MATCHING THEOREMS FOR TWISTED ORBITAL INTEGRALS

REBECCA A. HERB

Let *F* be a ρ -adic field and *E* a cyclic extension of *F* of degree *d* corresponding to the character κ of F^{\times} . For any **positive integer** m, we consider $H = GL(m, E)$ as a subgroup of $G = GL(md, F)$. In this paper we discuss matching of or**bital integrals between** *H* **and G. Specifically, ordinary orbital integrals corresponding to regular semisimple elements of** *H* **are matched with orbital integrals on** *G* **which are twisted by the character** *K.* **For the general situation we only match functions which are smooth and compactly supported on the** regular set. If the extension E/F is unramified, we are able **to match arbitrary smooth, compactly supported functions.**

§1. Introduction.

Let F be a locally compact, non-discrete, nonarchimedean local field of characteristic zero. Let κ be a unitary character of F^{\times} of order d, and let E be the cyclic extension of F corresponding to κ . Let m and n be positive integers with $n = md$ and write $G = GL(n, F)$, $H = GL(m, E)$. H can be identified with a subgroup of *G.* In this paper we discuss matching of orbital integrals between *H* and *G.* Specifically, ordinary orbital integrals corresponding to regular semisimple elements of *H* are matched with orbital integrals on *G* which are twisted by the character κ . For the general situation we only match functions which are smooth and compactly supported on the regular set. If the extension E/F is unramified, we are able to match arbitrary smooth, compactly supported functions.

Extend κ to a character of *G* by $\kappa(g) = \kappa(\det g)$ and let

$$
G_0 = \{ g \in G : \kappa(g) = 1 \} .
$$

 G_0 is an open normal subgroup of *G* of finite index and $H \subset G_0$. Let $C_c^{\infty}(G)$ denote the set of locally constant, compactly supported, complexvalued functions on *G*. For any $\gamma \in G$ we let G_{γ} denote the centralizer of $\gamma \in G$. If $G_{\gamma} \subset G_0$, let

$$
\Lambda_{\kappa}^{G}(f,\gamma)=\int_{G_{\gamma}\backslash G}f(x^{-1}\gamma x)\kappa(x)dx, f\in C_{c}^{\infty}(G),
$$

be the twisted orbital integral of f over the orbit of γ . If $G_{\gamma} \not\subset G_0$, set $\Lambda_{\kappa}^{G}(f,\gamma) = 0$. Clearly for all $x, \gamma \in G, f \in C_c^{\infty}(G)$,

$$
\Lambda_\kappa^G(f,x\gamma x^{-1})=\kappa(x)\Lambda_\kappa^G(f,\gamma).
$$

Similarly we define

$$
\Lambda^H(f,\gamma)=\int_{H_{\gamma}\setminus H}f(x^{-1}\gamma x)dx, f\in C_c^\infty(H), \gamma\in H,
$$

the ordinary orbital integral of f over the H-orbit of γ .

The main results of this paper are the following theorems. Let *G'* denote the set of regular semisimple elements of *G* and $C_c^{\infty}(G')$ the subset of all $f \in C_c^{\infty}(G)$ with support in G' .

Theorem 1.1.

(i) Let $f_G \in C_c^{\infty}(G')$. Then there is $f_H \in C_c^{\infty}(H \cap G')$ such that for all $\gamma \in H \cap G'$,

$$
\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H(f_H,\gamma)\,.
$$

(ii) Conversely, suppose $f_H \in C_c^{\infty}(H \cap G')$ such that

$$
\Lambda ^{H}\left(f_{H},x\gamma x^{-1}\right) =\kappa \left(x\right) \Lambda ^{H}\left(f_{H},\gamma \right)
$$

for all $x \in G, \gamma \in H \cap G'$ such that $x \gamma x^{-1} \in H$. Then there is $f_G \in$ $C_c^{\infty}(G')$ such that for all $\gamma \in H \cap G'$,

$$
\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H(f_H,\gamma)\,.
$$

In the case that κ is unramified, a stronger version of Theorem 1.1 can be proven using results of [W2, Hn]. Let Δ_G^H be the transfer factor defined as in [W2].

Theorem 1.2. Assume that κ is unramified.

(i) Let $f_G \in C_c^{\infty}(G)$. Then there is $f_H \in C_c^{\infty}(H)$ such that for all $\gamma \in$ *H*∩ G' ,

$$
\Delta_G^H(\gamma)\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H(f_H,\gamma)\,.
$$

(ii) *Conversely, suppose* $f_H \in C_c^{\infty}(H)$ *such that*

$$
\Lambda^H(f_H, x\gamma x^{-1}) = \Delta_G^H(x\gamma x^{-1}) \Delta_G^H(\gamma)^{-1} \kappa(x) \Lambda^H(f_H, \gamma)
$$

for all $x \in G, \gamma \in H \cap G'$ such that $x \gamma x^{-1} \in H$. Then there is f_G $C_c^{\infty}(G)$ such that for all $\gamma \in H \cap G'$,

$$
\Delta_{G}^{H}(\gamma)\Lambda_{\kappa}^{G}(f_{G},\gamma)=\Lambda^{H}\left(f_{H},\gamma\right).
$$

The matching theorems for twisted orbital integrals will be used in an other paper to prove character formulas relating twisted characters on *G* to ordinary characters on *H*. These will generalize the lifting theorem proven by Kazhdan $[K]$ in the case that $m = 1$. It will be shown in that paper that

$$
\Delta_G^H\left(x\gamma x^{-1}\right)=\Delta_G^H(\gamma)\kappa(x)^{-1}
$$

for all $x \in N_G(H)$, $\gamma \in H \cap G'$. Thus when $x \in N_G(H)$, the condition on f_H in Theorem 1.2, (ii), is just

$$
\Lambda ^H \left(f_H, x \gamma x^{-1} \right) = \Lambda ^H \left(f_H, \gamma \right)
$$

for all $\gamma \in H \cap G'$. Since Λ^H is an ordinary orbital integral, this is automatic when $x \in H$.

The proof of Theorem 1.1 is routine using an easy extension of results in $[V]$ to the twisted case and techniques as in $[A-C, 1.3]$. The proof of Theorem 1.2 uses the fundamental lemma proven by $[\mathbf{W2}, \mathbf{Hn}]$. Assume that κ is unramified. Let $K = GL(n, R)$ where R is the ring of integers of *F* and let $\mathcal{H}(G)$ denote the Hecke algebra of functions in $C_c^{\infty}(G)$ which are K bi-invariant. Similarly, we define $\mathcal{H}(H)$, the Hecke algebra of H. Let $b : \mathcal{H}(G) \to \mathcal{H}(H)$ be the homomorphism defined in [W2]. The following theorem was proven by Waldspurger [W2] when the algebra $F(\gamma)$ is a product of tamely ramified extensions of *F* and was extended to the general case (as well as to the case of characteristic F not zero) by Henniart [**Hn**].

Theorem 1.3 (Waldspurger, Henniart). Let $\phi \in \mathcal{H}(G)$, $\gamma \in H \cap G'$. Then

$$
\Delta_G^H(\gamma)\Lambda_\kappa^G(\phi,\gamma)=\Lambda^H(b\phi,\gamma).
$$

Theorem 1.2 follows from Theorem 1.3 as follows. First, using standard techniques, it is enough to prove a matching of orbital integrals in a neighbor hood of each semisimple element *s* of *H.* Further, by passing to centralizers, it is easy to reduce to the case that $s = 1$. The matching in a neighborhood of $s = 1$ is a result of the following theorems which show that all germs in a neighborhood of the identity come from Hecke functions.

Theorem 1.4 [W1, Hr]. Let $u_1, ..., u_p$ be a complete set of representatives *for the unipotent conjugacy classes of H. Then there are* $\phi_1, ..., \phi_p \in \mathcal{H}(H)$ *such that*

$$
\Lambda^H\left(\phi_i,u_j\right)=\begin{cases}1,\quad if\ 1\leq i=j\leq p;\\0,\quad if\ 1\leq i\neq j\leq p.\end{cases}
$$

Using the results of [V] we obtain the following corollary.

