PACIFIC JOURNAL OF MATHEMATICS
Vol. 169, No. 1, 1995

DIAGONALIZING HILBERT CUSP FORMS

TiMOTHY W. ATWILL

We develop an operator Cq(¥g) on the space Sg(N, ¥) of
Hilbert cuspforms as an alternative to the Hecke operator
Ty for primes g dividing N. For f € S;(NV,¥) a newform,
we have f | Cq(¥g) = f | T;. We are able to decompose the
space Si(N,¥) into a direct sum of common eigenspaces
of {Ty, Cq(¥g) : p{ AN, q| N}, each of dimension one.
Each common eigenspace is spanned by an element with
the property that its eigenvalue with respect to T, (resp.
Cy(¥)) is its p*P (resp q*P) Fourier coefficient. We finish
by deriving bounds for the eigenvalues of Cq(¥g).

Introduction. Let S¢(N, V) denote the space of Hilbert cusp
forms of Hecke character W. Shemanske and Walling [7] char-
acterized the newform theory for Sx(N, V) which is analogous to
that derived in [1] for the elliptic modular case. They decompose
the space Si(N,¥) into a direct sum of common eigenspaces for
the Hecke operators {7, : p { N'}. The non-zero elements of the
one-dimensional common eigenspaces are called newforms, and a
newform can be normalized such that its p*® Fourier coefficient is
equal to its eigenvalue for 7T,. They also show that each common
eigenspace of {T, : p { N'} has a basis of the form {g | Be : g €
Sx(M, ¥) a newform , M | N, £ | NM~'}. While the Hecke op-
erators {Ty : q | N} act invariantly on these eigenspaces, there
generally does not exist a basis for these eigenspaces which consists
of eigenforms for {T; : q | N'}.

In this work, we resolve this particular difficulty by replacing 7g,
q | V by the operator Cy(¥g). It is defined using the Hecke operator
T, and the Hilbert analog of the Atkin-Lehner Wy operator of [7],
and hence depends upon a choice of Hecke character ¥o. We are
able to diagonalize the space Sx(N,¥) with respect to the family
{Ty, Cq(¥g) : pt N, q| N}. Further, we are able to establish
that each common eigenspace is one-dimensional and is spanned by
a form whose pth (resp q'") Fourier coefficient is its eigenvalue with
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respect to T, (resp. Cq4(¥g)) (Theorem 2.7). In addition, for a
newform f € Sy (N, ¥), we show that f | Cq(¥g) = f | T, regardless
of the choice made for ¥, and hence the newform theory of [7] is
left intact when we replace T, by Cy(¥g). Our results generalize
those in the elliptic modular case, where the C, operator was first
introduced by Pizer in [5] for trivial character, and by Li in [4] for
non-trivial character.

We finish by investigating the eigenvalues of C;(¥g). In the case
of elliptic cusp forms, one has the sharp Deligne bound of 2¢*~1)/2
for the magnitude of the ¢ Fourier coefficient of a newform. In
the Hilbert case, the best corresponding bound is Shahidi’s bound
of 2N (q)*~1/2+1/5 given in [6]. If one tries to adapt the methods of
[4] to the Hilbert case, this weaker bound gives rise to complications
when dealing with ideals of low norm. Because of these difficulties,
we implement a significantly different method of proof to arrive at
bounds for the magnitude of the eigenvalues of C;(¥g) (Theorem
3.2). Essentially, the bound is 2N(q)*/2, except for the case where
q|lV or N(q) < 11.

1. Notation. For the most part, we follow the notation of [9]
and [10]. Let K be a totally real number field of degree n over Q
with ring of integers O and different 0. Let H denote the complex
upper half-plane, and GL3 (K) be the group of 2 x 2 matrices with
entries in K and totally positive determinant. We define an action
of GL§ (K) on H™ by

ab aWz; + bW a™ z, + b™
A -z= (C d) -z =(———_C(1)Z1 PR ——_—c(")z,, n d("))

where a® denotes the i-th conjugate of a over Q. Also, for k =
(K1, ..., kn) € Z", we denote the product [[;(cz; +d®)k by (cz+
d)¥ and [];(a®d® — b))k by (det A)*.

