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ELLIPTIC FIBRATIONS ON QUARTIC K3 SURFACES WITH
LARGE PICARD NUMBERS

MASATO KUWATA

Let gi and q2 be two binary quartic forms. We consider
the diophantine equation qi(x,y) = q2(z,w) from the geomet-
ric view point. Under a mild condition we prove that the
K3 surface defined by the above equation admits an elliptic
fibration whose Mordell-Weil group over C(t) has rank at least
12. Next, we choose suitable q\ and q2 such that the Mordell-
Weil group contains a subgroup of rank 12 defined over Q(i)
and a subgroup of rank 8 defined over Q.

1. Introduction.

In contrast to the arithmetic of algebraic curves, especially elliptic curves,
the arithmetic theory of algebraic surfaces has not yet been well understood.
In the classification theory, K3 surfaces occupy a position similar to that of
elliptic curves in algebraic curves. Thus it is natural to expect that K3
surfaces will prove us a very interesting arithmetic object to study. As evi-
dence, K3 surfaces arise naturally in classical diophantine problems. Since
a non-singular quartic surface is a K3 surface, Euler's equations

and
x4 + y4 + z4 = w4

define K3 surfaces. Also, finding two different Pythagorean triangles of the
same area is in this category of diophantine problems, as it is equivalent to
find the integral solutions to the equation

xy(x2 — y2) = zw(z2 — w2).

(cf. [Brl].) As Euler's second equation suggests, these diophantine prob-
lems are very difficult in general (cf. [E]). A more detailed study using
L-functions has just begun for a very special type of equations, including
Euler's equations (cf. [P-Sw]).
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In this paper we study a generalization of the above equations from a
geometric point of view. Let qi{x,y) and q2(x,y) be two binary quartic
forms and consider the equation

It is easy to construct a non-trivial example of this type that has no rational
solutions. For example, the equation

a;4 + 5y4 = 2zA + 2z2w2 + 3w4

does not have a rational solution since the equation does not have a solution
modulo 5. On the other hand, once we have a rational solution, we can
construct a new solution using a method classically known as the 'chord and
tangent method'. This can be interpreted in terms of elliptic surfaces. In
order to demonstrate that a quartic surface of the above type can have a lot
of rational solutions, we will construct an elliptic fibration from the surface
to the projective line that has a lot of rational sections. Our main result is:

Main Theorem. Let λ and μ be any rational numbers that do not satisfy
the equation (2.1) (see §2). Then the surface defined by

(1 - μ4)2(x2 - y2)(x2 - λ4y2) = (1 - X4)2(z2 - w2)(z2 - μAw2)

admits an elliptic fibration whose Mordell-Weil group has rank at least 12.
It contains a subgroup of rank 12 that is defined over the Gaussian field Q(i)
and a subgroup of rank 8 that is defined over the field of rational numbers

This gives us yet another example of a family of elliptic curves of rank 8
defined over Q (cf. [Sh2]). For small values of λ and μ, the specialization
gives us an elliptic curve of rank 8 with a relatively small conductor (cf. §3).

The geometry of the surfaces of the above type were first studied in detail
by B. Segre [Se] in the 1940's, and later by Inose [I] in the 1970's from a
modern point of view. In §1 we review their results and construct an elliptic
fibration of rank 12. In §2 we take arithmetic considerations into account and
search for a surface whose Mordell-Weil group has a small field of definition.
Thanks to a theorem of Inose (cf. Theorem 1.2), it is not hard to show that
a certain elliptic fibration has large rank. It is, however, very difficult to
find many independent sections, let alone a base of the Mordell-Weil grou]5.
In order to find 12 independent sections, we use another elliptic fibration
on the same surface. This is one of the special features of K3 surfaces, as
an elliptic surface of higher geometric genus does not admit more than one
ellipitc fibration.
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2. Geometry of certain quartic surfaces.

Let qι(x,y) and q2(x,y) be binary quartic forms. We denote by X(q1,q2)
the surface in P3 defined by

It is easy to show that this is non-singular if and only if neither qλ nor q2

has a multiple factor.
In this section we study the geometry of this surface over C. After a

suitable linear change of coordinates, we may assume that the two quartic
forms are of the form

qι(χ,y) = χy(χ -y){χ- λy)

and
q2(z,w) — zw(z — w)(z — μw)

for some numbers λ and μ.
Let Eι be the elliptic curve defined by the equation

y2 = qi(x,l) z = 1,2.