Corollary 1.5. Let $u_1, ..., u_p, \phi_1, ..., \phi_p$ be as above. Let $f \in C_c^{\infty}(H)$. Then *there is a neighborhood* U *of* 1 *in* H *so that for all* $\gamma \in U$,

$$
\Lambda^H(f,\gamma)=\sum_{i=1}^p\Lambda^H\left(f,u_i\right)\Lambda^H\left(\phi_i,\gamma\right).
$$

Let *u* be a unipotent element of *G*. If $G_u \not\subset G_0$, then $\Lambda_\kappa^G(f, u) = 0$ for all $f \in C_c^{\infty}(G)$. It is easy to show that the unipotent conjugacy classes $\mathcal{O}(u)$ of *G* for which $G_u \subset G_0$ are in bijective correspondance with the unipotent conjugacy classes of *H.*

Theorem 1.6 [Hr]. Let $v_1, ..., v_p$ be a complete set of representatives for t *he unipotent conjugacy classes in* G *such that* $G_{v_i} \subset G_0$ *. Then there are* $\psi_1, ..., \psi_p \in \mathcal{H}(G)$ such that

$$
\Lambda_{\kappa}^G(\psi_i, v_j) = \begin{cases} 1, & \text{if } 1 \leq i = j \leq p; \\ 0, & \text{if } 1 \leq i \neq j \leq p. \end{cases}
$$

An easy extension of germ expansions to the twisted case yields the fol lowing corollary.

Corollary 1.7. Let $v_1, ..., v_p, \psi_1, ..., \psi_p$ be as above. Let $f \in C_c^{\infty}(G)$. Then *there is a neighborhood* U of 1 in G so that for all $\gamma \in U$,

$$
\Lambda_{\kappa}^{G}(f,\gamma)=\sum_{i=1}^{p}\Lambda_{\kappa}^{G}(f,v_{i})\,\Lambda_{\kappa}^{G}(\psi_{i},\gamma).
$$

The organization of the paper is as follows.

In $\S2$ we extend many of the results of Vignéras [V] to the case of twisted orbital integrals.

In §3 we use the results of §2 to prove Theorems 1.1 and 1.2.

I would like to thank the Mathematics Departments of the University of Toronto and the University of Wisconsin for their hospitality during the preparation of this paper.

§2. **Twisted Orbital Integrals.**

Let $G = GL(n, F)$ and let κ be a unitary character of F^{\times} of order d, d a divisor of *n*. In this section we do not assume that κ is unramified. We extend κ to a character of *G* by setting $\kappa(g) = \kappa(\det g)$, $g \in G$. Let $G_0 =$ ${g \in G : \kappa(g) = 1}.$ Then G_0 is an open normal subgroup of finite index in

G. For any $x \in G$ we let G_x denote the centralizer of $x \in G$. If $G_x \subseteq G_0$, we let

$$
\Lambda_{\kappa}(f,x) = \int_{G_x \backslash G} f(g^{-1}xg) \,\kappa(g) dg, f \in C_c^{\infty}(G), x \in G
$$

be the twisted orbital integral of f over the orbit of x. If $G_x \not\subseteq G_0$, we let $\Lambda_{\kappa}(f,x) = 0$ for all $f \in C_c^{\infty}(G)$. (We assume measures are normalized as in $[\mathbf{V}, 1 \cdot \mathbf{h}]$.

In this section we will extend results of Vignéras on orbital integrals to the twisted case. For $x \in G$, define the normalizing factor $d(x)$ as in [V, 1.g]. We will also write

$$
F_{\kappa}(f,x) = d(x) \Lambda_{\kappa}(f,x).
$$

Let *s* be a semisimple element in *G*. Then as in $[V, 1,j]$ we write A_s for the set of all elements *x* of *G* with semisimple part (of the Jordan decomposition of *x*) conjugate to *s*. Let $A_s = \cup \mathcal{O}(su_i), 1 \leq i \leq m$, be the standard decomposition as in [V, 1.j] where $\mathcal{O}(x)$ denotes the *G* orbit of $x \in G$. For $x \in G_0$ we will write $\mathcal{O}_0(x)$ for the G_0 orbit of x.

Lemma 2.1. Fix $1 \leq i \leq m$ and suppose that $G_{su_i} \subseteq G_0$. Then there is $f_i \in C_c^{\infty}(G)$ such that

$$
F_{\kappa}(f_i, su_j) = \begin{cases} 1, & if i = j; \\ 0, & if i \neq j. \end{cases}
$$

Proof. As in [V, 1.k], for each $1 \leq i \leq m$ there is a compact open subset K_i in G so that $su_i \in K_i$, and $K_i \cap \mathcal{O}(su_j) = \emptyset$, $1 \leq j \leq i - 1$. Now suppose that $G_{su_i} \subseteq G_0$. Then

$$
\mathcal{O}(su_i) \approx G_{su_i} \backslash G \approx G_{su_i} \backslash G_0 \times G_0 \backslash G \approx \mathcal{O}_0 (su_i) \times G_0 \backslash G
$$

so that $\mathcal{O}_0(su_i)$ is open and closed in $\mathcal{O}(su_i)$. Thus there is $K_i' \subseteq K_i$ compact open in G so that $su_i \in K_i', K_i' \cap \mathcal{O}(su_i) \subseteq \mathcal{O}_0(su_i)$. Now if f_i' is the characteristic function of K'_{i} , then $F_{\kappa}(f'_{i}, su_{i}) \neq 0$ because there can be no cancellation in the integral, and $F_{\kappa}(f_i', s u_i) = 0, 1 \le j \le i - 1$. Now using a standard Graham-Schmidt type procedure we can obtain f_i 's as in the lemma.

Lemma 2.2. Let $s \in G$ be semisimple and suppose that $f \in C_c^{\infty}(G)$ satisfies $F_{\kappa}(f,x) = 0$ for all $x \in A_s$. Then there is a neighborhood V_f of s in G such *that* $F_{\kappa}(f, x) = 0$ *for all* $x \in V_f$.

Proof. We follow the proof of $[K, 3.8]$. Let $S = C_c^{\infty}(A_s)$. Since A_s is G invariant, G acts on S by $g \quad \tilde{f}(x) = \tilde{f}(g^{-1}xg)$, $g \in G, x \in A_s, \tilde{f} \in S$. Since

 A_s is closed in G, restriction gives a mapping $\pi : C_c^{\infty}(G) \to S$. Let S' be the dual of *S* and let $\Lambda = \left\{ \lambda \in S' : \lambda \left(g \cdot \tilde{f} \right) = \kappa(g) \lambda \left(\tilde{f} \right), \forall g \in G, \tilde{f} \in S \right\}.$ Then since G has only a finite number of orbits in A_s we see that Λ is generated by the $\lambda_i, 1 \leq i \leq m$, where $\lambda_i(\pi(f)) = F_{\kappa}(f, su_i)$. Let $S_{\kappa} =$ $\{\tilde{f}\in S:\lambda(\tilde{f})=0,\forall\lambda\in\Lambda\}$. Then S_{κ} is the set of all finite sums of functions of the form $q \cdot \tilde{f} - \kappa(q)\tilde{f}$.

