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UNIFORM ALGEBRAS GENERATED BY
HOLOMORPHIC AND PLURIHARMONIC FUNCTIONS
ON STRICTLY PSEUDOCONVEX DOMAINS

ALEXANDER J. 1ZZO

It is shown that if fi,... , f, are pluriharmonic functions on
a strictly pseudoconvex domain Q C C" that are C! on Q, and
the n x n matrix (9f;/0%) is invertible at every point of ,
then the norm-closed algebra generated by A(Q) and fy,...,f
is equal to C().

Introduction.

For K a compact set in C", let A(K) denote the subalgebra of C(K) consist-
ing of those continuous functions on K that are holomorphic on the interior
of K. Let D denote the open unit disc in the plane. If f is in C(D) and
f is harmonic but nonholomorphic on D, then the norm-closed subalgebra
of C(D) generated by the disc algebra A(D) and f is equal to C(D). (See
[I] for a brief discussion of the history of this result, and [C] and [A-S] for
two different proofs.) In [I] a partial generalization of this result to the ball
algebra is obtained: If fi,..., f, are pluriharmonic on B, (the open unit
ball in C*) and C"* on B, (i.e., extend to be continuously differentiable on a
neighborhood of B,,), and the n x n matrix (8f;/9%;) is invertible at every
point of B,, then the norm-closed subalgebra of C(B,,) generated by the ball
algebra A(B,) and fi,... , f, is equal to C(B,). Extensions of this result to
more general strictly pseudoconvex -domains are presented there as well. It
is shown that if the functions fy,... , f, are assumed to be complex conju-
gates of holomorphic functions, then the ball can be replaced by an arbitrary
strictly pseudoconvex domain. Thus for general functions f;, ... , f, the ball
can be replaced by any simply connected strictly pseudoconvex domain. In
addition, an argument due to Barnet Weinstock is presented showing that if
the functions fi,... , f, are assumed to be C?, then the ball can be replaced
by any strictly pseudoconvex domain with polynomially convex closure. The
main purpose of the present paper is to show that the ball can be replaced
by an arbitrary strictly pseudoconvex domain without any extra hypotheses
on the functions fi,... , fn.

Given complex-valued continuous functions fi,... , fx on a compact space
X, we will write [fi,..., fi] to denote the norm-closed subalgebra of C(X)
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that they generate. If, in addition, A is a uniform algebra on X, then
Alf1,-.., fi] will denote the norm-closed subalgebra of C'(X) generated by
A and the functions f,,... , fx. As usual, z;,... , 2z, will denote the complex
coordinate functions on C*. If f is a complex-valued function, and F is a
subset of its domain, then by definition || f||g = sup,¢z |f(z)|.

I would like to thank Barnet Weinstock for showing me the argument of
his mentioned above which first got me thinking along the lines of the present
paper. I would also like to thank David Barrett for making me aware of [F],
and John Wermer for directing my attention to [Gal].

1. The Main Theorem.

Theorem 1.1. Suppose § is a strictly pseudoconver domain in C". Sup-
pose also that fi,...,f, in C(Q) are pluriharmonic on Q and C' on Q,
and that the matriz (0f;/0Z) is invertible at every point of Q. Then

It is clear that a necessary condition for the conclusion of this theorem to
hold is that the maximal ideal space of A(Q)[fi,... ,f.] be Q. Our overall
approach to proving the theorem will be to show that under the hypotheses
of the theorem, this necessary condition is also sufficient, and then to show
that the condition does in fact hold. The special case treated by Weinstock
(mentioned in the introduction) was obtained as a consequence of a result
of his concerning approximation on the graph of a smooth map [W2]. The
general case will be obtained below as a consequence of that result as well.
For convenience we state the needed result of Weinstock here.

Theorem 1.2. Suppose X is a compact set in C" and fi,... , f, are complez-
valued C* functions on X. Let E = {z € X : rank (8f;/0%;) <n} and let
Y = {(z,fi(2),-.. , fm(2)) €C™ : 2 € X}. IfY is polynomially convez
in C**™, then [z1,... ,2n, f1,--- , fm] consists of those continuous functions
on X that agree with some element of [z1,... ,2n, f1,--- , fm] on E.

In order to obtain Theorem 1.1 from Theorem 1.2 we will also need the
following two results.

