
PACIFIC JOURNAL OF MATHEMATICS

Vol. 172, No. 1, 1996

THE UNIQUENESS OF COMPACT CORES FOR
3-MANIFOLDS

LUKE HARRIS AND PETER SCOTT

A compact core for a 3-manifold M is a compact sub-manifold
N of M whose inclusion in M induces an isomorphism of
fundamental groups. A uniqueness result for compact cores
of orientable 3-manifolds is known. The authors show that
compact cores are not unique in any reasonable sense for
non-orientable 3-manifolds, but they prove a finiteness result
about the number of possible cores.

If M is a non-compact 3-manifold with finitely generated fundamental
group, then Scott showed in [Scl] that there is a compact sub-manifold N
of M with the natural map π1(N) —» τri(M) an isomorphism. See [R-S]
for a simpler proof. We call such a sub-manifold a core or compact core for
M. In [McC-Mi-Sw], McCullough, Miller and Swarup showed that if JVi
and N2 are irreducible compact cores of a F2-irreducible 3-manifold M, then
Nι and N2 are homeomorphic. In this paper, we seek to generalize this to
the case when M and its compact cores have no irreducibility restrictions.
Of course, we cannot any longer expect to prove that two cores of M are
homeomorphic, because the Poincare conjecture is not resolved. Thus one
core for M might be the connected sum of another core with a homotopy
sphere. Also we can obtain new cores by removing a 3-ball from a core or by
replacing a connected summand of a core which is a 2-sphere bundle over the
circle by a disc bundle over the circle . However, we give an example showing
that even if one works modulo the equivalence relation on cores generated
by the above operations then uniqueness does not hold. We also show that
there are only finitely many different cores in a given 3-manifold up to the
equivalence relation of almost homeomorphism which we define in §1. We
end by using this finiteness result to prove a natural finiteness result for the
boundary of a 3-manifold which has finitely generated fundamental group.
The result is the following.

Theorem 3.2. Let M be a 3-manifold with finitely generated fundamental
group. Then

(i) There are only finitely many boundary components F of M with
Im(πi(jF) -> τri(M)) not trivial or infinite cyclic,
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(ii) There are only finitely many boundary components F of M with

Im(πi(F) -» τri(M)) infinite cyclic and with essential core a Mόbius

band,

(iii) Of those components of the boundary Fι with Im(^(Fi) -» πi(M))

infinite cyclic and with essential core an annulus, there are only finitely

many conjugacy classes in ττι(M) of lm(πι(Fi) -+ πχ(M)).

In a separate paper [H-S], we use Theorem 3.2 to extend earlier results of

Brin, Johannson and Scott [BJS] on compact totally peripheral 3-manifolds

to the non-compact case.

The work in this paper is part of the Liverpool Ph.D. thesis of Luke Harris

completed under the supervision of Peter Scott in 1988. Since then Harris

obtained a job not in the academic world and has never had time to prepare

this for publication. Finally, Scott agreed to prepare this for publication, to

avoid the complete disappearance of his work.

§1. Preliminaries and the example.

Definition. Let M and TV be compact 3-manifolds. Then M and TV are

almost homeomorphic if they are homeomorphic up to connected sum with

compact simply connected manifolds (3-balls and fake 3-spheres) and up to

replacing P 2 x Γs with fake P 2 x J's.

We start with our example to show non-uniqueness for cores. Let M be

a 3-manifold with finitely generated fundamental group, and with core TV in
o o

M. Suppose that M — TV has at least two components Rι and i?2, and let

Fx and F2 be the components of dN which lie in i?x and R2. Let X denote

the solid torus. Note that similar examples can be constructed if X is any

compact manifold with at least one boundary component not the 2-sphere.

We can form the connected sum Mj^X in several ways, depending on the

choice of 3-balls in M and in X. However, M # X is independent of this

choice.

If we form Mj^X by selecting a 3-ball in M which lies in the region Rλ,

then a natural selection of core Nλ for M#X is TV with a 1-handle attached

to Fλ. If we select the 3-ball in iϊ2, then the core TV2 could be TV with a

1-handle attached to F2. We could also select the 3-ball to lie in TV, in which

case the natural core TV0 would be N#X. Note that this is homeomorphic

to TV with the interior of a trivial solid torus removed, where trivial means

that the solid torus lies in a 3-ball in TV and is unknotted there. Also note

that JVi and TV2 are each a boundary connected sum of TV and X.