Now let $f \in C_c^{\infty}(G)$ such that $F_{\kappa}(f, su_i) = 0, 1 \leq i \leq m$. Then $\tilde{f} = \pi(f) \in S_{\kappa}$ so there are $g_1, ..., g_k \in G, \tilde{f}_1, ..., \tilde{f}_k \in S$, such that $\tilde{f} =$ $\sum_{i=1}^k g_i \cdot \tilde{f}_i - \kappa(g_i) \tilde{f}_i$. Let $f_i \in C_c^{\infty}(G)$ such that $\pi(f_i) = \tilde{f}_i$, and let $\phi = f - \sum_{i=1}^{k} g_i \cdot f_i + \kappa(g_i) f_i$. Then $\pi(\phi) = 0$ so by [V, 2.4] there is an open, G-invariant neighborhood V_f of s such that ϕ is zero on V_f . Thus $F_{\kappa}(\phi, x)=0$ for all $x \in V_f$. But for all $x \in G$, $F_{\kappa}(f, x)=F_{\kappa}(\phi, x)$. \Box

Renumber $u_1, ..., u_m$ so that $su_i, 1 \leq i \leq k$, are the orbits of A_s such that $G_{su_i} \subseteq G_0, 1 \leq i \leq k$. Suppose $f_1, ..., f_k \in C_c^{\infty}(G)$ satisfy $F_{\kappa}(f_i, su_j) =$ $\delta_{ij}, 1 \leq i, j \leq k$, and $f'_1,..., f'_k \in C_c^{\infty}(G)$ satisfy $\Lambda_{\kappa}(f'_i, su_j) = \delta_{ij}, 1 \leq i, j \leq k$.

Lemma 2.3. Let $f \in C_c^{\infty}(G)$. Then there is a neighborhood V_f of s in G so *that*

$$
F_{\kappa}(f,x)=\sum_{i=1}^{k}F_{\kappa}(f,su_i) F_{\kappa}(f_i,x)
$$

and

$$
\Lambda_{\kappa}(f,x)=\sum_{i=1}^k\Lambda_{\kappa}(f,su_i)\,\Lambda_{\kappa}(f'_i,x)
$$

for all $x \in V_f$.

Proof. Let $f' = f - \sum_{i=1}^k F_{\kappa}(f, su_i) f_i$. Then $F_{\kappa}(f', su_j) = 0, 1 \le j \le k$. Thus by Lemma 2.2 there is a neighborhood V_f of *s* such that F_{κ} (f', x) = 0 for all $x \in V_f$.

As in [V, 1.m], for any $s \in G$ semisimple, we let T be the center of $M = G_s$. Let $u \in Z_G(T)$ be unipotent. Then (T, u) is called a standard couple. For any subset X of G , let X^{reg} denote the subset of elements $x \in X$ such that the dimension of the conjugacy class of x is greater than or equal to the dimension of the conjugacy class of any $y \in X$.

We can now extend Theorems A and B of $[V, 1,n]$ to the twisted case.

Theorem 2.4. (A) Let $f \in C_c^{\infty}(G)$ and let $F(x) = F_{\kappa}(f,x), x \in G$. Let (T, *u) be any standard couple. Then F has the following properties.*

(i)
$$
F(gxg^{-1}) = \kappa(g)F(x), \forall x, g \in G;
$$

(ii) *the restriction of F to Tureg is locally constant;*

- (iii) *the restriction of F to Tu has compact support;*
- (iv) for every $s \in T$ there is a neighborhood V_F of s in T such that for $t \in V_F \cap T$

$$
F(tu) = \sum_{i=1}^{k} F\left(su_i\right) F_{\kappa}\left(f_i, tu\right)
$$

where $su_i, f_i, 1 \leq i \leq k$ *are defined as in Lemma 2.3.*

(B) Conversely, if F is a function on G satisfying (i)-(iv) *above, then there is* $f \in C_c^{\infty}(G)$ *such that* $F(x) = F_{\kappa}(f, x)$ *for all* $x \in G$ *.*

Proof. Part (A) follows from Lemma 2.3 and [V, 2.7]. It also follows easily from [V, 2.7] that if $f' \in C_c^{\infty}$ (T^{reg}) transforms according to κ under the action of $W(Tu) = N_G(Tu)/Z_G(Tu)$, then there is $f \in C_c^{\infty}(\mathcal{O}(T^{reg}))$ such that $f'(t) = F_{\kappa}(f,t)$ for all $t \in T^{reg}$. Now the proof of (B) follows by an induction argument as in [V, 2.8]. \Box

We can use Theorem 2.4 to obtain the following localization result. Let $T_1, ..., T_r$ be a complete set of Cartan subgroups of G , up to G -conjugacy. Let $X = \bigcup_{i=1}^{r} T_i \subseteq G$.

Lemma 2.5. Let V be a closed and open subset of X such that $\mathcal{O}(V) \cap X =$ *V*. Then given $f \in C_c^{\infty}(G)$ there is $f_V \in C_c^{\infty}(G)$ such that

$$
F_{\kappa}(f,\gamma)=F_{\kappa}\left(f_V,\gamma\right), \gamma\in V
$$

and

$$
F_{\kappa}\left(f_{V},\gamma\right)=0,\gamma\in X\backslash V.
$$

Proof. Let $F(x) = F_{\kappa}(f,x), x \in G$. For any $x \in G$, write $x = s(x)u(x)$ for the Jordan decomposition of *x.* Define

$$
F_V(x) = \begin{cases} F(x), & \text{if } s(x) \in \mathcal{O}(V); \\ 0, & \text{otherwise.} \end{cases}
$$

Then for any $x, g \in G$, $s(gxg^{-1}) = gs(x)g^{-1} \in \mathcal{O}(V)$ if and only if $s(x) \in$ *O(V)*. Thus if $s(x) \notin O(V)$ we have $F_V(x) = F_V(gxg^{-1}) = 0$. If $s(x) \in$ $\mathcal{O}(V)$ we have $F_V(gxg^{-1}) = F(gxg^{-1}) = \kappa(g)F(x) = \kappa(g)F_V(x)$. Thus F_V satisfies (i) of Theorem 2.4.

Let (T, u) be any standard couple. We can assume that $T \subseteq T_i \subseteq X$ for some T_i . Let $V_T = V \cap T$. It is open and closed in T. Let χ_V be the characteristic function of $V_T u$. It is a locally constant function. Further $F_V|_{Tu} = F|_{Tu} \cdot \chi_V$ since, using our assumption that $\mathcal{O}(V) \cap X = V$, for

416 REBECCA A. HERB

 $e^{i\theta}$ every $tu \in Tu, t \in \mathcal{O}(V)$ if and only if $t \in V_T$. Thus F_V satisfies (ii) and (iii) of Theorem 2.4.

Finally, fix $s \in T$. If $s \notin V_T$, there is a neighborhood U of s in T such that $U \cap V_T = \emptyset$. Now $F_V(su_i) = 0$ for all i and $F_V(tu) = 0$ for all $t \in U$. Thus F_V satisfies the germ expansion in U. If $s \in V_T$, then let V_F be a neighborhood of s in T such that for all $t \in V_F \cap T^{reg}$,

$$
F(tu)=\sum_{i}F\left(su_{i}\right)F_{\kappa}\left(f_{i},tu\right).
$$

Let $V_{F_V} = V_F \cap V_T$. Then for all $t \in V_{F_V}$, $F_V(tu) = F(tu)$. Also $F_V(su_i) =$ $F(su_i)$ for all *i*. Thus F_V also satifies (iv).

Let $s \in G$ be an arbitrary semisimple element. Let $\{T_1, ..., T_r\}$ be repre sentatives for the Cartan subgroups of G, up to G-conjugacy, such that $s \in$ $T_i, 1 \leq i \leq r$. Let M be the centralizer of s in G. Then $T_i \subseteq M, 1 \leq i \leq r$, and for any $\psi \in C_c^{\infty}(M)$, $\gamma \in T_i \cap G'$, we can define

$$
\Lambda_\kappa^M(\psi,\gamma)=\int_{T_\kappa\backslash M}\psi\left(m^{-1}\gamma m\right)\kappa(m)dm
$$

if $T_i \subset G_0$ and $\Lambda_\kappa^M(\psi, \gamma) = 0$ if $T_i \not\subset G_0$.

Lemma 2.6.