Theorem 1.3. Suppose 2 is a strictly pseudoconver domain in C". Then

the uniform algebra A(Q) is finitely generated. In fact, it is generated by a
finite collection of C* functions.
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Theorem 1.4. Suppose Q is a strictly pseudoconvexr domain in C" and

fiy-oo, fr in C(Q) are pluriharmonic on Q. Then the mazimal ideal space

of AQ)[fy, ..., fi] is Q.

Before turning to the proofs of these results we use them to obtain Theo-
rem 1.1.

Eroof of Theorem 1.1. By Theorem 1.3, there are C* functions g;,... ,g; on
Q such that z,...,2n,01,... ,q generate A(Q). For j =1,... ,l +n, and
k=1,...,n, define hj; by

99; forj=1,...,1
B =4 0%k
S B/ O S T
e j= ey )
Let _
E ={zeQ:rank(hj) <n},
and let

Y = {(z’gl(z)r-' ,g,(z),fl(z),--- afn(z)) € C2n+l HEAS ﬁ}

The map Q0 — Y given by z = (2,01(2),... ,q1(2), fi(2),-.. , fa(2)) is a
homeomorphism of Q onto Y, so it induces an identification of C'(Q) with
C(Y) in an obvious way. Under this identification A(Q)[f1, ... , f] is identi-
fied with P(Y'), the uniform closure of the polynomials (in the complex coor-
dinate functions) on Y. Since, by Theorem 1.4, Q is the maximal ideal space
of A(Q)[f1,--., fa], we conclude that Y is the maximal ideal space of P(Y),
and hence Y is polynomially convex. Since the algebra A(Q)[f1,... , fa] co-
incides with [z1,... ,2n,91,--- .91, f1,--- , fu), Theorem 1.2 now shows that
this algebra consists of those continuous functions on (2 that agree with
some element of A(Q)[fi,...,fn] on E. Thus it suffices to show that E is
an interpolation set for A(Q).

Note that the first { rows of the matrix (h;x) consist entirely of zeros (since
the functions g,... ,g; are holomorphic), so the rank of the matrix (h;;) is
obviously the same as the rank of the matrix (0f;/07%). Consequently, £
coincides with the zero set of the function det (0f;/0%). Moreover, it follows
from the hypotheses on the functions f,... , f, that the complex conjugate

of the function det (df;/0%;) is in A(Q). Thus E is a zero set for A(f2)
contained in 012, and hence (by Theorem 1.1 in [W1]) E is an interpolation
set for A(Q). t

It remains to prove Theorems 1.3 and 1.4. We present the proof of Theo-
rem 1.3 here. Theorem 1.4 is proven in the next section.
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Proof of Theorem 1.3. By Theorem 10 of Chapter 1 in [F], there exist a
neighborhood Q' of Q, a holomorphic map ¢ : Q' — C™ for some positive
integer m, and a convex bounded domain C in C™ such that

(i) % is biholomorphic onto a closed submanifold of C™ and

(i) »(Q) c C and $(Q'\Q) c C™\C.
We will show that the component functions of 1) generate A(Q).

Since (by Theorem 5.10 in [R~-S]) every function in A(f2) can be approxi-
mated uniformly by functions holomorphic on a neighborhood of €2, it suffices
to show that if f is holomorphic on a neighborhood U of Q, then f can be
approximated uniformly on by polynomials in the component functions of
1. Choose a convex neighborhood V of C such that V N(Q') C (U NQY).
Then f o~ ! is defined and holomorphic on V N(Q’). Therefore, f o 1)1
extends to a holomorphic function on V (by Theorem I5 in [Gu] vol. 3).
Since C is convex, the Oka-Weil approximation theorem shows that this ex-
tension can be approximated uniformly on C by polynomials. In particular,
fot~! can be approximated uniformly on ¥(Q) by polynomials. Thus f can
be approximated uniformly on © by polynomials in the component functions

of 1. O

2. The Proof of Theorem 1.4.

Assuming familiarity with the material in [Gal] concerning subharmonicity
with respect to a uniform algebra, a very short proof of Theorem 1.4 can
be given. This will be discussed near the end of the paper. However, for
the benefit of readers not familiar with [Gal], a more direct proof will be
given first. We begin with some preliminaries, the first of which is a slight
generalization of Rossi’s local maximum modulus principle and follows easily
from that result.