Define for N € Z, the set 'y = {A € SL,(0) : A—- 1, ¢
NM(0)}, and denote by My (I'y) the complex vector space of all
holomorphic functions f on H" such that
f(A-2z) = (det A)7*2(cz + d)*f(z) for A € 'y and which are
holomorphic at all of the cusps of I'y. Let My = UF_; Mk(Tn).
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For an integral ideal N and a fractional ideal Z, set

LoV, I)

ab O I «
—{A_(cd)e(/\fl'b o ).detAE(’),detA>>O}.

By a numerical character modulo N, we mean a character 1 :
(O/N)* — C*. As in [9] and [10], we define for a numerical
character 1) modulo N and a character 6 on the totally positive
units, the space My (To(N, I), v, ) which consists of all functions
f € My such that

f ((‘; Z) : z) = (a)0(ad — be)(ad — be)™*%(cz + d)* £ (2)

for all (¢%) € To(NV,Z). As in [10, (9.20)], we shall assume that
¥(€)0(e?) = sgn(e)* for all e € O*. This imposes no real restriction
since without this assumption, the space of modular forms is zero.
We note the existence of an m € R" such that 6(a) = a™ for all
totally positive units a. While this m is not unique, we will fix an m
which satisfies the previous equality for the remainder of the article.

Fix a complete set of strict ideal class representatives 7, ..., 7,
and denote T'y(N, Z,) by I'y. Then we put

h

M(N,,0) = [ Mr(T», ¥, 6).

1=1

We are interested in the h-tuples (f1, ..., fn) € Me(N, ¥, 0).

In order to make the notation easier to handle, we follow Shimura
and describe the above h-tuples as functions on an idele group. To
do this, we must define an assortment of objects. Let K} denote
the set of ideles of K and let G4 be the adelization of GLy(K),
which can be identified with GLy(K4). Note that GLy(K) can be
embedded in G4 as the set of diagonal elements, and when viewed
this way, they will be denoted Gg. Also, let Go, = GLy(R)™ and
Goor = GLT (R)™. In the following, we will use @, b, ¢, ... to denote
elements of K} and w, z, y, z to denote elements of G4. If N is
an integral ideal of O and p a prime ideal, define the subsets Y, (N)
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and W,(N) of GLy(K,) as follows:

_ _ ab Op D_IOp .
V) = {”‘ (cd) € (Nao,, 0, ) :
detz € K\, (a0y, NO,) = 1},

Wy(N) = {z € Y,(N) : ordy(det z) = 0} .

We then use these to define
Y(N)=GasnN (Gw+ X HY,,(N)) ;
p
p

If @ € K, then aO denotes the fractional ideal of O which is
canonically identified with @, and, similarly, for any ideal Z of O,
we set aZ = (aO)Z. Also, let (a)x (resp. (@)o, (@)oo) denote the
N-th part (resp. finite part, infinite part) of a. Fix h elements
t1,...,t, in K such that £,0 = I, (£\)eo = 1 and for each i,
deﬁne Ty = (0 t(;)' Also, fix t, so that £%,0 = 0, (f)e = 1. By
Strong Approximation, one can see that

h h
Ga= U GKIB)\W(N) = U GK.’L';"LW(N)
A=1

A=1
where (23)" = (4 ).

Given a numerical character ¥ modulo N, define a homomor-
phism ¢y : Y(N) = C* by ¢y ((83%)) = ¥(ay mod N). Follow-
ing Shimura [10, (9.20)], if (fi,...,fa) € PN, 4, 80), we define
the C-valued function f on G4 by

f(azy‘w) = Yy (') det (weo)™ fillwoo(i)
where a € G, we WN), i= (i, i,..., i), and

A (20) @ = 0= b0fPes 4 )47 (53]

cz+d

Given f, one can recover f, ..., fi, and thus we say £ = (fi,..., fa)-
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As in [9] and [10], we identify 9 (N,,6) with the functions
f: G4 — C such that

i) flazw) = Yy (w')f(z) for all @ € Gk, z € G4, w € W(N),

with we = 1 and
ii) For every )\, there exists an fy € Mj such that f(z)‘we) =
det(Woo )™ fi [|weo (i) for all we, € Geoy-
We denote the space of such functions by 9 (N, ¥, m) where m €
R" is the fixed element with 6(a) = a™ for all totally positive
units a. We denote the corresponding subspace of cusp forms by
6Ic (N ’ w’ m)