(i) Let $f \in C_c^{\infty}(G)$. Then there are neighborhoods V_i of s in T_i and $\psi \in$ $C_c^{\infty}(M)$ so that for all $1 \leq i \leq r, \gamma \in V_i \cap G'$,

$$
\Lambda_\kappa^G(f,\gamma)=\Lambda_\kappa^M(\psi,\gamma).
$$

(ii) Let $\psi \in C_c^{\infty}(M)$. Then there are neighborhoods V_i of s in T_i and $f \in C^{\infty}_c(G)$ so that for all $1 \leq i \leq r, \gamma \in V_i \cap G'$,

$$
\Lambda_\kappa^G(f,\gamma)=\Lambda_\kappa^M(\psi,\gamma).
$$

Proof. The proof is an easy generalization of the argument used in [V, 2.5]. Define $su_i, f_i, 1 \leq j \leq k$ as in Theorem 2.4. Let *T* be the center of *M*.

Fix $f \in C_c^{\infty}(G)$ and let $\Omega = supp f$. Then using [HC], there are neigh borhoods V_i of s in T_i and an open, compact subset $\omega \subseteq M\backslash G$ so that $g^{-1}V_i$ $\Omega \cap \Omega = \emptyset, 1 \leq i \leq r$, unless $Mg \in \omega$. Further, as in [**V**, 2.5], there is a neighborhood V of s in T and an open, compact subset $C \subseteq M \backslash G$ so that $g^{-1}Vu_jg\cap\Omega=\emptyset, 1\leq j\leq k$, unless $Mg\in C$. Choose $\alpha\in C_c^{\infty}(G)$ so that

$$
\tilde{\alpha}(g) = \int_M \alpha(mg) dm = \begin{cases} 1, & \text{if } Mg \in C \cup \omega; \\ 0, & \text{if } Mg \notin C \cup \omega. \end{cases}
$$

Define

$$
\psi(m) = \int_G \alpha(x)\kappa(x)f\left(x^{-1}mx\right)dx, m \in M.
$$

Then $\psi \in C_c^{\infty}(M)$, and it is easy to check that for all $1 \leq i \leq r, \gamma \in V_i \cap G'$,

$$
\Lambda_{\kappa}^{G}(f,\gamma)=\Lambda_{\kappa}^{M}(\psi,\gamma).
$$

Further, for all $1 \leq j \leq k, \gamma \in V$,

$$
\Lambda_\kappa^G(f,\gamma u_j)=\Lambda_\kappa^M\left(\psi,\gamma u_j\right).
$$

This proves part (i) of the Lemma.

Define $su_j, f_j, 1 \leq j \leq k$ as above and let $f'_j = d(su_j) f_j$. Then the f'_j satisfy $\Lambda_{\kappa}^G(f'_j, su_l) = \delta_{jl}, 1 \leq j,l \leq k$. To prove part (ii), we use (i) to choose neighborhoods V_i of s in T_i , $1 \leq i \leq r$ and V of s in T , and functions $\gamma_j \in C_c^{\infty}(M), 1 \leq j \leq k$, so that for all $1 \leq j \leq k, 1 \leq i \leq r, \gamma \in V_i \cap T_i',$

$$
\Lambda_\kappa^G\left(f'_j,\gamma\right)=\Lambda_\kappa^M\left(\psi_j,\gamma\right).
$$

Further, for all $1 \leq l \leq k, \gamma \in V$,

$$
\Lambda_\kappa^G\left(f'_j,\gamma u_l\right)=\Lambda_\kappa^M\left(\psi_j,\gamma u_l\right).
$$

Thus the functions ψ_j satisfy

$$
\Lambda_\kappa^M\left(\psi_j,su_l\right)=\begin{cases} 1,&\text{if }j=l;\\ 0,&\text{if }j\neq l.\end{cases}
$$

Now fix $\psi \in C_c^{\infty}(M)$. As in [V, 2.5], the orbital decomposition of $A_{s,M}$ and A_s can be represented by the same elements $su_1, ..., su_m$. Also $M_{su_i} = G_{su_i}$ and $M_0 = M \cap G_0$, so that $M_{su_i} \subseteq M_0$ if and only if $G_{su_i} \subseteq G_0$. Thus we can also take $su_1, ..., su_k$ the same for M and G . Thus using Lemma 2.3 applied to M there is a neighborhood U of s in M so that for all $m \in U$,

$$
\Lambda_{\kappa}^M(\psi,m) = \sum_{j=1}^k \Lambda_{\kappa}^M(\psi_j,m) \Lambda_{\kappa}^M(\psi,su_j).
$$

Define $f \in C_c^{\infty}(G)$ by

$$
f(g) = \sum_{j=1}^{k} \Lambda_{\kappa}^{M} (\psi, su_j) f'_{j}(g), g \in G.
$$

Then for all $\gamma \in G$,

$$
\Lambda_\kappa^G(f,\gamma)=\sum_{j=1}^k\Lambda_\kappa^M\left(\psi,su_j\right)\Lambda_\kappa^G\left(f'_j,\gamma\right).
$$

But now we have

$$
\Lambda_{\kappa}^{G}\left(f'_{j},\gamma\right)=\Lambda_{\kappa}^{M}\left(\psi_{j},\gamma\right),\gamma\in V_{i}\cap T'_{i},1\leq i\leq r,1\leq j\leq k,
$$

so that

$$
\Lambda_{\kappa}^{G}(f,\gamma)=\sum_{j=1}^{k}\Lambda_{\kappa}^{M}\left(\psi,su_{j}\right)\Lambda_{\kappa}^{M}\left(\psi_{j},\gamma\right).
$$

Thus for $\gamma \in V_i \cap U \cap T'_i, 1 \leq i \leq r$, we have

$$
\Lambda_\kappa^G(f,\gamma)=\Lambda_\kappa^M(\psi,\gamma).
$$

§3. **Matching Theorems.**

Let $G = GL(n, F), K = GL(n, R)$, and let κ be a unitary character of F^{\times} of order d, d a divisor of n. Unless otherwise noted we will assume that κ is unramified.

As in Theorem 1.6 we let $u_1, ..., u_k$ represent the unipotent conjugacy classes with $G_{u_i} \subset G_0$, and $\phi_1, ..., \phi_k \in \mathcal{H}(G)$ satisfy $\Lambda_{\kappa} (\phi_i, u_j) = \delta_{ij}$. The following lemma is a special case of Lemma 2.3.

Lemma 3.1. Let $f \in C_c^{\infty}(G)$. Then there is a neighborhood U of 1 in G so *that*

$$
\Lambda_{\kappa}(f,\gamma)=\sum_{i=1}^{\kappa}\Lambda_{\kappa}\left(f,u_{i}\right)\Lambda_{\kappa}\left(\phi_{i},\gamma\right)
$$

for all $\gamma \in U \cap G'$.

Now let E be the cyclic extension of order d of F corresponding to κ and let $H = GL(m, E), md = n$. Fix an embedding of *H* in *G* as in [W2]. Then for $\gamma \in H$ we can define both the ordinary orbital integral $\Lambda^H(f, \gamma), f \in C_c^{\infty}(H),$ and the twisted orbital integral $\Lambda_{\kappa}^{G}(f, \gamma), f \in C_c^{\infty}(G)$.

Write $\mathcal{H}(G)$, $\mathcal{H}(H)$ for the Hecke algebras of G and H respectively. Let $b: \mathcal{H}(G) \to \mathcal{H}(H)$ be the homomorphism of $\mathcal{H}(G)$ onto $\mathcal{H}(H)$ defined as in [W2], and define the transfer factor Δ_G^H as in [W2, HI]. The following theorem was proven by Waldspurger [W2] for *F* of characteristic zero and $F(\gamma)$ tamely ramified over F, and was extended by Henniart [**Hn**].

Theorem 3.2 (Waldspurger, Henniart). Let $f \in \mathcal{H}(G)$, $\gamma \in H \cap G'$. Then

$$
\Delta_{G}^{H}(\gamma)\Lambda_{\kappa}^{G}(f,\gamma)=\Lambda^{H}(bf,\gamma).
$$

Write Z_G for the center of G .

Theorem 3.3. Let $z \in Z_G$.

