ON NORMALITY OF THE CLOSURE OF A GENERIC TORUS ORBIT IN G / P

Romuald Dabrowski

Abstract

In this paper we consider generic orbits for the action of a maximal torus T in a connected semisimple algebraic group G on the generalized flag variety G / P, where P is a parabolic subgroup of G containing T. The union of all generic T-orbits is an open dense (possibly proper, if P is not a Borel subgroup) subset of the intersection of the big cells in G / P. We prove that the closure of a generic T-orbit in G / P is a normal equivariant T-embedding (whose fan we explicitely describe). Moreover, the closures of any two generic T-orbits are isomorphic as equivariant T-embeddings.

1. Introduction.

Let G be a connected semisimple algebraic group over an algebraically closed field k of arbitrary characteristic. As usual, let B^{+}denote a fixed Borel subgroup of G, T a maximal torus in $B^{+}, \Gamma(T)$ the character group of T, B the opposite to B^{+}, Φ the corresponding root system in an euclidian space $(E,()),, \Phi_{+}$the set of positive roots relative to B^{+}, Δ the set of simple roots in Φ_{+}, s_{α} the reflection about the linear subspace of E perpendicular to root α, W the Weyl group of Φ generated by the reflections $s_{\alpha}, \alpha \in \Phi_{+}$ (W can also be naturally identified with $N_{G}(T) / T$), and R the root lattice in E.

Let P be a fixed parabolic subgroup containing B. Let Δ_{P} be the set of simple roots α such that $s_{\alpha} \in W_{P}=N_{P}(T) / T$. Then the map $P \rightarrow \Delta_{P}$ is a bijection between the set of all parabolic subgroups containing B and the power set of Δ (see e.g. [B, Proposition 14.18]). We denote by S^{P} the subsemigroup of the root lattice generated by all positive roots which are not sums of simple roots in Δ_{P}.

We will be concerned with T-orbits of points in the projective variety G / P. Let λ be an integral dominant weight (with respect to Φ_{+}) whose stabilizer in W is W_{P} Then λ extends to a character of P (we will also call it λ), inducing a line bundle \mathcal{L}^{λ} on G / P. We let $V(\lambda)$ denote the Weyl G-module

$$
H^{0}\left(G / P, \mathcal{L}^{\lambda}\right)=\left\{f \in k[G] \mid f(x y)=\lambda^{-1}(y) f(x) \text { for all } x \in G, y \in P\right\}
$$

of global sections of \mathcal{L}^{λ} (see e.g. [JJ, Sec. 5.8, p. 84]).
Let Π_{λ} denote the set of weights of $V(\lambda)$ for the action of T. Let \mathcal{A}_{λ} denote the set of weights of $V(\lambda)$ listed with multiplicity. For each $\mu \in \mathcal{A}_{\lambda}$, we pick a corresponding weight vector (function) f_{μ} so that $\left\{f_{\mu} \mid \mu \in \mathcal{A}_{\lambda}\right\}$ is a basis of $V(\lambda)$. Functions $f_{\mu}, \mu \in \mathcal{A}_{\lambda}$, are called the Plücker coordinates in G / P. By abuse of language we use f_{μ} to denote any Plücker coordinate of a given weight μ. Let $x=u . P$ be an element of G / P. We let $\Pi_{\lambda}(x)$ denote the set of weights $\mu \in \Pi_{\lambda}$ such that at least one of the Plücker coordinates f_{μ} does not vanish at u. It is easy to see that $\Pi_{\lambda}(x)$ depends on x and λ only (not on the choice of the Plücker coordinates). It turns out that $\lambda-\Pi_{\lambda} \subseteq S^{P}$. Hence by W-invariance of $\Pi_{\lambda}, \lambda-w \Pi_{\lambda}(x) \subseteq S^{P}$, for any $x \in G / P$ and $w \in W$. Intuitively, a torus orbit $T x \subset G / P$ can be called generic if sufficiently many Plücker coordinates of x do not vanish. The following definition makes this requirement precise.