By a Hecke character, we shall mean a multiplicative character ¥
on K such that ¥(a) = 1 for alla € K*. We will denote numerical
characters by lower case Greek letters, and Hecke characters by
upper case Greek letters. Let ¢ : K — C* be given by ¢ (@) =
sgn(leo )*| oo™, with m € R™ as above. We then say that a Hecke
character ¥ extends Y1), if ¥(@) = ¥(ay mod N)p(a) foralla €
K% x I, OF. If the previous equality holds for ¥ (a) = sgn(deo )¥,
then we say ¥ extends 1. Let ¥ be a character of K, and denote
by My(N, ¥) the subspace of M (N,1,m) consisting of f such
that f(5z) = U(5)f(z) for all § € K. Since f(5z) = f(z) for all
§ € K*, we have My(N, ¥) = {0} unless ¥ is a Hecke character,
and, in addition, by [9, (9.22)], we know such a ¥ must extend ¥t)oo.
It is shown in [11] that there exists only h such Hecke characters,
and that M (N, ¥, m) = g Mi(N, ¥). Let Sp(N, ¥) denote the
subspace of cusp forms in Mg(N, ¥).

It is easy to show that if N is the K-modulus of 1, then the
conductor of a Hecke character ¥ which extends 1 divides N*P.
This allows us to define an ideal class character ¥* modulo NPy,
by

¥ (q) = {o i@ M AL
U(7,) if (q, N) =1,

where (7g)o = 1 and 730 = q. Observe that for any a € K}
such that (a0, N) = 1, we have ¥(a) = U*(aO)¢(an)vwo(a). In
addition, note that both ¥ and ¥* have modulus 1.

Let f = (f1,..., fn) € My(N, V), with f\ € My(T», 9,6). Then
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f» has the Fourier expansion

L) =ax0)+ > ax(é)exp(2miTr(€z)).

0<KEETy

As in Shimura, we set

Clm gy = (NP im = €l C O
™Y =0 ifm¢ O

where kg = max{ki,...,k,}. We call C(m,f) the Fourier coeffi-
cient of f at m, and we use these Fourier coefficients to associate a
Dirichlet series to f, namely

D(w,f) = Y C(m,f)N(m)™™.

mCO

Note that, while the Fourier coefficients of f determine f, the Dirich-
let series does not.

Finally, we define some basic operators on elements of
My (N, 1, m). For more details, one is directed to [9]. First, we
define the slash operator for f € M (N,¢,m) and z € G4 by
f | z(z) = f(zz*). For n an ideal of O, we follow [9] and define
f | B, = N(n) k/2f | ((1) 591), where 1 € K is such that AO = n
and fi,, = 1. One can then show that B, maps My(N, ¥) to
Mi(Nn, ¥), and C(m,f | B,) = C(mn~L,f). Thus, f | B, | By =
f | Bum. Finally, for m an integral ideal of O, we have from [9] the
Hecke operator T of level N. It is shown that T, = T maps
Mi(N, ) to Mg(N, ¥), regardless of whether (m, AN') = 1 and
[9, 2.20] gives C(m,T}) = Y mince ¥ (a)N(a)o~1C(a ?mn, f). We
note that both B, and T}, take cusp forms to cusp forms.

2. The Cy(¥go) operator. In this section, we introduce the op-
erator Cy(¥g) and develop its properties. For the most part, these
properties mimic those of Ty, q | N, with the additional property
that Cy(¥g) is normal with respect to the Petersson inner product.
We then establish a multiplicity one condition on S¢(N,¥) with
respect to the operators {T,, Cq(¥g) : p t N, q | N} (Theorem
2.7).