Theorem 2.1. Let A be a uniform algebra with mazimal ideal space M4 and
Shilov boundary 04. Let x be a point in M4, and let U be a neighborhood
of x. Suppose f is a continuous, complez-valued function on U such that
for every Jensen measure u on U for x, we have f(z) = [ fdu. Then

If(z)| < “f”(amU)uaU-

Proof. By Rossi’s local maximum modulus principle we have for every g in
A that

”fl”U = ”g”(amU)uaU
where § denotes the Gelfand transform of g. Hence (04 NU) U AU is a
boundary for the uniform algebra A|U. Consequently, there is a Jensen
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measure p supported on (34 NU) U U for z. Now by hypothesis

fz) = /(amU)uaU I dp-
Thus |£(z)] < [|flloxnvy000- O

Lemma 2.2. Suppose A and B are uniform algebras on a compact space
X and A C B. If x is a peak point for A, and ¢ is a multiplicative linear
functional on B that coincides with point evaluation at x when restricted to
A, then ¢ is point evaluation at x on all of B.

Proof. Let p be a representing measure for ¢ (as a functional on B). Then
obviously p is a representing measure for the restriction of ¢ to A, i.e., for
point evaluation at £ on A. Therefore, since z is a peak point for A, u
is the point mass at z (Theorem II.11.3 in [Ga2]). Recalling that y is a
representing measure for ¢, we conclude that ¢ is point evaluation at z on
all of B. ]

Theorem 2.3. Suppose  is a strictly pseudoconvexr domain in C", and z
15 a point in Q. Suppose also that K is a compact subset of 2, and that p is
a Jensen measure supported on K for the functional evaluation at z on the
algebra A(Q). If f is a pluriharmonic function on Q, then f(z) = [ fdpu.

Proof. First note that if g is a function of the form sup, . ;<,{c; log|f;|} with
the f; in A(Q) and ¢; > 0, then

g(z) = supc;log|f;(z)|
J
< supcj/bglfjldﬂ
J

< /supcj log | f;| dp
J

= /gd,u.

By the remarks following the proof of Theorem Q9 in [Gu] vol. 1, every
continuous plurisubharmonic function on €2 can be approximated uniformly
on K by functions of the form sup;{c; log|f;|} with the f, holomorphic on
Q and ¢; > 0. Since Q is strictly pseudoconvex, there is a smooth strictly
plurisubharmonic defining function for €2, i.e., a smooth strictly plurisub-
harmonic function p on a neighborhood of Q such that Q = {z : p(z) < 0}
and gradp # 0 on 9. Now for small £ > 0, the set Q. = {2z : p(z) < €}
is (strictly) pseudoconvex and the plurisubharmonically convex hull IA(SE of
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K in €, is contained in €. Hence by Theorem 4.3.2 in [H], every function
holomorphic on 2 can be approximated uniformly on KSE (and hence cer-
tainly on K) by functions holomorphic on €2.. Thus the functions f; can be
approximated uniformly on K by elements of A(Q2) and it follows that we
may assume without loss of generality that they are already in A(Q2). Hence
we conclude from the first sentence of the proof that u(z) < [wudu for every
continuous plurisubharmonic function u on Q.

There is clearly no loss of generality in assuming that the function f
in the statement of the theorem is real-valued. Then both f and —f are
plurisubharmonic so f(z) < [ fdp and —f(z) < [(—f)dp. Thus f(z) =
[ f dp, as desired. O

Proof of Theorem 1.4. The maximal ideal space of A(Q) is Q (see [S-W]).
Consequently, if we let 2,, ... , 2, denote the Gelfand transforms of z,, ... , z,
as elements of A(Q)([f1,... , fu], and let 7 : M, gy . — C" be given by

.....