We denote by Y(qχ, q2) the Kummer surface associated to the product abelian
surface Eλ x E2. Note that the surface X(qχ^q2) has the involution defined
by

σ : (x : y : z : w) »-> (x : y : —z : —w).

The surface X(qχ,q2) and Y(qι,q2) have the following relation.

Theorem 1.1 (Inose). Let X — X(qι,q2) andY = Y(qι,q2) as above. Then
Y is biholomorphic to the minimal resolution of the quotient surface X/(σ).

Proof. See Inose [I]. D

Using this relation between X and Y, we can compute the Picard number;
i.e., the rank of the Neron-Severi group of X. The key ingredient is the
following theorem by Inose.

Theorem 1.2 (Inose). Let X and Y be K3 surfaces and π : X —» Y be a
rational map of finite degree. Then X and Y have the same Picard number.

Proof. See Inose [I]. D

This theorem relates the Picard number of two K3 surfaces. Unfortu-
nately, however, we cannot say much about the correspondence between the
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generators of the Neron-Severi groups of the two surfaces since the method
of the proof of this theorem is based on a transcendental argument. Cur-
rently, we do not know a reliable method for finding a set of generators of
the Neron-Severi group, or even a set of independent divisors.

Combining Theorem 1.1 and 1.2, we have

Theorem 1.3. The Picard number of the surface X(qι,q2) is
(1) 18 if Eι and E2 are not isogenous,
(2) 19 if Eι and E2 are isogenous but do not have complex multiplication,

or
(3) 20 if Eι and E2 are isogenous and have complex multiplication.

Proof. The Picard number of Y(qι,q2) is computed by Shioda-Inose [Sh-I].

Thus Theorem 1.2 tells us the corresponding result to X(qι,q2). D

In general, if an elliptic surface is given in the form of a Weierstrass
model, it is very difficult to determine the rank of the Mordell-Weil group
at its generic fiber. On the other hand, it is routine to determine the types
of the bad fibers. Let X —> C be an elliptic surface and E be the generic
fiber. The Shioda-Tate formula (cf. [Shi]) relates the rank of Mordell-Weil
group and the Picard number; i.e.,

, - 1),
xex

where p is the Picard number and mx is the number of irreducible compo-
nents of the fiber at x. Thus, if we find an elliptic fibration on a surface S
whose Picard number is already known, determining the rank of the Mordell-
Weil group is reduced to finding the types of bad fibers. Since we know the
Picard number of X{qι, q2), our task is now reduced to determining the types
of the bad fibers.

The next fact will become another key ingredient to our recipe for deter-
mining the Mordell-Weil group.

Proposition 1.4. The surface X(qι,q2) contains exactly the following
number of lines:

(1) 16 if Eι and E2 have different j-invariants,
(2) 32 if Eι and E2 have the same j-invariant different from 0 or 1728,

(3) 48 if both Eλ and E2 have j = 1728,
(4) 64 if both Eλ and E2 have j = 0.

Proof. See Segre [Se]. Note that in his notation, the j-invariant is given by
P

j = — — up to a constant factor. Thus, his invariant I3/J2 is essentially

the ^-invariant. D
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Now we construct an elliptic fibration on the surface X(qx^q2). The
surface X = X(qljq2) contains sixteen lines of the form (factor of qι) =
(factor of q2) = 0. We denote them according to the following list.

X

z

y
z

X

z

X

z

= 0
= μw

= 0

= μw

= y
= μw

= λy
— HID

Take one line, say l\, and cut X by the planes that contain this line. The
intersection of X and one of the planes is the union of a plane cubic curve
and the line x = z = 0. If the plane is given by z = tx, this residual cubic
curve is given by the equation

y(x — y)(x — Xy) = tw(tx — w)(tx — /iw).

If we define a map π : X -* P 1 by [#, y, z, w] ^ [#, z], each fiber of this map
is a cubic curve given by the above equation for t = z/x. Thus we have an
elliptic fibration. It is easy to see that this fibration has a bad fiber of type
IV at t = 0 and oo. More specifically, π - 1 (0) consists of the lines £2, £3, and
^4, whereas π~x(cx)) consists of the lines ^5, ^9, and ^ 1 3 .

Theorem 1.5. Suppose Eγ and E2 do not have the same j-invariant; i.e.,
Eι and E2 are not isomorphic over C. Then the bad fibers of the elliptic
fibration described above consist of two fibers of type IV, and the fibers of type
Ii and possibly type II. The rank of the Mordell-Weil group of this elliptic
fibration is

(1) 12 if Eγ and E2 are not isogenous,
(1) 13 if Eι and E2 are isogenous but do not have complex multiplication,

or
(1) 14 if Eι and E2 are isogenous and have complex multiplication.