Fix a space My(N,¥) C My (N, 4, m), where ¥ is a Hecke char-
acter which extends ¥1). To define the Cy(¥g) operator, we will
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need the Hilbert analog of the Atkin-Lehner Wg operator, as de-
fined in [7]. For the convenience of the reader, we state its def-
inition as follows. For a prime divisor q of N/, let @ = g°™daW),
and choose a Hecke character ¥g which extends g (here, we write
Y = Pgng-1, where g (resp. YPprg-1) is a character modulo Q
(resp. modulo N'Q71)). In the following, if g = 1, we will always

choose ¥g = 1 to extend it. Choose a matrix y = (‘c‘ Z) € Ga

so that yoo = 1, dety® = Q and a0, dO C Q, bO C v, and
¢O C No. Then the Wy operator for f € Sg(N, ¥) is defined by

f| Wo(¥o)(z)
= Ug(det 2)9o(bf, mod Q)P (@ mod M)F | y(z).

This operator is independent of the choice of a, b, ¢ d, and sends
Sk(NV, ¥) to Sp(N, ‘I,ng) Define Cy(¥g) as follows

;

T, if ¢ is not a character mod Nq™*

Ty + Wo()TWo' (1) + N(q)*e/2" Wo(1)
Cy(¥g) =4 if 9 is a character mod M'q~! and q||N

Ty + Wo(¥o)T,W5' (o)
if 9 is a character mod Nq~! and ¢% | V.

\

Here, Ty is as in (9], and W5'(¥q) = 1o(—1)¥¥o(74)Wo(¥g),
by [7, Proposition 2.2]. It is easy to check that the above is an
endomorphism of the space S,(NV, ¥).

In what follows, we let p denote a prime which does not divide
N, and let q denote a prime which does divide . Also, suppose we:
have fixed a Hecke character ¥ which extends g for each q | V.
We now establish properties of Cy(¥g).

PROPOSITION 2.1. Cy(¥g) commutes with Ty, p{ N, and Cy (¥ go),
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q|N.
Proof. This is because
T,15 = Ty,
TyWo(¥g) = o (p)Wo(¥o)Ts,
T, Ty = TyT,,
and TyWo(¥q) = Vo (q")Wo(¥o)Ty
for q' # q by [7, Proposition 2.4]. O

Thus, Cy(¥g) preserves a common eigenspace of {T, : pt N} on
Sp(N,T).

PROPOSITION 2.2. Cy(Vg) commutes with Bg if q 1 £.

Proof. Recall Cy(¥g) takes Sx(N, ¥) to Sp(NL, T). As the defi-
nition of Cy(¥g) depends only upon the order of q dividing M and
the conductor of ¥, we have that Cq(¥g) is the same on Sx(N, ¥) as
it is on Sg(N'L, ¥). Thus, we have Cy(¥g)Bg = BeCy(¥g) because
Tqu = BgTq and Wg(‘Ifg)Bg = \II*Q(S)BQWQ(\I’Q) on Sk(./\/, \I’) if
q1t £, by [7, Proposition 2.3]. O

The Petersson inner product on Sx(N, ¥) is defined to be (f,g) =
>a{/fx, 9r), where the inner product on My (T'5, 1, m) is given by
[9, (2.27)]. To gain some insight into how C¢(¥g) acts with respect
to this inner product, we examine how it acts on component func-
tions. Before we do this, we set some notation. Given z = ((1) ,-?q) €
Y(N), we can find for each A an element a) € 2,Y(N)z;* NGk
such that z)z = ayz,w, with w € W(N). Given a,, define the set
{vai}iz1 C 22 Y (NV)z,* NGk to be a common set of coset represen-
tatives of I'yaxl'y, i.e., [aaxl'y = Ui Thvyy = Uj_;uzT,. With this
notation, we can state

PROPOSITION 2.3. Iff € S, (N, V), then

0)  (F| Ty = N(@)2 1Y (det va) "™y (25 vazu) " Fullvas
£

il) (f | Wo(To)T,W5' (¥o))a

= U () N ()27 3_(det vr;) ™y (23 va2u) fullvs-
j=1

]:
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Proof. Part i) is simply a restatement of [10, (9.24)]. To prove
ii), we first remark that [9, (2.10)] and tedious but straightforward
manipulations give us

f | Wo(¥o)T,W5'(¥o)(2)
= N(g)ko/*! Z(l/@zg)y(ﬂfj)—lwg(det z)f |y~ zy(2),

where W (N) ((1, ,2') W(N) = Ui_, W (N)z;, and y is as in the above
definition of WQ(\IIQ) One can check that W(N) (’;“ (1)) W(WN) =