ﬂ.(x) = (21 ((E)a R 7211(17)),

then 7(z) € Q for each point z in the maximal ideal space of A(Q)[f1,- - , fi]-
Moreover, it also follows that each element of the maximal ideal space of

A(Q) is uniquely determined by its values on the functions zi, ... ,z2,, and
hence each element of the maximal ideal space of A(Q)[f1,- .. , fi] is uniquely
determined by its values on the functions zi,... ,2,, f1,... , fx. For each (

in Q, call 7=1(¢) the fiber over ¢. To show that Q is the maximal ideal space
of A(Q)[f1,-.., fr], we must simply show that each fiber consists of a single
point. Hence it suffices to show that if ¢ is in Q, and z is in the fiber over
¢, then f(z) = f1(C),- .., fr(z) = fx(¢). In other words, it suffices to show
that each of the functions f; — fiom, ..., fk — fr o 7 is identically zero.
Since every point of 0Q is a peak point for A(Q) (Cor. 1.4 in [W1]),
Lemma 2.2 shows that the fiber over each point of 92 consists of a single
point. Thus fj — fjom (j =1,...,k) is zero on the fibers over 5.
Assume, to get a contradiction, that fj — fjom is not identically zero. From
the preceding paragraph we see that there is a compact set K contained in 2
such that the set where f; — f;om takes on its maximum modulus is contained
in the fibers over the interior of K. Now let z, be a point where f] fijom
assumes its maximum modulus, and suppose 1 is a Jensen measure for.z,
supported on 771 (K). Then certainly f;(zo) = [ f; duu. Moreover, if we let
%o = m(xo), and let ji be the measure on K defined by i(E) = u(r~(E))
for every Borel set F, then [ is a Jensen measure for Z, with respect to the
algebra A(Q). Therefore, by Theorem 2.3, f;(%o) = [ f; dii, or equivalently,
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(fj om)(zo) = [(f; o7)du. Hence
(f; = fyom) @) = [(f; = fy0m) .

Now, letting Int(K) denote the interior of K, Theorem 2.1 shows that
|(f; — fj o ™)(zo)| is less than or equal to the supremum of |f; — f; o 7|
over the set

(Ga@in,...sq N (Int(K))) U B (7" (Int(K))).

Since the Shilov boundary of A(Q)[f1,... , fi] is obviously contained in Q
(where f; — f; o7 is zero), the preceding observation is easily seen to be a
contradiction. O

As mentioned earlier, a very short proof of Theorem 1.4 can be given based
on material in [Gal]. For A a uniform algebra with maximal ideal space 914
and u an upper-semicontinuous function on M4, call © subharmonic with
respect to A if u(z) < [udo for every z € 94 and every Jensen measure
o for z. Theorems 5.9 and 6.9 in [Gal] together show that the real and
imaginary parts of the functions fi,... , f; in Theorem 1.4 are subharmonic
with respect to A(Q), and that the same is also true with fi,... , fx replaced
by their negatives. Thus we have

fj(x)=/fjda G=1,... k)

for every z € Q and every Jensen measure o for z. Now suppose ¢ is an
arbitrary multiplicative linear functional on A(Q)[fi,--. , fx], and let z, be
the point in Q corresponding to the restriction of ¢ to A(Q2). Let p be a
Jensen measure for ¢ supported on Q. Then p is also a Jensen measure for

2o (regarded as an element of 9 A@—)) and so we have

fiw) = [fidn G=1 ).

Since p represents ¢, we conclude that ¢(f;) = fi(z0) (7 = 1,...,k). It
follows that ¢ is evaluation at 2o, and hence the maximal ideal space of
A)[fr,---, fi] s Q.

When € is the open unit ball in C", a short and elementary proof of Theo-
rem 1.4 can be given. Let ¢ be an arbitrary multiplicative linear functional

on A(B,)|[fi,---,fx], and let p be a representing measure for ¢. Since the

only multiplicative linear functionals on A(B,) are the point evaluations,
there must be some point z, in B,, such that

*) g9(z0) = /gd,u for all g in A(B,).
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Now suppose f in C(B,) is real-valued and pluriharmonic on B,. For
0 <r <1, let f. denote the dilate of f defined by f,.(z) = f(rz). Then f,
is pluriharmonic on the open ball of radius 1/r, so f, is the real-part of a
holomorphic function there. Hence, since y is a real measure, it follows from
(%) that f.(z0) = [ f.du. Since the f, converge uniformly to f on B,, we
obtain

(**) Flz0) = / Fdu.

Since the real and imaginary parts of each f; satisfy the hypotheses on f
above, we observe that (xx) continues to hold with f replaced by f; (j =
1,...,k). Hence ¢(f;) = fi(z0) (j = 1,...,k), and it follows that ¢ is
evaluation at z, on A(B,)[fi,...,fr]. Thus the maximal ideal space of
A(Bn)[fla e afk] is §n'
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