So long as JF\ and F2 are not homeomorphic, and not 2-spheres, these three

cores are non-homeomorphic in a fairly non-trivial way. They have different
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boundary, for example, and the difference in boundary is not caused just
by adding or removing 2-sphere components. Thus they are not almost
homeomorphic. Further, so long as Fλ and F2 have genus at least two, these
cores cannot be equivalent under the coarser equivalence relation obtained
from the operation of replacing a summand which is a sphere bundle over
the circle by a solid torus. However, they do have certain similarities. All
contain pieces homeomorphic with X and JV, at least up to connected sum
with 3-balls, and these pieces are connected by 1-handles and S2 x /'s.

We cannot avoid this problem even if we insist that one of the cores be
embedded in the other, since in the example given it is possible to embed
either of N± and N2 inside No. To see how to embed Nλ in iV0, for example,
consider a simple closed curve a on Fλ which bounds a disc D in Fx containing
the endpoints of the 1-handle of N\. We can also find a disc E in i?χ with
boundary α, such that E U D defines a 2-sphere in Rλ which is parallel to
the boundary of the 3-ball we removed from Rλ to form M#X. Then Nx

together with a regular neighbourhood of E is homeomorphic to N minus a
trivial solid torus and hence homeomorphic to No.

It is clear that this example is not a special case, and that any connected
sum between two 3-manifolds with cores having non-spherical boundary may
have a number of non-homeomorphic cores, constructed similarly to JV0, Nι
and N2 above.

Now we will need a few definitions. The first four are after Scott in [Sc2].

Definition. A sub-manifold X of a 3-manifold M is incompressible if dX
is incompressible in M.

Remark. Then the natural map πι(X) —> π\{M) is injective.

Definition. A 3-manifold N is weakly irreducible if the manifold N ob-
tained from N by attaching a 3-ball to every boundary 2-sphere of N is
irreducible.

Definition. A chunk in a 3-manifold is a sub-manifold X of M which is
connected, compact, incompressible and weakly irreducible.

Remark. With this definition, a (punctured) 2-sphere bundle over the
circle is not a chunk.

Definition. Let M be a 3-manifold, with fundamental group G = τri(M),
and let H be a finitely generated indecomposable subgroup of G. Then a
chunk in M for H is a chunk X in M such that πχ(X) contains a conjugate
(in G) of H.

Observe that if N is a compact core of a 3-manifold M, then we can
decompose iV into chunks by cutting along a maximal family of 2-spheres
embedded in N and then cutting along compressing discs for the boundaries
of the resulting pieces. Thus N can be viewed as a collection of chunks
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embedded in M joined together by 1-handles and S2 x /'s.
Clearly if πx (M) = Fr * Gλ * G2 * * Gs where Fr is free and the Gi are

indecomposable and not infinite cyclic, then there must be exactly s chunks
Xi for a core N that have non trivial fundamental group, with πι(Xi) — Gi
up to conjugacy after reordering. Thus the non trivial chunks for any two
cores are in 1-1 correspondence. The main result of this section is that these
chunks are almost homeomorphic.

Theorem 1.1. Let X' and X be chunks in a 3-manifold M with finitely
generated fundamental group, and suppose that τri(X') and τri(X) are both
conjugate to H, an indecomposable factor not Z in a free product decompo-
sition of π1(M). Then X' and X are almost homeomorphic.

Remark. Such chunks cannot contain fake 3-balls, but may contain fake
P2 x Γs.

As a first step, we prove the following special case of Theorem 1.1.

Lemma 1.2. The result of Theorem 1.1 holds if either X and X' are disjoint
or if one lies in the interior of the other.

Proof. First consider the case when X lies in the interior of X'. We know that
τri(X) and πι(X') are both conjugate to iί, and that ^\{X) is a subgroup
of π1(X'). But H = 7T1(X) is an indecomposable factor of π1(M), and so no
conjugate of H can be properly contained in H. Thus we deduce that the
inclusion of X in X' induces an isomorphism of fundamental groups.

o

Consider a component R of X' — X. Clearly RΠX = F, a single boundary
component of X. But we must also have πx(R) = πχ(F) by van Kampen's
theorem, since πι(X') = πι(X). Then the /ι-cobordism theorem tells us that
R must be homeomorphic to F x / connected sum with 3-balls unless F = P2,
in which case R might be a fake P2 x / connected sum with 3-balls. (Note
that in fact we cannot have fake 3-balls in iί, since non-simply connected

o

chunks do not contain fake 3-balls.) This is true for all components of X'—X,
and so we conclude that X' is almost homeomorphic to X.