W)y ey = Uy ' W(N)z;y, and, in addition, we have
W(N) (’I]“ (1’) W(WN) = U, W(N)z, (v5;)ozy", by [8, Proposition
2.3]. Thus, in the following computations, we can let

{y=! (v§;)orx‘y~"} play the role of {z;} in the above.
Let z € H™, and let wo € GLy(R)™ be such that wei = 2, and
let £ = (f,...,f1) = | Wo(¥o)TyW5'(¥g). We then have

A(2) = Allwes (i) = (det woo) ™™ ( | Wo(¥o) TWg ' (¥0)) (25 weo)

= (det woo) ™™ >_(V13)y (2, (v3;)075 "y ")

j=1
- Wo(det zj, (v3;)0z3 ) | (25,(v5;)073") (25 Weo)

Z det vy;) "n WPQ) (yx (Uf\j)om;\Ly_l)

- UV o(det z,,(vaz)0Ty ") fullvy; (2)

by a series of uncomplicated calculations, and using the fact that all
of the above matrices, with the exception of wy,, have trivial infinite
parts. )

Let (vyj)0 = (‘1’ ;j ) If we let M = NQ~! then the above
equation simplifies to

@) =3 [Ymludidity mod M)TTo(Eua;d,E5")]
j=1

- (detvy;)"™p(a; mod N) fullvs,-

Note that ¥(a; mod N) = vy (z; vr;z,).
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To complete the proof, we need only compute the term in brack-
ets. Since W(N) (’[;' (1’) W(N) = Ui, W (N)z!,(v5,)0z5 ", there ex-
ists, for each j = 1,...,s, matrices wy;, wy; € W(N') such that

W ( o (1’) Wo; = xu(v,\j)ox,\ , and hence
g = (det wijwy;) ', a,d;15 7,
for each j. As (det wyjwq;) " € KX x [, Oy, we have
YW o((det wijwa;) ™) = Pm((det wijwz;) ™),
and hence the bracketed term is equal to
EM(ﬁq)‘I’\I’Q(ﬁq) = \I’—\I?Q(ﬁq)-

This finishes the proof. O

REMARK. Let f, g € S§;(NV,¥) C Gx(N,v¥,m). If ¢ is not a
character modulo A/q™!, then, by definition, we have f | C4(¥g) =
f | T,. Hence, in general, there is no relation between (f | Cq(¥ o), 8)
and (f, g | Cq(¥g)). This is not the case if ¢ is a character modulo
Nq~!, as can be seen in

PROPOSITION 2.4. If f, g € S:(N,¥) C G(N,¢,m), and o
is character modulo N'q7%, then (f | Cy(¥g),g) = Vo (7y)(f, 8 |
Cq(¥ o)), where (,) is the Petersson inner product of [9, (2.28)] on
SN, 0).

Proof. We first prove that

(f | Wo(T)T, W5 (¥o), g) = o (7y)(f, g | T).
We have, by definition,
(f| Wo(¥o)T,Wg' (¥o), g)

- 3 ((F| Wbl T (¥0), 1)
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Let T be a congruence subgroup such that My (I') contains both
(£ | Wo(¥o)T,W5' (o)), and gx. Then

w(D\H™) (£ | Wo(¥)T W5 (Ta)), » 9)

= Jove YW o() -
> (det vx) ™y (23 vrj2) fullv'n (2)9x(2) ¥* du(2)
j=1

= I\#n \I’@Q(ﬁq)fu(z) :
Y- (det vag) ™y (23 vajz,) " Lgalloni(2) ¥ di(2)
j=1

= ,LL(F\'Hn)‘I’_‘I?Q(ﬁq)(fm (g] Tq)u)-

Hence, (f | WQ(\I’Q)TqWél(‘IJQ),g> = U, (7g)(f, g | Ty). Simi-
larly, we can show

(f | Tq, 8) = WUo(7)(f, g | Wo(¥o)T, W5 (¥o)).