(i) Let $f_G \in C_c^\infty(G)$. Then there are a neighborhood U of z in H and $f_H \in C_c^\infty(H)$ so that

$$
\Delta_{G}^{H}(\gamma) \Lambda_{\kappa}^{G}\left(f_{G},\gamma\right)=\Lambda^{H}\left(f_{H},\gamma\right)
$$

for all $\gamma \in U \cap G'$.

(ii) Let $f_H \in C^\infty_c(H)$. Then there are a neighborhood U of z in H and $f_G \in C_c^\infty(G)$ so that

$$
\Delta_{G}^{H}(\gamma)\Lambda_{\kappa}^{G}\left(f_{G},\gamma\right)=\Lambda^{H}\left(f_{H},\gamma\right)
$$

for all $\gamma \in U \cap G'$.

Proof. Suppose first that $z = 1$ is the identity. Define $u_1, ..., u_k \in G$, $\phi_1, ..., \phi_k \in \mathcal{H}(G)$, as in Lemma 3.1. Let $f_G \in C_c^{\infty}(G)$ and let *V* be a neighborhood of 1 in *G* so that

$$
\Lambda_{\kappa}^{G}\left(f_{G},\gamma\right)=\sum_{i=1}^{k}\Lambda_{\kappa}^{G}\left(f_{G},u_{i}\right)\Lambda_{\kappa}^{G}\left(\phi_{i},\gamma\right)
$$

 $\text{for all } \gamma \in V \cap G'. \text{ Define } f_H \in C_c^{\infty}(H) \text{ by }$

$$
f_H = \sum_{i=1}^k \Lambda_\kappa^G(f_G, u_i) (b\phi_i).
$$

Let $U = V \cap H$. Then using Theorem 3.2, for all $\gamma \in U \cap G'$,

$$
\Delta_{G}^{H}(\gamma)\Lambda_{\kappa}^{G}(f_{G},\gamma) = \sum_{i=1}^{k} \Lambda_{\kappa}^{G}(f_{G},u_{i}) \Delta_{G}^{H}(\gamma)\Lambda_{\kappa}^{G}(\phi_{i},\gamma)
$$

$$
= \sum_{i=1}^{k} \Lambda_{\kappa}^{G}(f_{G},u_{i}) \Lambda^{H}(b\phi_{i},\gamma) = \Lambda^{H}(f_{H},\gamma).
$$

Now let $u'_1, ..., u'_k \in H, \phi'_1, ..., \phi'_k \in \mathcal{H}(H)$ be defined as in Theorem 1.4 so that $u'_1, ..., u'_k$ represent the unipotent conjugacy classes in *H* and

 $A^H(\phi'_i, u'_j) = \delta_{ij}$. Let $f_H \in C_c^{\infty}(H)$ and let *U* be a neighborhood of 1 in *H* so that

$$
\Lambda^H\left(f_H,\gamma\right)=\sum_{i=1}^k\Lambda^H\left(f_H,u_i'\right)\Lambda^H\left(\phi_i',\gamma\right)
$$

for all $\gamma \in U \cap H'$. Choose $\phi_1, ..., \phi_k \in \mathcal{H}(G)$ so that $b\phi_i = \phi'_i, 1 \leq i \leq k$, and define

$$
f_G = \sum_{i=1}^k \Lambda^H \left(f_H, u_i' \right) \phi_i.
$$

Then as above

$$
\Delta_{G}^{H}(\gamma)\Lambda_{\kappa}^{G}(f_{G},\gamma) = \sum_{i=1}^{k} \Lambda^{H}(f_{H},u_{i}') \Delta_{G}^{H}(\gamma)\Lambda_{\kappa}^{G}(\phi_{i},\gamma)
$$

$$
= \sum_{i=1}^{k} \Lambda^{H}(f_{H},u_{i}') \Lambda^{H}(\phi_{i}',\gamma) = \Lambda^{H}(f_{H},\gamma)
$$

for all $\gamma \in U \cap G'$.

To extend the result to arbitrary $z \in Z_G$, we use right translation by z as in $[\mathbf{V}, 2.5]$.

We want to extend the matching of Theorem 3.3 to a matching which is valid for every $\gamma \in H \cap G'$. In order to do this, we need to be able to match orbital integrals in the neighborhood of any semisimple element of *H.*

Let $s \in H$ be an arbitrary semisimple element. Let M_G be the centralizer of s in G and let M_H be the centralizer of s in H .

Lemma 3.4.

(i) Let $\psi_G \in C^{\infty}_c(M_G)$. Then there are a neighborhood U of s in M_H and $H \in C_c^{\infty}(M_H)$ so that for all $\gamma \in U \cap G'$,

$$
\Delta_H^G(\gamma)\Lambda_\kappa^{M_G}(\psi_G,\gamma)=\Lambda^{M_H}(\psi_H,\gamma)
$$

(ii) Let $\psi_H \in C^{\infty}_c(M_H)$. Then there are a neighborhood U of s in M_H and $g_G \in C_c^{\infty}(M_G)$ so that for all $\gamma \in U \cap G'$,

$$
\Delta_H^G(\gamma)\Lambda_\kappa^{M_G}(\psi_G,\gamma)=\Lambda^{M_H}(\psi_H,\gamma)\,.
$$

Proof. Write $M_G = \prod_{i=1}^k GL(n_i, F_i)$ where the F_i are extensions of degree r_i of *F* and $\sum_{i=1}^{k} n_i r_i = n$. For each $1 \leq i \leq k$, let κ_i be the character of F_i^{\times} given by $\kappa_i(\lambda) = \kappa (N_{F_i/F}(\lambda))$. Now the center T_G of M_G is isomorphic to $\prod_{i=1}^k F_i^{\times}$. For $\lambda_i \in F_i^{\times}, 1 \leq i \leq k$, write $a(\lambda_1, ..., \lambda_k)$ for the corresponding

$$
\kappa\left(a\left(\lambda_{1},...,\lambda_{k}\right)\right)=\prod_{i=1}^{k}\kappa_{i}\left(\lambda_{i}^{n_{i}}\right).
$$

Let d_i be the order of κ_i . Then if there is $1 \leq i \leq k$ such that d_i does not divide n_i , there is $a \in T_G$ so that $\kappa (a) \neq 1$. But since $s \in H$ is semisimple, it is contained in some Cartan subgroup T of H . But every Cartan subgroup of *H* is a Cartan subgroup of *G* so that $T_G \subseteq T$. Thus $T_G \subseteq H$ so that $\kappa(a) = 1$ for all $a \in T_G$. Thus d_i divides n_i for all i. Write $n_i = m_i d_i$, $1 \leq i \leq k$ and let E_i be the extension of F_i corresponding to κ_i . It is the minimal extension of F_i containing E . Now $M_H = \prod_{i=1}^k GL(m_i, E_i)$.

Thus $M_G = \prod_{i=1}^k GL(n_i, F_i)$ and $M_H = \prod_{i=1}^k GL(m_i, E_i)$ are products of groups $G_i = GL(n_i, F_i), H_i = GL(m_i, E_i)$ of the same type as our original $\text{groups } G \text{ and } H. \text{ Further, if } g = (g_1, g_2, ..., g_k) \in M_G = \prod G_i, \text{ then } \det_G g =$ $\prod N_{F_i/F} \left({\rm det}_{G_i} \, g_i\right)$ so that $\kappa(g) = \prod \kappa_i\left(g_i\right)$. Thus κ -twisted orbital integrals on M_G are the products of κ_i -twisted orbital integrals on the factors G_i . Now $\text{since } s \in M_H \text{ is central in } M_G, \text{ we can apply Theorem 3.3 to match functions }$ the transfer factor $\Delta_{M_G}^{M_H}$. Thus to complete the proof of the lemma it suffices $G_r \in C_c^{\infty}(M_G)$ in a neighborhood of *s* with functions $\psi'_H \in C_c^{\infty}(M_H)$ using to show that there is a neighborhood U of s in M_H so that $\Delta_G^H\left(\Delta_{M_G}^{M_H}\right)$ is constant and non-zero on $U \cap G'$, so we can also match using the transfer factor Δ_G^H . This is proven in Lemmas 3.5 and 3.6 below.