Next consider the case when X and X' are disjoint. Take the cover MH

of M with fundamental group H. Then X and X' lift into MH. Thus H
is the fundamental group of a graph of groups with ^(Jf) and τri(X') as
vertex groups. As each of these vertex groups equals if, it follows that there
is a path between these vertices with all edge and vertex groups equal to
H. In particular, for X and X1 there are boundary components F and F1

respectively with τri(F) —> πi(X) and ττι(F/) —> πι(X') being isomorphisms.
We apply the /i-cobordism theorem to see that both X and X' are almost
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homeomorphic to products F x / = F' x /. Thus X and X' must be almost
homeomorphic. This completes the proof of Lemma 1.2. •

Proof of Theorem 1.1. We may suppose that dM is empty, by pushing X
and X' away from dM and then deleting dM. Then we can find a compact
sub-manifold K with X and X' embedded in the interior of K. The proof
proceeds by altering K in a fairly canonical way until we find a chunk C\
derived from K with X embedded in C\. Lemma 1.2 then shows that X
and C\ must be almost homeomorphic. We may also alter K in a slightly
different way to obtain a chunk C[ containing X'', and so this chunk must
be almost homeomorphic to X'. But because we obtained the chunks in
each case in a fairly standard way, we will be able to show that they must
themselves be almost homeomorphic, which will complete the proof.

So for the moment, we will consider X only. Consider a family of 2-
spheres Σ embedded in K corresponding to a prime decomposition of K.
Note that the pieces obtained by splitting along any such family are unique
up to homeomorphism and connected sum with 3-balls. In particular, the
pieces are unique up to almost homeomorphism. We will alter Σ so that
it does not intersect X, but so that it remains a representation of a prime
decomposition of K.

Σ intersects dX in a collection of embedded circles. dX is incompressible,
so we can choose an innermost circle C of Σ Π dX bounding a disk E in <9X,
with EΠΣ = dE = C.

Now we cut and paste Σ along C using E, and push the new Σ away from
dX on both sides. After deleting any redundant 2-spheres, Σ still represents
a decomposition of K into primes. We repeat until Σ Π dX is empty.

Some components of Σ may lie inside X. We delete these components from
Σ and replace them with the spherical boundary components of X, and then
again delete any redundant 2-spheres. Since X is weakly irreducible, any 2-
sphere embedded in X other than a boundary sphere must be redundant,
and thus Σ still represents a decomposition of K into primes. So we may
cut K along this new Σ, and X will be contained in one of the pieces.

We now wish to compress the boundary of the pieces, whose union we will
continue to call K. We do this by sequentially finding compressing discs for

o

dK, lying in either K or M — K. If a disc D lies outside K, then we add a
regular neighborhood of the disc to K. If the disc is contained in K, then we
cut along it. Note that, so long as the boundaries of the discs and the order
they are dealt with is the same, any sequence of compressing discs yields
pieces unique up to homeomorphism and connected sum with 3-balls. This
is because the components of K are weakly irreducible, and any two discs
with the same boundary embedded in an irreducible 3-manifold are isotopic.
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Consider a disc D lying in K. Then D intersects dX in a collection of
embedded circles. dX is incompressible, so we can find an innermost circle
C bounding a disc E in dX with DDE = dE = C.

We cut and paste D along C using E, and discard the 2-sphere component
of the result. Then we push D away from 5X,thus reducing the intersection
number of D with dX. We can repeat until DΠdX = 0 and thus DΓ\X = ®
since 3D C K — X. Note that this does not disturb dD: so D is still a
compressing disc for dK contained in K.

So after compressing the boundary of all the components, we have derived
from the original K a collection of chunks, one of which contains X. Call
this chunk Cγ. Lemma 1.2 shows that X and Cλ are almost homeomorphic.

If there is another chunk C2 derived from K which also has fundamental
group conjugate to H, then Lemma 1.2 again shows that it is also almost
homeomorphic to X.