If q||V and ® is a character modulo A'q~!, then [7, Proposition 4.1]
implies (f | Wg(1),8) = ¥(q){(f,g | Wgo(1)). This completes the
proof. O

An immediate consequence of Proposition 2.4 is the following.
The proof is a direct generalization of the proof of [4, Corollary 2.5].

COROLLARY 2.5. C4(¥g) is diagonalizable on Sx(N, V).

PROPOSITION 2.6. Iff € Sy(N,¥) C Sx(N, 9, m) is a newform,
then £ | Cq(Vg) =£ | Ty

Proof. The claim is immediate if 1 is not a character modulo
Ng~l. If 4 is a character modulo N'q~?, then f | T, = 0 = f |
Wo(¥o)Ty by [7, Theorem 3.3(3)], and hence f | Cq(¥go) = 0 if
q? | M. If ¢ is a character modulo A'q~! and q||N/, then the propo-
sition follows from the fact that f | Wo(1)T,Wg5'(1) = C(q,f)f by
[7, Theorem 3.3(1)], and f | Wg(1) = —N(q)"%/2+1C(q,f)f by a
straightforward generalization of [3, Theorem 3 iii)]. O
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REMARK. The above proposition shows that the substitution of
the Cy(¥o) operator for the Hecke operator Ty for q | A leaves the
newform theory of [7] intact, regardless of which choice is made for
the Hecke character ¥g.

With Propositions 2.1-2.4, and the newform theory of [7], one can
emulate the proof of [4, Theorem 3.6] to arrive at similar results for
the Hilbert modular case. As the proof is long, and no substantially
new ideas are introduced, we omit it, and state

THEOREM 2.7. For each q | N, let Yo be a Hecke character
extending vgo. Then the space Sy(N,¥) can be decomposed into a
direct sum of common eigenspaces of {T, : p { N} and {Cq(¥o) :
q | N}, each of dimension one. In each common eigenspace, there
exists a form h with Dirichlet series

D(w,h) = ) C(m,h)N(m)™

mCO

in which C(O,h) =1, h | T, = C(p,h)h for all p t N, and h |
Cq(¥o) = C(q,h)h for all q | N. In addition, for such h, we have
C(mn,h) = C(m,h)C(n,h) for (m,n) =1.

REMARK. By Proposition 2.6, the newforms of Six(N,¥) are
among the above mentioned basis elements for Sg(N, ¥).

3. Eigenvalues of C,(¥g). In this section, we find bounds for
the eigenvalues of Cq(¥g) on Sp(N, V) C S,(N, 9, m). To do so,
we follow the methods of [4] and restrict our attention to a common
eigenspace V of {T, : p { N'} in Sx(NV, ¥). We find a polynomial
whose distinct roots consist of the eigenvalues of Cy(¥g) on V. By
determining bounds on the size of this polynomial’s roots, we arrive
at the bounds presented in Proposition 3.2.

For the following section, we let V be a common eigenspace of the
Hecke operators {T,, : p{ N'}, and let g € Sx(M, V), where M | N,
be the newform such that {g | Bg : £ | NM™'} generates V. Fix
a prime divisor q of /, and a Hecke character ¥o which extends
Yo. Let r(q) = ordg(NM™1), t(q) = ordq(M), and denote by g the

newform in S (N, ¥T%) such that g | Wo(¥g) = Ag. With 6, ; the
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Kronecker delta, we emulate [4, (3.3), (3.4)] and define

fq,o(fl') = 1a fq,l(m) =T — C(q’g)
fa2(z) = zfq1(x) — q’-‘FQ(ﬁq)N(q)ko (1 - 50,t(q)N(Q)_l) fao(z)
ifr(q) >3

fas(x) = zfo5-1(2) — N(q)koq’q’—g(ﬁq)fq,sﬂ(x)
for3<s<r(q)—-1
-1

(1 — SouaN(a)1)
(2 far@1(@) = N(q)kowg@%q)fq,r(q)a(x))
if r(q)
fq,r D\T) = -1
(@) <(1—60t(q qu1
—‘I"I’Q(Wq) (a)* foo(z )
{ ifr(q) =2
and
(z-C(1,8)) fq,r(CI)(x) - N(q)ko
F@)={ W) uwwale)  ifr(@)>0

(z-C(a,8)) if (q) = 0.