In order to complete the proof of Lemma 3.4, we must define the trans fer factors. For $\gamma, \delta \in H$, let $c_1, ..., c_m$, respectively $d_1, ..., d_m$ denote the eigenvalues of γ , resp. δ , in some extension of E. As in [W2, HI] we set

$$
r(\gamma,\delta)=\prod_{i,j=1}^m\left(c_i-d_j\right).
$$

Then for all $\gamma \in H \cap G'$, we define

element of T_G . Then

$$
\Delta_G^{H,1}(\gamma) = \left| \prod_{\sigma,\tau \in \mathcal{G}(E/F), \sigma \neq \tau} r(\sigma\gamma, \tau\gamma) \right|_F^{\frac{1}{2}} \left| \det_G(\gamma) \right|_F^{\frac{(m-n)}{2}}
$$

where $G(E/F)$ denotes the Galois group of E/F . Further, we set

$$
\Delta_G^{H,2}(\gamma)=1
$$

for all $\gamma \in H$ if *d* is odd. If *d* is even, let σ_+ be the unique element of order 2 in $\mathcal{G}(E/F)$ and let ν_E denote the valuation in E. Then we define

$$
\Delta_G^{H,2}(\gamma)=(-1)^{\nu_E(r(\gamma,\sigma_+\gamma))}
$$

for all $\gamma \in H$. Finally, for all $\gamma \in H \cap G'$, we define

$$
\Delta_G^H(\gamma)=\Delta_G^{H,1}(\gamma)\Delta_G^{H,2}(\gamma).
$$

We now return to the notation of Lemma 3.4 so that $s \in H$ is an arbitrary semisimple element with centralizers M_G and M_H in G and H respectively.

 ${\bf Lemma~3.5.}$ There is a neighborhood U of s in M_H so that $\Delta_G^{H,1}\left(\Delta_{M_G}^{M_H,1}\right)^{-1}$ *is constant and non-zero on* $U \cap G'$ *.*

Proof. For $\gamma \in H \cap G'$, let $c_1, ..., c_m$ denote the eigenvalues of γ considered as an element of $H = GL(m, E)$ and let $d_1, ..., d_n$ denote its eigenvalues considered as an element of $G = GL(n, F)$. Define

$$
\Delta_H(\gamma)=\prod_{1\leq i\neq j\leq m}(c_i-c_j),\quad \Delta_G(\gamma)=\prod_{1\leq i\neq j\leq n}(d_i-d_j).
$$

Fix $\gamma \in H \cap G'$. For each $\sigma \in \mathcal{G}(E/F)$, let $c(i, \sigma), 1 \leq i \leq m$, denote the eigenvalues of $\sigma\gamma$ as an element of $H = GL(m, E)$. Then as an element of $G = GL(n, F), \gamma$ has eigenvalues $c(i, \sigma), 1 \leq i \leq m, \sigma \in \mathcal{G}(E/F)$. Thus we can rewrite

$$
\prod_{\sigma, \tau \in \mathcal{G}(E/F), \sigma \neq \tau} r(\sigma \gamma, \tau \gamma) = \Delta_G(\gamma) N_{E/F} \Delta_H(\gamma)^{-1}
$$

and

$$
\Delta_G^{H,1}(\gamma)=|\Delta_G(\gamma)|_F^{\frac{1}{2}}\left|\Delta_H(\gamma)\right|_E^{\frac{-1}{2}}\ \ \left|\mathrm{det}_G(\gamma)\right|_F^{\frac{(m-n)}{2}}
$$

Now use the notation in the proof of Lemma 3.4 so that we have $M_H =$ $H_i, M_G = \prod G_i, \text{ where for } 1 \leq i \leq k, \, H_i = GL\left(m_i, E_i \right), G_i = GL\left(n_i, F_i \right)$ Then for any $\gamma = \prod \gamma_i \in M_H \cap M_G'$, we have

$$
\Delta_{M_G}^{M_H,1}(\gamma) = \prod_i \Delta_{G_i}^{H_i,1}(\gamma_i)
$$
\n
$$
= \prod_i |\Delta_{G_i}(\gamma_i)|_{F_i}^{\frac{1}{2}} |\Delta_{H_i}(\gamma_i)|_{E_i}^{-\frac{1}{2}} \left| \det_{G_i}(\gamma_i) \right|_{F_i}^{\frac{(m_i - n_i)}{2}}
$$

Thus

$$
\Delta_G^{H,1}(\gamma) \Delta_{M_G}^{M_H,1}(\gamma)^{-1} = |\Delta_G(\gamma)|_F^{\frac{1}{2}} \prod_i |N_{F_i/F} \Delta_{G_i}(\gamma_i)|_F^{\frac{-1}{2}}
$$

$$
\times |\Delta_H(\gamma)|_E^{\frac{-1}{2}} \prod_i |N_{E_i/E} \Delta_{H_i}(\gamma_i)|_E^{\frac{1}{2}}
$$

$$
\times \left| \det_G(\gamma) \right|_F^{\frac{(m-n)}{2}} \prod_i \left| \det_G(\gamma_i) \right|_{F_i}^{\frac{(n_i-m_i)}{2}}
$$

We can index the eigenvalues of γ in $GL(n, F)$ as $c(i, j, t), 1 \le i \le k, 1 \le k$ $j \leq n_i, 1 \leq t \leq r_i$, so that

$$
\prod_i N_{F_i/F} \Delta_{G_i} (\gamma_i) = \prod_i \prod_{t} \prod_{j \neq j'} [c(i,j,t) - c(i,j',t)].
$$

Then we have

$$
\Delta_G(\gamma) \prod_i N_{F_i/F} \Delta_{G_i} (\gamma_i)^{-1} = \prod_{(i,t) \neq (i',t')} \prod_{j,j'} [c(i,j,t) - c(i',j',t')].
$$

Thus $\gamma \mapsto \Delta_G(\gamma) \prod_i N_{F_i/F} \Delta_{G_i} (\gamma_i)^{-1}$ extends to a continuous function on *M_G*. Further, when $\gamma = s$, γ_i is central in G_i for all *i* so that $c(i, j, t) =$ $c(i,j',t)$ for all i, j, j', t . But since $M_G = \prod G_i$ is the full centralizer of *s* in G we have $c(i,j,t) \neq c(i',j',t')$ if $(i,t) \neq (i',t')$. Thus $\Delta_G(\gamma) \prod_i N_{F_i/F} \Delta_{G_i} (\gamma_i)^{-1}$ is non-zero at $\gamma = s$. Similarly, we see that $\gamma \mapsto \Delta_H(\gamma) \prod_i N_{E_i/E} \Delta_{H_i} (\gamma_i)^{-1}$ extends to a continuous function on M_H which is non-zero at $\gamma = s$. Finally, the determinant factors are certainly continuous and non-zero on all of *M^H .* Thus

$$
\gamma\mapsto \Delta_G^{H,1}(\gamma)\Delta_{M_G}^{M_H,1}(\gamma)^{-1}
$$

extends to a function which is constant in a neighborhood of *s* in *M^H .* **D**

 ${\bf Lemma~3.6.}$ *There is a neighborhood U of s in* M_H *so that* $\Delta _G^{H,2}$ $\Big(\Phi _H^2\Big)$ *is constant and non-zero on* $U \cap G'$ *.*

Proof. We first need to derive an alternate formula for $\Delta_G^{H,2}$. Let σ_0 be a generator of $\mathcal{G}(E/F)$. For all $\gamma \in H$ we define

$$
\tilde{\Delta}(\gamma) = \prod_{0 \leq i < j \leq d-1} r\left(\sigma_0^i \gamma, \sigma_0^j \gamma\right).
$$