Now all the above construction can be done to find a number of chunks C[
for K corresponding to X'. As we have already pointed out, we must get the
same chunks up to homeomorphism and connected sum with 3-balls as we
did with the first construction. Thus C[ is almost homeomorphic to C3 for
some j . It follows that X is almost homeomorphic to X'', which completes
the proof of Theorem 1.1. D

§2. There are only finitely many compact cores for 3-manifold.

In §1, we gave an example which rules out the possibility of a uniqueness
result such as that to be found in the paper [McC-Mi-Sw] of McCullough,
Miller and Swarup. In this section we show that, up to almost homeomor-
phism, there are only finitely many cores for any 3-manifold M.

Theorem 2.1. Let M be a 3-manifold with finitely generated fundamental
group. Then, up to almost homeomorphism, there are only finitely many
different cores for M.

Proof. The proof uses the result of the previous section on uniqueness of
non-simply connected chunks in a 3-manifold. Since all cores have a decom-
position into essentially the same chunks, then these same chunks can be
used as the building blocks to construct any core for M. We can then show
that there are, up to almost homeomorphism, only finitely many ways to put
these chunks together to give a compact 3-manifold with fundamental group
equal to τri(M). Of course, if chunks were unique up to homeomorphism,
it would be trivial that there could only be a finite number of cores up to
homeomorphism.
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So first consider the decomposition of a compact core N into chunks, by
splitting along 2-spheres and discs. Then N is the union of these chunks
together with 1-handles and S2 x Γs. If M has fundamental group τri(M) =
G — Fr * G\ * G2 * * Gs where Fr is free of rank r and the Gi are
indecomposable not infinite cyclic, then we can decompose N into exactly
s chunks d that are not simply connected, and such that πi(Ci) = Gi
up to conjugacy in G. We apply the result of §1 to see that, up to almost
homeomorphism, all cores for M have exactly the same non simply connected
chunks. It will be useful to choose our splitting family of spheres and discs
to be minimal in the sense that no proper subfamily splits N in this way.

Using the decomposition mentioned in the introduction, we first cut se-
quentially along 2-spheres {5,}, and then along discs {Dk}. We can easily
arrange that all the discs and spheres can be embedded in JV, and are disjoint
from one another. Thus the order in which we cut along the spheres and
discs is irrelevant. Since the construction of a core from the chunks is essen-
tially the reverse operation to that of cutting along the spheres and discs,
we will find it useful to choose a particular order in which to decompose N.

We now wish to organize the decomposition into four steps. In step one,
we cut along non-separating 2-spheres. In step two, we cut along discs
which correspond to 1-handles attached to spherical boundary components
of chunks. In step three, we cut along separating 2-spheres, and finally in
step four we split along the remaining discs. We will comment on each stage
of the decomposition.

Step 1 : Cutting along the non-separating 2-spheres.

Let S be such a non-separating 2-sphere. Then we can find a regular
neighborhood S x / for 5. Since S is non-separating, we cam find an arc
λ in the complement of 5 x / joining 5 x 0 to 5 x 1 . S x I together with
a regular neighborhood of λ defines a punctured 2-sphere bundle over the
circle. Thus every non-separating sphere in the family Si corresponds to a
2-sphere bundle over the circle in a prime decomposition of N.

Step 2 : Cutting along discs corresponding to 1-handles attached to spherical

boundary components of chunks.
This step is much simpler that it sounds. Let D be a disc in the family

{Dk}. We can cut along all the other spheres and discs in the decomposition
leaving D until last. Then D corresponds to a 1-handle with ends attached
to discs in the boundary of the chunks. Since D is a compressing disc, if
one end of the 1-handle is attached to a spherical boundary component S
of a chunk, it must be that the other end is also attached to 5, since S is
separating and the family of discs {Dk} is minimal. Any other disc has a
corresponding 1-handle with both ends attached to non-spherical boundary
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components of chunks.
We can cut along all the discs which correspond to 1-handles with both

ends in 5, and so we see that N can be thought of as a simpler manifold
with boundary including S, with one or more 1-handles attached to S.

Step 3 : Cutting along the separating 2-spheres.

This needs little attention for the moment. Note that cutting along such
a 2-sphere corresponds to decomposing as a connected sum (up to adding or
removing 3-balls, anyway).

Step 4 : Cutting along the remaining discs.