Proof. Note once again that each fiber of the fibration is a plane cubic curve.
Thus the Kodaira type of each fiber is either 1^, (N < 3), II, III, or IV. If a
bad fiber is not of type I l 5 or II, it must contain a line. Now let us examine
all the sixteen lines. As we have seen, six of them, ί2, ^3, £4, ^5, ^9, and ^13,
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are the irreducible components of the type IV fiber at t = 0 and oo. It is
easy to check that each of the remaining lines, except for έ1, intersects with
one and only one of the lines 4> ^3, and i4. This implies that all these lines
are sections of the fibration. As for l^ it intersects with all of 2̂> 4> h
Thus it is not a component of a bad fiber. Therefore, we conclude that the
rest of the bad fibers can not contain a line and thus are of either type Iχ
or II. Now the second assertion is an easy consequence of the Shioda-Tate
formula (cf. [Shi]):

rank E = p - 2 - (m0 - 1) - (moo — 1) = p — 6,

where p is the Picard number already computed in Theorem 1.3. D

Remark. If Eλ and E2 are isomorphic, p increases by 1, but the rank of
the Mordell-Weil group is reduced by 3 because four of the 32 lines become
the components of the bad fibers of type 72. If Ex and E2 have j = 1728,
the rank is once again reduced by 3 (cf. [K]). If Eλ and E2 have j = 0 the
rank is expected to be 3.

The proof of Theorem 1.5 shows that there are 9 sections coming from
the lines. We designate one of them, say ^6, as the zero-section. It is not
difficult to show that these sections form a group of rank 4, generated by, for
example, ^7, ίS} ίϊ0 and ^14. Our next task is to find the remaining sections.

It is possible to find the Weierstrass equation of the generic fiber. However,
the equation is very complicated and it is useless to write it down here. Our
key idea once again comes from the fact that it is easy to find the bad fibers
of a fibration. If we find another elliptic fibration on X(gi,#2)5 some of the
bad fibers may be sections of the first one.

As a first step, let us consider the surface defined by

(x2 - y2)(ax2 + by2 + cz2 + dw2) = (z2 - w2)(ex2 + fy2 + gz2 + hw2),

where a through h are constants. On this surface we have a fibration defined

by

cz2 + dw2) = (ex2 + fy2 + gz2 + hw2).

The generic member of this fibration is a complete intersection of two quadrics
in P 3 and thus an elliptic curve. Hence, we have an elliptic fibration. For
this fibration, finding the bad fibers is particularly easy. In fact we have
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P r o p o s i t i o n 1.6. The places of the bad fibers of this elliptic fibratin contain

all the roots of the determinant of the 2 x 2 minors of the matrix

ί 1 -1 -ί t \
\at — e bt — f ct — g dt — hj'

Proof. This can be proved by calculating the values of t at which the fiber
becomes singular. D

If the values of a through h are 'generic' then the bad fibers are of type
I2, or a union of two conies. We will use these conies to obtain sections of
the first elliptic fibration.

Remark. Bremner [Br2] studied a surface that belongs to this family. He
considered the surface defined by

(P2 - t2)(p2 + t2 + 8r2) = (s2 - r2)(s2 + 3r2 + 6*2),

which is contained in the four-fold #5 + y5 + zh = ub + vh + w5.

3. Arithmetic consideration.

In the previous section we considered the two families of K3 surfaces that
have interesting elliptic fibrations on them. In this section we consider the
surfaces that belong to both of the families. Among those surfaces we will
find one which has a small field of definition for the Neron-Severi group.
Specifically, we consider the surface defined by

S(λ,μ;a) : (x2 - y*)(x2 - λ4y2) = a\z2 - w2)(z2 - μ'w2).

This surface contains 16 lines. Since we are using a coordinate system dif-
ferent from §1, we name and list the 16 lines once again.

X = V e 2 : \ X = y i3: \ X = y

2 I, : \X = \

X = -y i6:ί
X = ~y e Ί : { X = - y i , : {* = Ί

x = λ2y j x = \2y j x = λ2y f x = λ2y
z=w ίι°-\z = -w ί ι l \z = μ2w ίl2 \z = -μ2w

x = -\2y [x = -\2y jx = -X2y j x = - λ 2 y
z = w i l 4 • \z = -w ίχh Λ z = μ2w ίl6 \z = -μ2w
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We assume that the two elliptic curves defined by

and

E2:y
2 = (x2-l)(x2-μ4)

have different j-invariants. Since we only consider the case where λ and μ
are rational numbers, the condition for this is that λ and μ do not satisfy
the equation

(2.1) (λ-μ)(λ + μ)(λμ-l)(λμ + l)

X (λμ - λ - μ - l)(λμ - λ + μ + l)(λμ + λ - μ + l)(λμ + λ + μ - 1) = 0.