Then for each $\gamma \in H \cap G'$, $\tilde{\Delta}(\gamma)$ is an element of E^{\times} . Clearly $r(\delta, \gamma) =$ $(-1)^m r(\gamma, \delta)$ for all $\gamma, \delta \in H$. Thus it is easy to see that

$$
\sigma_0\tilde{\Delta}(\gamma)=(-1)^{m(d-1)}\tilde{\Delta}(\gamma),\,\,\forall\gamma\in H.
$$

If $m(d-1)$ is even we let $e_0 = 1$. Suppose that $m(d-1)$ is odd. Then d is even. Define $E_2 = \{e \in E : \sigma_0^2 e = e\}$. Then E_2/F is a cyclic extension of degree 2 and we can choose a unit $e_0 \in E_2$ such that $E_2 = F[e_0], \sigma_0 e_0 = -e_0$. With these choices of e_0 we have $e_0\Delta(\gamma) \in F$ for all $\gamma \in H$. We now claim that

$$
\Delta_G^{H,2}(\gamma) = \kappa \left(e_0 \tilde{\Delta}(\gamma) \right), \quad \gamma \in H \cap G'.
$$

Let η be an unramified character of E^{\times} which extends κ . Thus for all $e \in E^{\times}, \eta(e) = \zeta^{\nu_E(e)}$ where ζ is a primitive d^{th} root of unity. Now since e_0 is a unit we have

$$
\Delta_G^{H,2}(\gamma) = \eta\left(e_0\tilde{\Delta}(\gamma)\right) = \eta\left(\tilde{\Delta}(\gamma)\right).
$$

Now

$$
\prod_{\sigma\neq\tau}r(\sigma\gamma,\tau\gamma)=\pm\tilde{\Delta}(\gamma)^2
$$

so that

$$
\nu_E\left(\tilde{\Delta}(\gamma)\right) = \frac{1}{2}\nu_E\left(\prod_{\sigma\neq\tau}r(\sigma\gamma,\tau\gamma)\right).
$$

But

$$
\prod_{\sigma \neq \tau} r(\sigma \gamma, \tau \gamma) = N_{E/F} \left(\prod_{\tau \neq 1} r(\gamma, \tau \gamma) \right).
$$

Thus

$$
\nu_E\left(\tilde{\Delta}(\gamma)\right)=\frac{1}{2}\prod_{1\leq i\leq d-1}\nu_E\left(N_{E/F}r\left(\gamma,\sigma_0^i\gamma\right)\right).
$$

But for any $1 \leq i \leq d-1$,

$$
\nu_E \left(N_{E/F} r \left(\gamma, \sigma_0^{d-i} \gamma \right) \right) = \nu_E \left(N_{E/F} \sigma_0^{d-i} r \left(\sigma_0^i \gamma, \gamma \right) \right) \\ = \nu_E \left(N_{E/F} r \left(\gamma, \sigma_0^i \gamma \right) \right).
$$

 $\text{Further, } \nu_E\left(N_{E/F}(e)\right) = d\nu_E(e) \text{ for all } e \in E^{\times}. \text{ Thus, calculating modulo } d,$ we have

$$
\nu_E\left(\tilde{\Delta}(\gamma)\right) \equiv \begin{cases} \frac{d}{2}\nu_E\left(r\left(\gamma,\sigma_0^{\frac{d}{2}}\gamma\right)\right), & \text{if } d \text{ is even;} \\ 0, & \text{if } d \text{ is odd.} \end{cases}
$$

Now when *d* is even $\sigma_0^{\frac{1}{2}} = \sigma_+$ so we can conclude that

$$
\eta\left(\tilde{\Delta}(\gamma)\right) = \begin{cases}\n(-1)^{\nu_E(r(\gamma,\sigma+\gamma))}, & \text{if } d \text{ is even;} \\
1, & \text{if } d \text{ is odd.}\n\end{cases}
$$

 $\text{This completes the proof that } \Delta_G^{H,2}(\gamma) = \kappa \left(e_0 \tilde{\Delta}(\gamma) \right), \ \ \gamma \in H \cap G'.$ Similarly, for all $\gamma = \prod_i \gamma_i \in \prod H_i$, we have

$$
\Delta_{M_G}^{M_H,2}(\gamma)=\prod \kappa_i\left(e_{0,i}\tilde{\Delta}_i\left(\gamma_i\right)\right)
$$

where $e_{0,i}$, $\tilde{\Delta}_i$ are defined for the pair H_i , G_i . Since $\kappa_i = \kappa \circ N_{F_i/F}$, for $\gamma = \prod \gamma_i \in M_H \cap G'$ we have

$$
\Delta_G^{H,2}(\gamma)\Delta_{M_G}^{M_H,2}(\gamma)^{-1} = \kappa \left(e_0\tilde{\Delta}(\gamma)\prod N_{F_i/F}\left(e_{0,i}\tilde{\Delta}_i(\gamma_i)\right)^{-1}\right).
$$

Thus $\Delta_G^{H,2}$ $\left(\Delta_{M_G}^{M_H,2}\right)^{-1}$ will extend to a function which is constant and non zero in a neighborhood of s if we can show that

$$
\gamma \mapsto \tilde{\Delta}(\gamma) \prod N_{F_i/F} \left(e_{0,i} \tilde{\Delta}_i \left(\gamma_i \right) \right)^{-1}
$$

extends to a continuous function on M_H which is not zero at $\gamma = s$. Note that, using the notation in the proof of Lemma 3.6, we have

$$
\tilde{\Delta}(\gamma)^2 = \pm \prod_{\sigma \neq \tau} r(\sigma \gamma, \tau \gamma) = \pm \Delta_G(\gamma) N_{E/F} \Delta_H(\gamma)^{-1}.
$$

Thus the analysis proceeds exactly as in Lemma 3.6. That is, $N_{F_i/F}\left(e_{0,i}\tilde{\Delta}_i(\gamma_i)\right)$ cancels out exactly the terms in $\tilde{\Delta}(\gamma)$ which are zero when $\gamma = s$.

Let $T_1, ..., T_k$ denote the Cartan subgroups of *H* containing *s*, up to *G*conjugacy.

Lemma 3.7.

 (i) Let $f_G \in C_c^\infty(G)$. Then there are neighborhoods V_i of s in T_i and $f_H \in C^\infty_c(H)$ so that for all $1 \leq i \leq k, \gamma \in V_i \cap G'$

$$
\Delta_H^G(\gamma)\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H(f_H,\gamma)\,.
$$

(ii) Let $f_H \in C_c^{\infty}(H)$. Then there are neighborhoods V_i of s in T_i and $f_G \in C_c^{\infty}(G)$ so that for all $1 \leq i \leq k, \gamma \in V_i \cap G'$,

$$
\Delta^G_H(\gamma)\Lambda^G_\kappa(f_G,\gamma)=\Lambda^H\left(f_H,\gamma\right).
$$

Proof. This follows easily from combining Lemmas 3.4 and 2.6. \Box

Locally there is no obstruction to matching twisted orbital integrals on *G* with ordinary orbital integrals on H . However, if $f_H \in C_c^{\infty}(H)$ is to match orbital integrals with f_G for all $h \in H \cap G'$, we must have

$$
(*) \qquad \Lambda^H(f_H, xhx^{-1}) = \kappa(x)\Delta_H^G(xhx^{-1})\Delta_H^G(h)^{-1}\Lambda^H(f_H, h)
$$

for all $h \in H \cap G'$ and $x \in G$ such that $xhx^{-1} \in H$.

Theorem 3.8.