As we noted in step 2, all such discs must correspond to 1-handles with
both ends in non-spherical boundary components of chunks. Of course in
particular this means that these 1-handles are not attached to simply con-
nected chunks.

We are now ready to reverse the decomposition process. Let K denote the
disjoint union of the non simply connected chunks C*. Then any core, up to
almost homeomorphism, is obtained from K by adding 1-handles, S2 x /'s
and also simply connected compact manifolds. Eventually we construct a
compact 3-manifold from K by reversing steps one to four of the decompo-
sition process.

We consider the steps of the decomposition individually, and in reverse or-
der. To start with, K is uniquely determined up to almost homeomorphism.
At each stage, we must ensure that there are only finitely many possibilities
for K, up to almost homeomorphism.

Step 4:

To reverse this, we add 1-handles to K. Let H be such a 1-handle. Each
end of H is connected to a non spherical boundary component of a non
simply connected chunk. Thus we do not need to consider simply connected
chunks at this stage.

There are only s non-simply connected chunks in K, and each chunk has
only finitely many boundary components, and so there are only finitely many
ways to attach each end of iϊ, and hence there are only finitely many ways of
attaching H to K, since the ends of H and the orientation of H are the only
factors in determining the homeomorphism class of the result. Note that
we have used the fact that H must be connected to non-spherical boundary
components of chunks, and thus it is irrelevant that K is defined only up to
almost homeomorphism.

Step 3:

In this step, we add S2 x /'s to K, but since one end of an S2 x I can be
attached to a simply connected chunk, we must also add these. Remember
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that all the S2 x JPS in this stage connect different components of if, and
the end result of this is connected.

Consider an S2 x / with either (or both) ends attached to a simply con-
nected chunk. Then it corresponds to forming a connected sum, with one of
the summands being a simply connected compact 3-manifold. Thus, up to
almost homeomorphism, we have done nothing.

Now we consider S2 x /'s which connect non simply connected chunks.
Adding such an S2 x / corresponds to forming a connected sum, since each
end of the S2 x / is connected to a different component of K. If K has n non
simply connected components, then we must add n — lS2xΓs in this step,
and however we do this, the result is unique up to almost homeomorphism.
In particular, it is irrelevant which 2-sphere boundary components of K we
choose to attach an S2 x / to, and also it is irrelevant which components of
K the S2 x / is attached to, since the end result of step 3 is a connected
manifold.
Step 2:

In this step, we attach 1-handles which have both ends in the same spher-
ical boundary component of a chunk. Note that if we wish to add one such
1-handle, we have a choice of 2-sphere boundary components on which to
attach it, but, assuming orientability, any choice gives the same result up to
homeomorphism. If we are adding many 1-handles, we do not care which
2-spheres we attach them to, but only which 1-handles we allow to share the
same boundary 2-spheres, which is a combinatorial question.

If we allow non-oriented 1-handles, there are more possibilities, but there
are still only finitely many different ways of adding the 1-handles to if, up
to almost homeomorphism of the resulting manifold.

Step 1:

As we noted earlier, this is equivalent to forming a connected sum with 2-
sphere bundles over the circle, up to almost homeomorphism. Each 2-sphere
bundle could be orientable or non-orientable.

We have π1 (M) = G = Fr * Gx * G2 * * Gs. Thus there are (r + s - 1)
1-handles, non-trivial S2 x Γs and 2-sphere bundles over the circle to be
added to the chunks Ct to get a compact connected manifold with funda-
mental group G. Hence each of the steps one to four must terminate in
fewer than r + s — 1 steps, since the 1-handles, S2 x /'s and 5r2-bundles
added in these steps are precisely those needed to get a compact manifold
with fundamental group G.

So after r + s — 1 stages, and with a finite number of possibilities at each
stage, we have a compact manifold with fundamental group G. Thus there
are, up to almost homeomorphism, only finitely many compact 3-manifolds
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that can be formed from the C{ with fundamental group G, and so M can

have only finitely many different cores up to almost homeomorphism. This

completes the proof of Theorem 2.1. •

§3. Applications of uniqueness of cores.

In this section we use Theorem 2.1 together with results of McCullough

[McC] on compact cores to deduce information about the boundary of a

3-manifold M with finitely generated fundamental group.

The first result is an obvious deduction from Theorem 2.1.

