a in
an ordinary leaf L' in the normal fence over the arc of <9Do cut off
by <9f, within e/3 of dΌ0. In particular, it is within e/3 of dί. Then
α?U(the extension of f) bounds a disk D in M with αCL', and f C r ^
of length < e, and since a meets only finitely-many normal disks
of L', we may assume that αClΓ(£) for some r. But this situation
again violates [7, Theorem l(d)], so £ is end-incompressible.

(d): Suppose M\£ o is not irreducible, so there is a 2-sphere
S 2 CM\£ 0 not bounding a ball in M\£ 0 Because M is irreducible,
S2 does bound a ball B3 in M (on one side only; otherwise, M=S 3 ,
a contradiction). It is easy to see that there must be innermost
such 2-spheres, w.r.t inclusion of bounding 3-balls; all but finitely-
many of the components of M\£ o are contained in N(B), and so
inherit an I-bundle structure from the fibering of N(B). They are
therefore irreducible, and so contain no reducing spheres, since a
reducing 2-sphere could be made transverse to the I-fibering. But
then falling down the fibers we would find an S2- or RP2-leaf in the
boundary of M\£Q (i.e., in Co ), a contradiction; nearby ordinary
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leaves would also have to be S2's or RP2 's, which (being compact)
would be leaves of the original C. The remaining components of
M\£o can each have only finitely-many 'reducing' 2-spheres which
are nested in M, since for the 2-spheres to be non-nested in their
component there must be leaves of £ 0 in between, hence one of the
finitely-many boundary leaves of Co (corresponding to <9hN(B)) in
between, as well. We therefore may assume, by passing to an in-
nermost such S2, that every reducing sphere in B3 \CQ is parallel to
<9B3, i.e. (setting CI=CQΠB3 and capping B 3 off with a ball to get
S3), S3\£χ is irreducible. C\ C S3 also satisfies (l)-(3); any com-
pressing or end-compressing disk could be pushed off the capping
3-ball (it's just a big point), so could be thought of as living in (B3,
hence) M.

But C\ cannot be essential, since 3-spheres don't contain essential
laminations [7], so C\ must contain a compressible torus. But, back
in M, this torus leaf of C\ is contained in a ball, so is compressible
in M. But this contradicts the construction of £ 0 Π

CQ is also non-empty and contains no tori bounding solid tori,
by construction. It is therefore (by definition [7]) an essential lam-
ination. Because it is a sublamination of £', it is also in Haken
normal form w.r.t. r, and gives us the lamination required for the
theorem. The corollary follows immediately from the construction
of [5, Section 3].

5. Concluding remarks. Exactly what 3-manifolds contain es-
sential laminations is one of the more important questions left unan-
swered by the theory which has been developed in recent years. It
has been shown in [1] and [4] that some of the irreducible Seifert-
fibered spaces with infinite fundamental group do not contain es-
sential laminations, but to date no non-Seifert-fibered example is
known. It has in fact been suggested by Gabai that (assuming the
Geometrization Conjecture) no such examples exist: every hyper-
bolic 3-manifold will contain an essential lamination. The result
presented here gives a new tool for searching for essential lamina-
tions (and for manifolds which do not contain them), by allowing us
to restrict our attention to laminations which have more structure
than what a garden variety lamination could be expected to have.
The key result in [1], for example, is a structure theorem for essential
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laminations in Seifert-fibered spaces; the additional restriction this
places on the 'shape' of the lamination led, using work of Eisen-
bud, Hirsch, and Neumann on foliations of Seifert-fibered spaces,
to the non-existence result mentioned above. Hopefully the result
presented here will be of similar help in more general manifolds .
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