First we consider the elliptic fibration defined by

Looking at Proposition 1.6, we can easily find the locations of the bad fibers.

Lemma 2.1. The above elliptic fibration has bad fibers of type I 4 at t = 0

and oo, and those of type I 2 at t = ±^,

Proof The places of the bad fibers is easily obtained by Proposition 1.6. At
t = 0, the fiber consists of the four lines

( x =y ( x = y ( x = - y (x-.

z — μ2w ' 1 z = —μ2w ' 1 z = μ2w ' 1 ̂  =

—μ2w

and it is of type I4. Similarly, the fiber at t = oo is of type I4. Under the
condition that λ and μ do not satisfy (2.1), there are 8 different values of
t at which the fiber becomes singular. At each of these 8 points, the fiber
consists of two plane conies:

« = - : Q1 + Q2, * = - - : Q2 + Q3,
a a

2 2

α α

* Q + Q < Q + Q



ELLIPTIC K3 SURFACES 239

where Qi's are given by

ίy = uw ίy = -vw
Q ι \x2-y2 = a{z2-w2), Q2- \x2-y2=a(z2-w2),

j y = -ivw
Q* • \ x2 - y2 = -a(z2 - w2),• Xx2-y2 = -a(z2-w2),

• Xx2-y2=aμ2(z2-w2), V 6 ; \ x2 - » s = aμ2{z2 - w2),

x2-y2 = -aμ2(z2-w2), Q&: { x2 - / = -aμ2(z2 - w2),

x = uλw n j x = —ι/\w
• X X2(x2 - y2) = a(z2 - w2), Ql° : { X2(x2 - y2) = a(z2 - w2),

n ί x = iv\w n ί x = —iuXw
Ql1 : X X2(x2 - y2) = -a(z2 - w2), Qι2 : { X2(x2 - y2) = -a(z2 - w2),

(χ
Qli : X X

(x = i^z
Q l 5 '• X X\x2 - y2) = -a

z

- y2) = aμ\z2 - w2), Q l i ' { X2(x2 - y2) = aμ\z2 - w2),

aμ2(z2 - w% Q l 6 '' { X2(x2 -y2) = -aμ2(z2 - w% '

Here v is a number such that v2 = a(l— μ 4 )/(l — λ 4 ). The assumption that
Eι and E2 have different ^'-invariants assures that these fibers are of type I 2

For, the lines ίx through £1 6 are not contained in any of these conies and the
surface does not contain any other lines due to Proposition 1.4. Calculating
the sum of the Euler characteristics of the bad fibers, we conclude that there
are no other bad fibers. D

We now prove that we have enough divisors on the surface so that we can

find 12 independent divisors among them.

L e m m a 2.2. The lines i2, 1$, ί±, 4? β̂? 4? 4i> ̂ 12, 1̂5 and £ι6, and the
conies Qι, Q 3 ; Q5, Q7, QQ, Qu, Qλ3 and Qλ5 are linearly independent in
the Neron-Severi group.

Proof. In order to prove that the above divisors are independent, it is enough
to show that the determinant of the intersection matrix is non-zero. The
calculation of the intersection number of any two divisors in the lists are
straightfoward and we have the following intersection matrix with respect to
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the above divisors in that order:

-2 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 \
1 - 2 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 - 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 - 2 1 1 0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 1 - 2 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 0 - 2 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 - 2 1 1 0 1 1 1 1 1 1 1 1
0 0 1 0 0 1 1 - 2 0 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 0 - 2 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 1 1 - 2 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1 1 1 - 2 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1 1 0 - 2 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1 1 0 0 - 2 0 0 0 0 0
1 0 0 1 1 0 1 1 1 1 0 0 0 - 2 0 0 0 0
1 0 0 1 1 0 1 1 1 1 0 0 0 0 - 2 0 0 0
1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 - 2 0 0
1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 - 2 0

\ 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 - 2 /

The determinant of this matrix is —216. This proves that the above 18
divisors are linearly independent. D

Corollary 2.3. Suppose that α(l — λ 4 )( l — μ4) is a perfect square. Then
the Neron-Severi group of the surface S(X, μ; a) has a subgroup of rank 16
that is defined over Q(i), and a subgroup of rank 14 that is defined over Q.