Corollary 3.1. Let M be a 3-manifold with finitely generated group, and let

Xi be an infinite sequence of cores of M. Then there is a subsequence Xj of

Xi such that all members of the sequence Xj are almost homeomorphic.

Before we get to the main result of this section, we need a definition. Let

M be a 3-manifold with finitely generated fundamental group G. Let F be

a component of dM, and let H = Im(πi(F) —> π ^ M ) ) be the image of the

fundamental group of F under the natural induced map into G. Then H is

finitely generated, by the result of Jaco in [Ja]. Now we can take a compact

regular neighborhood of based loops in F representing the generators of if,

and add compressing discs in F to get a compact subsurface C of F with

Im(τri(c) —)• τri(M)) = if, and C incompressible in F. Then:

Definition. With M, F and C as above, we call C an essential core for F.

Remark. C need not be incompressible in M. Also, if Iui(ττ1(F) —> πi(M))

is infinite cyclic, we can choose a simple closed curve on F to represent a

generator, and thus we may choose the essential core in this case to be an

annulus or a Mobius band. We assume in what follows that we always choose

such an essential core when possible.

We can now state the main result of this section. McCullough gives a

result equivalent to part (i) and (ii) of this theorem in the case when dM is

incompressible as a corollary to his main theorem in [McC]. See also [R-S].

Theorem 3.2. Let M be a 3-manifold with finitely generated group. Then:

(i) There are only finitely many boundary components F of M with

I m ( ^ ( F ) —> τri(M)) not trivial or infinite cyclic,

(ii) There are only finitely many boundary components F of M with
Im(πχ(F) —>> τri(M)) infinite cyclic and with essential core a Mόbίus
band,

(iii) Of those components of the boundary F{ with Im(πι (Fi) —> τri(M))

infinite cyclic and with essential core an annulus, there are only finitely

many conjugacy classes in π x (M) ofϊm(π1(Fi) —> τ
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Proof. Let the boundary components of M be i^. Then we can find essential
cores Cι for the F i ? with the C] being annuli or Mobius bands when possible.
We are only interested in those F{ with non-trivial image in πi(M), so we
will assume that none of the Ct are discs. Now the theorem of McCullough
[McC] tells us that given a (possibly disconnected) compact subsurface C
of the boundary of a manifold M, we can find a compact core X for M with
X Π dM — C. Thus a manifold M, we can find a sequence of cores Xi for

M with XiΠdM = \JC3.
3 = 1

By taking a subsequence if necessary, we can assume that this sequence
is stable, i.e. that all the X{ are almost homeomorphic. Let dXi denote
the union of all the non-spherical boundary components of X{. Then dXi
is homeomorphic to a fixed closed surface dX, for all i. Now for any union
of non-trivial essential cores of boundary components of M, we can find an
embedding of these essential cores in c?X;, for some i, and hence an embed-
ding in dX. Since dX has only finitely many components, we immediately
see that there can only be a finite number of closed surfaces embedded in
dX. So we are only concerned with subsurfaces of dX which are not closed.
Also we can assume that the subsurfaces are injective in dX, by adding discs
lying in dX to them. Thus none of the subsurfaces is a disc, and none of the
components of the complement of the subsurfaces is a disc.

Assume for the moment that dX is connected. Consider its Euler charac-
teristic χ(dX). Any collection of embedded disjoint subsurfaces
{Ci : i < m} of dX splits dX into a collection of subsurfaces {Ci : i < n}
where {Ci : m + 1 < i < n} are the components of the complement of
{Ci : i < m). Then χ(dX) = ΣΓ=iX(^) N o n e o f t h e Ci a r e d i s c s ( o r

are closed), so χ(Ct) < 0 Vz. Also, any (7, which are not Mobius bands or
annuli have negative Euler characteristic, and so dX can contain at most
|χ(dX)| such surfaces. Of course, when dX is not connected this holds for
any component of dX. This proves the first part of the theorem.

Similarly dX can contain only a finite number of Mobius bands, this time
limited by the rank of Hι(dX, Z2), and so also there are only a finite number
of boundary components of M with essential core a Mobius band. This
completes part two of the theorem.

Consider now essential cores which are annuli. There is no bound on
the number of these that can be embedded in a surface dX. However, we
can embed only finitely many non-parallel such annuli. Parallel annuli have
fundamental groups which are conjugate in τri(M), so this completes the
third part of the theorem. D
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