(i) Let $f_G \in C_c^{\infty}(G)$. Then there is $f_H \in C_c^{\infty}(H)$ so that for all $\gamma \in H \cap G'$,

$$
\Delta_H^G(\gamma)\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H\left(f_H,\gamma\right)
$$

(ii) Let $f_H \in C_c^{\infty}(H)$ satisfying (*). Then there is $f_G \in C_c^{\infty}(G)$ so that for $all \gamma \in H \cap G',$

$$
\Delta_H^G(\gamma)\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H(f_H,\gamma)\,.
$$

Proof. (i) Let $T_1, ..., T_k$ be a complete set of Cartan subgroups of *H* up to *H*-conjugacy. For each i, let Ω_i be the support of $\Lambda_\kappa^G(f_G, \cdot)$ restricted to T_i . Let $X = \bigcup T_i$ and $\Omega = \bigcup \Omega_i$. Then Ω is a compact subset of X. For each $s \in X$, use Lemma 3.7 to find $U(s)$, a compact open neighborhood of s in $X, \, \text{and} \, \, f_s \in C_c^\infty(H) \, \, \text{such that}$

$$
\Delta_H^G(\gamma)\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H(f_s,\gamma), \gamma\in U(s)\cap G'.
$$

Note that since both sides are invariant under H -conjugacy, the equality is $\text{in fact valid for all } \gamma \in \mathcal{O}_H(U(s)) \cap G'. \text{ Write } U'(s) = \mathcal{O}_H(U(s)) \cap X.$

Since Ω is compact, there are $s_1, ..., s_p$ so that $\Omega \subseteq \cup_{i=1}^p U'(s_i)$. By shrink ing if necessary we can assume that the $U'(s_i)$ are disjoint. Now by Lemma 2.5 applied to ordinary orbital integrals on H, there are $f_i \in C_c^{\infty}(H)$, $1 \leq$ $i \leq p$, so that

$$
\Lambda^H\left(f_i,\gamma\right)=\begin{cases} \Lambda^H\left(f_{s_i},\gamma\right), & \text{if } \gamma\in U'\left(s_i\right);\\ 0, & \text{if } \gamma\in X\backslash U'\left(s_i\right). \end{cases}
$$

Let $f_H = \sum_{i=1}^p f_i$. Then for $\gamma \in X \cap G'$, if $\gamma \in U'(s_i)$, then

$$
\Lambda^H(f_H,\gamma)=\Lambda_H(f_{s_i},\gamma)=\Delta^G_H(\gamma)\Lambda^G_\kappa(f_G,\gamma)\,.
$$

If $\gamma \notin \bigcup_{i=1}^p U'(s_i)$, then $\gamma \notin \Omega$ so that

$$
\Lambda_{\kappa}^{G}\left(f_{G},\gamma\right)=0=\Lambda^{H}\left(f_{H},\gamma\right).
$$

(ii) Let $T_1, ..., T_k$ be a complete set of Cartan subgroups of H up to G conjugacy. For each i, let Ω_i be the support of $\Lambda^H (f_H, \cdot)$ restricted to T_i . Let $X = \bigcup T_i$ and $\Omega = \bigcup \Omega_i$. Then Ω is a compact subset of X. For each $s \in X$, use Lemma 3.7 to find $U(s)$, a compact open neighborhood of *s* in $X, \, \text{and} \, \, f_s \in C_c^\infty(G) \,\, \text{such that}$

$$
\Delta_H^G(\gamma)\Lambda_\kappa^G(f_s,\gamma)=\Lambda^H(f_H,\gamma), \gamma\in U(s)\cap G'.
$$

Note that since both sides transform in the same way with respect to G conjugacy, the equality is in fact valid for all $\gamma \in \mathcal{O}_G(U(s)) \cap H \cap G'$. Write $U'(s) = \mathcal{O}_G(U(s)) \cap X$. Now the proof is finished in the same way as that of (i) using Lemma 2.5. \Box

If we drop the assumption that *E/F* is unramified, we can obtain a weaker version of Theorem 3.8 as follows. Let *s* be a semisimple element of *H* and as before let $T_1, ..., T_r$ be the Cartan subgroups of G which contain s , up to G-conjugacy. Suppose that $M_G = M_H$. Then $T_i \subseteq M_G = M_H \subseteq H$ for all $1 \leq i \leq r$. We can use the results of §2 to prove the following lemma.

Lemma 3.9. Suppose $s \in H$ is a semisimple element such that $M_G = M_H$. (i) Let $f_G \in C_c^{\infty}(G)$. Then there are neighborhoods V_i of s in T_i and $f_H \in C^\infty_c(H)$ so that for all $1 \leq i \leq r, \gamma \in V_i \cap G'$

$$
\Lambda_{\kappa}^{G}\left(f_{G},\gamma\right)=\Lambda^{H}\left(f_{H},\gamma\right).
$$

(ii) Let $f_H \in C_c^{\infty}(H)$. Then there are neighborhoods V of γ_0 in T _{*t*} and $f_G \in C_c^{\infty}(G)$ so that for all $1 \leq i \leq r, \gamma \in V_i \cap G',$

$$
\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H\left(f_H,\gamma\right).
$$

Proof. For part (i), use Lemma 2.6 to match $f_G \in C_c^{\infty}(G)$ with $\psi_G \in$ $C_c^{\infty}(M_G)$. Now use Vignéras's version of Lemma 2.6 [V] applied to H and ordinary orbital integrals to match $\psi_H = \psi_G \in C_c^{\infty}(M_H)$ with $f_H \in C_c^{\infty}(H)$. For part (ii) go backwards.

 $\text{Suppose that } s \in H \cap G'. \text{ Then } M_G = M_H \text{ is a Cartan subgroup of } H$ and G, so that we can apply Lemma 3.9 in a neighborhood of *s.* Thus if we restrict our attention to functions supported on such points, we can use Lemmas 3.9 and 2.5 to prove the following theorem.

Theorem 3.10.

(i) Let $f_G \in C_c^{\infty}(G')$. Then there is $f_H \in C_c^{\infty}(H \cap G')$ so that for all $\gamma \in H \cap G'$,

$$
\Lambda_{\kappa}^{G}\left(f_{G},\gamma\right)=\Lambda^{H}\left(f_{H},\gamma\right).
$$

(ii) Let $f_H \in C_c^{\infty}(H \cap G')$ such that

$$
\Lambda^H(f_H,x\gamma x^{-1})=\kappa(x)\Lambda^H(f_H,\gamma)
$$

for all $\gamma \in H \cap G', x \in G$ such that $x \gamma x^{-1} \in H$. Then there is $f_G \in$ $C_c^{\infty}(G')$ so that for all $\gamma \in H \cap G'$,

$$
\Lambda_\kappa^G(f_G,\gamma)=\Lambda^H\left(f_H,\gamma\right).
$$

References

- [A-C] J. Arthur and L. Clozel, *Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula,* Ann. of Math. Studies, No. 120, Princeton U. Press, Princeton, N.J. 1989.
- [HC] Harish-Chandra, *Harmonic Analysis on Reductive p-adic Groups,* Lecture Notes in Math., **162,** Springer-Verlag, New York, 1970.
- [HI] T. Hales, *Unipotent representations and unipotent classes in SL(n),* American J. Math., **115** (1993), 1347-1384.
- [Hn] G. Henniart, *Un lemme fundamental pour ^induction automorphe,* preprint.
- $[Hr]$ R. Herb, *Unipotent orbital integrals of Hecke functions for* $GL(n)$ *, to appear, Cana*dian J. Math., **46** (1994), 308-323.
- [K] D. Kazhdan, *On lifting, Lie Group Representations* II, Lecture Notes in Math., **1041,** Springer-Verlag, New York, 1984, 209-249.
- [S] A. Silberger, *Introduction to Harmonic Analysis on Reductive p-adic Groups,* Prince ton U. Press, Princeton, N.J., 1979.
- [V] M.F. Vignéras, *Charactérisation des intégrales orbitales sur un groupe réductif padique,* J. Fac. Sc. Univ. Tokyo, Sec. IA, 29 (1981), 945-962.
- [Wl] J.L. Waldspurger, *A propos des integrales orbitales pour GL(n),* preprint.
- [W2] , *Sur les integrales orbitales tordues pour les groupes linέaires: un lemme fundamental,* Can. J. Math., 43 (1991), 852-896.

Received June 29, 1993. Supported by NSF Grant DMS 9007459.

UNIVERSITY OF MARYLAND COLLEGE PARK, MD 20742