Proof. If v = \/a(\ — μ 4 )/(l — λ4) is a rational number, all the conies are
defined over Q(i), and the conies Q^ i = 1,2 mod 4 are defined over Q. Since
all the lines are defined over Q, all of the above 18 divisors are defined over
Q(i) and 14 of them are defined over Q. This completes the proof. D

Now we consider the elliptic fibration obtained by cutting the surface
S(\, μ; a) by the plane z — w = t(x — y). It follows from Proposition 1.5 that
this elliptic fibration has rank 12. We now state our main result.

Theorem 2.4. Suppose that α(l — λ 4 )(l — μ4) is a perfect square. Then
the Mordell- Weil group of this elliptic fibration contains a subgroup of rank
12 defined over Q(i), and the subgroup of rank 8 defined over Q.

Proof. Among the divisors in Lemma 2.2 the lines £2i £3 and l± form the type
IV fiber at t = 0 and 4 and ί9 are a part of the type IV fiber at t = 00. The



ELLIPTIC K3 SURFACES 241

intersection matrix shows that each of the remaining divisors intersects once
and only once with the bad fiber 4 + ^ 3 + 4̂- Thus they are sections of the
fibration. We choose the line iβ as the zero section. Since the 18 divisors in
Lemma 2.2 are linearly independent, the rest of 12 sections form a linearly
independent subgroup of the Mordell-Weil group. If α(l — λ4)(l — μ4) is a
perfect sqare, all of these 12 sections are defined over Q(i) and 8 of them are
defined over Q. This completes the proof. D

4. Numerical examples.

In this section we show some numerical examples. We would like to specialize
the values of λ, μ and α in 5(λ, μ; a). Before doing so, we make a change of
coordinates

X—χ-y^ Y = χ + y, Z — Z-W, W = Z + W.

The elliptic fibration in §2 is obtained by setting Z = ίX. Dehomogenizing
by setting W — 1, the equation becomes

(l - λ4) X2Y + 2(1 + λ4) χγ2 + (l - λ4) y 3

- α2(l - μ4)ί3 X2 - 2α2(l + μ4)*2 X - α2(l - μ4)t = 0.

The line ί6 intersects with this cubic curve at one of the points at infinity,
(X : Y : W) = ( 1 : 0 : 0 ) . Other lines and conies intersects with the curve
at the following points:

1)(Λ2 -

" '

1 6

at —

λ3u-at at\ ( \zv - aμH aμ2t
Q

at\
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By a theorem of J. Silverman [Sil2], the rank of the Mordell-Weil group of
the elliptic curve over Q obtained by specializing the value of t is no less
than 8 except for a finite number of exceptions.

As an example, we set λ = | and μ = | . We can set a = 13 to make v a
rational number, and we have v = 4. The equation becomes

65 X2Y + 194 XY2 + 65 Y3 - 1352013 X2 - 27716 t2 X - 135201 = 0.

Specializing t to 2, and converting this equation to the Weierstrass form, we
have

y2 = x3 + x2 - 4002080a: + 368844285828.

The conductor and the discriminant of this curve are

Conductor = 120922306669662024 = 24 3 5 661 427681 17822711,

Discriminant = -58768241041455743664000000

= - 2 1 0 36 56 661 427681 17822711.

The following eight points are obtained from the above list by substituting

t = 2 in that order:

(z, y) = (-1574,609300), (-53, -607500), (2026,607500),
(2251, -609300), (22Sg™, 3 4 4 8

3

3

4

6

3

6 2 0 0 ) ,
/183559 107190102\ /32274886 183359265000 \

V 25 ' 125 / ' V 361 ' 6859 / '

(18838,-2641752).

By calculating the height matrix, we can show that these eight points are
independent. Apecs, a package for the arithmetic of elliptic curves on Maple,
indicates that the upperbound for the rank is 8 assuming the Taniyama-
Weil conjecture, the Birch-Swinnerton-Dyer conjecture and the generalized
Riemann hypothesis. Further search shows that the following integral points
generate the same group generated by the above 8 rational points:

(-1574,609300), (-53,607500), (2026,607500), (2251,609300),

(18838,2641752), (-197,607968), (-1862,608148), (-3794,573960).

Here, we can see a usual phenomenon that an elliptic curve of large rank

with a relatively small conductor tends to have many integral points.
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