Following [4], it is a straightforward exercise to show that the roots
of Fy(z) are distinct and are, in fact, the eigenvalues of Cy(¥g).

We now estimate the size of the roots of Fy(z). If r(q) = 0, then
the root of Fy(z) is C(q,g), and thus we may assume r(q) > 1
in the following. The assumption r(q) > 1 implies that ¢ is a
character modulo AM'q~!, and hence, by Proposition 2.4, we know
A = UWo(7,)A for all eigenvalues A of Cy(¥g) on V.

As C(q,g) and C(q, &) are integral to the definition of Fy(z), we
break our discussion into the following four cases, which result from
[7, Lemma 4.3, Proposition 3.3]:

q | M and % is not a character modulo Mq~!, so that

(3.1)
C(9,8) = ¥¥(7,)C(q,8) and |C(q,g)| = 0 or N(q)*o~1/2,

q/|M and % is a character modulo Mq~!, so that
(32) C(a,8) = C(9,g) and C(9,8)* = TV o(7g) N(q)"
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9% | M and 4 is a character modulo Mq~!, so that
(3.3) C(9,8) =0=C(a,8),

q1M, so that C(q,8) = C(q,g) = ¥Wo(7,)C(q,g) and
(34) IC(a,8)| < 2N(q)Re~D/2+1/5,

where the last estimate for |C(q, g)| is due to Shahidi [6].

In cases (3.1), (3.2), and (3.3), the methods of [4] for finding
bounds on the roots of Fy(z) can be generalized easily to the Hilbert
case. In addition, if 7(q) = 1, then the proofs of [4] for all four cases
can be emulated, to get similar results. We will state these results
without proof in the final statements of this section.

In case (3.4), however, the methods of [4] rely on the sharp
Deligne bound of 2¢*~Y/2 for the modulus of the ¢** Fourier co-
efficient of an elliptic newform. In the case of Hilbert cusp forms,
the best bound presently known is Shahidi’s bound given above. If
one tries to adapt the methods of [4] to find a bound on the roots
of Fy(z) in case (3.4), the difference between Shahidi’s bound and
Deligne’s bound gives rise to complications when dealing with ideals
of low norm. It is because of these difficulties that we must imple-
ment a significantly different method than [4] when examining the
roots of Fy(z) in case (3.4).

Choose a square root W o(7,)!/2 of ¥Wo(7,). For a complex
number ), define N by A = UWq(7,)/2N(q)*/2)X'. Now, assume
r(q) > 2, and define the polynomials

fo(z) =1,

fi(z) =z - C(q,8),

f3(z) =zf{(z) — (1 = N(a) ") fo(=)
fi@) =zfi 1(z) - fia(x) fors>3

and further, we define the polynomials

Go(z) = — (N(a) "'z — C(3,8)") (N(a) "'z - C(q,8))
+(1-N@™)’
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Gi(z) =2~ (C(q,8)" +C(a,8)")
+N(a)* (C(a,8) +C(a,8) — N(a) ')

Go(z) = (z - C(3,8)) (z - C(3,8)) — (1 - N(@)™)’
Gy(z) = (& = C(@,&)) fi-1(2) = (1= N(@) ") fis(@) fors>3.

If v = UWy(7,)Y2N(q)*/2, then it is easy to see that, when we
are in case (3.4), we have f;(z) = fi(z')y® for s < r(q) and that
Fy(z) = v ®@+(1 - N(q)1)"'Grg)+1(z'). Hence A is a root of Fy(z)
iff X' is a root of G,(g)+1(z). Note that G;(z) = 2G,-1(z) — Gs—2(z)
for s > 2. If we set Hy(z) = G4(x + z7!) for s > 0, then, for z2 #
0,1, [2, Theorem 6.2.2] tells us that Hy(z) = a(z)z® + b(z)z™° =
Gs(z + 7). We now prove

PROPOSITION 3.1. Suppose we are in case (3.4), and that zy € C
is a non-zero root of Hy(z). Then |zo| = 1.

Proof. If zy = +1, then we are done. Thus, assume zy # 1.
Recall that, in case (3.4) we have C(q,g) = C(q,8)' € R, and
|C(q,8)'| < 2N(q)~/2+'/5. This first identity gives us

Hy(zo) = a(zo) + b(zo)
=1+ N(q)™")? = [N(a) " (zo +25") — C(a,8) T
H;(z0) = a(zo)zo + b(wo)zy "
=19+ —2C(q,8)' +2N(q)"'C(a,8)’
~ N(q)™(zo +z5).

Linear elimination and simplication yields

H,(w) = (3 - 1) [ (V(@)22 - C(a,8) N(@)zo +1) 73
~ (22~ Cla,8Y N(@zo + N(@)  z5°)-

-

As we know H(zy) = 0 and as we have assumed z2 # 1, we have

252 ( 7§ — C(a,8)'N(@)z0 + N(q) )
’ N(a)z3 — C(a,8)N(a)zo +1/
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In order for zy to satisfy the above equation, it must necessarily
satisfy

(3.5)
o2 = | B~ Ca.8) N(@zo + N(q) |*
N(a)z5 — C(9,8)' N(a)zo + 1
_ 14 = N@*)(fol* = DI(1+ N(@)(Jzof* + 1) — 2 Re(z0)C(a, 8) N ()]

IN(q)z3 — C(q,8)'N(a)zo + 1|2
Note that 1 — N(q)? < 0, and, in addition,

(1+ N(q)) (Jzof* + 1) — 2Re(x0)C (g, 8)'N(a)
> (14 N(@) (Jzol” +1) = 2lwol N (@) / (2N (@)/277%)
= f (|zol) /N(9)"/*7°

with f(jz]) = N(a)'*7/5(1 + N(q))(|z[* + 1) — [z[N(q). Using
elementary calculus, we find that the absolute minimum of f(|z]) is
positive for any prime g, and so

[(N(@) + 1)(|z[* + 1) — 2Re(2)C(q,8)'N(q)] > 0 for all z € C.

By examining (3.5), we see we must have |zy| = 1, for otherwise one
side of equation (3.5) is greater than 1, while the other side is less
than 1. This finishes the proof. O

Recall that we are looking for zeroes of Fi(z) by examining zeroes
of Gr(q)+1(z). We have H,(g)11(z) = Gyg+1(z+27"') and the above
theorem tells us that in case (3.4), if 2o # 0 is a zero of H,(z), then
|zo| = 1. Thus, if 2 is a root of Gr(g)4+1(z) in case (3.4), then z; is
of the form 2 cos(f). We noted before that a complex number zj is a
zero of Gy(q) 41 iff N(q)F0/2(¥Wo(74))'/?2 is a zero of Fy(z). Hence,
if we incorporate what we have shown with the generalized results
of [4, Theorem 4.5], we have

THEOREM 3.2. Let 7(q) > 0. Then the roots of the polynomial
F,(z) are distinct and of the form N(q)*¥/2(UWq(74)) /2N where X'
is as follows: ifr(q) = 1, then \' = C(q,g)'£1 in cases (3.2) —(3.4),

1/2

and (1/2)(C(a,8)'+C(q,8)+((C(a,8) ~ Cla,8))* +4) " in case
(3.1); when r(q) > 2, || < 2.

Let h be an a simultaneous eigenfunction of Cy(¥g), q | A in V
with associated Dirichlet series oo C(a, h)N(a)~* and C(O,h) =
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1. Then C(q,h) is the eigenvalue of h for Cy(¥g), and thus the
above theorem gives a bound for |C(q, h)|.

COROLLARY 3.3. If ¥ is not a character modulo N'q~', then
|C(q,h)| = N(q)*%~1/2 or 0. If is a character modulo N'q~?, then
|C(q,h)| < 2N(q)*o/2, ezcept for the case when ordg(N) = 1 and
N(q) < 11. In this last case, |C(q,h)| < N(q)*/2(2N(q)~1/>+1/5 +

1).

Proof. The first statement is due to [7, Theorem 3.3]. The last
statement follows from Theorem 3.2 and from the fact that
|2N(q)~Y/2*+1/5 £ 1| < 2 for N(q) > 11. O
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