Definition 1.1. Let x be an element of G / P. Then the torus orbit $T x \subset G / P$ is called generic if and only if $\{w \lambda \mid w \in W\} \subseteq \Pi_{\lambda}(x)$, and for each $w \in W$, the semigroup generated by $\lambda-w \Pi_{\lambda}(x)$ is S^{P} (that is, the maximal semigroup that $\lambda-w \Pi_{\lambda}(x)$ can generate).

We will show that this definition does not depend on the choice of λ. It turns out that $\Pi_{\lambda}(x)=\Pi_{\lambda}$ implies $T x$ is generic. Therefore generic orbits exist since there are points in G / P at which all Plücker coordinates do not vanish. We will also prove that in the case of $G / B, T x$ is generic if and only if x belongs to $\bigcap_{w \in W / W_{P}} w B^{+} . P$.

The aim of this note is to prove that the closure of a generic T-orbit in G / P is a normal equivariant T-embedding. We can then use the general theory of equivariant torus embeddings (see e.g. [K, Oda1]) to show that the closures of any two generic orbits are isomorphic (as equivariant T-embeddings). We prove this by identifying the fan describing the isomorphism class of these T-embeddings.

Remark. We point out that if $P \neq B$, the definition of generic T-orbit given here differs from the one used in [$\mathbf{F}-\mathbf{H}$, Remark 1, p. 257]. There, an orbit $T x$ is called "generic" if and only if x belongs to the non-degenerate stratum $Z=\bigcap_{w \in W / W_{P}} w B^{+} . P$ in the stratification of G / P introduced in [G-S] (note that in $[\mathbf{F}-\mathbf{H}] B$ is the "positive" Borel subgroup, while here B denotes the "negative" Borel subgroup). It is easy to see that the set of all $x \in G / P$ with $T x$ generic in the sense of Definition 1.1 is an open subset of Z. It is proved in [G-S, Section 5.1, Proposition 1] that if k is the field of complex numbers then the image under the moment map of the closure of each torus orbit contained in Z is the convex hull of $\{w \lambda \mid w \in W\}$. In $[\mathbf{F}-\mathbf{H}]$ the general theory of torus embeddings is used to study the closure of $T x$ in
G / P for $x \in Z$. It appears however that normality of these varieties, required in the theory, has not been proved (as pointed out in [Oda2, Section 2.6]). Also, contrary to what is claimed in $[\mathbf{F}-\mathbf{H}]$, two T-orbits in Z may have nonisomorphic closures in G / P (see the example below).
Example. Let \mathbf{C} denote the field of complex numbers. Let q be a nondegenerate quadratic form on $V=\mathbf{C}^{5}$, and let $G=S O(q)$ be the subgroup of determinant one linear transformations of V, preserving q. Then G is a connected, semisimple, rank 2 algebraic group over \mathbf{C}, and V is an irreducible representation of G. Let L be a fixed isotropic line for q (that is $q(v)=0$ for all $v \in L$), and let $P \subset G$ be the stabilizer of L. Then P is a parabolic subgroup of G, and G / P is naturally isomorphic to the smooth quadric hypersurface Q in the complex projective space $\operatorname{Proj}(V)$ given by the homogeneous equation $q(x)=0$. For brevity, we will equate G / P with Q. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{4}\right\}$ be the standard basis of V and let $q(x)=x_{1} x_{3}+x_{2} x_{4}-2 x_{5}^{2}$, where $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$ are the coordinates of $x \in V$ relative to the standard basis. We let $L=\mathbf{C} e_{1}$. Then the maximal torus contained in P is $T=\left\{\operatorname{diag}\left(t_{1}, t_{2}, 1 / t_{1}, 1 / t_{2}, 1\right) \mid t_{\imath} \in \mathbf{C} \backslash\{0\}, i=1,2\right\}$. Here, the Plücker coordinates in $Q=G / P$ are just the standard homogeneous coordinates in $\operatorname{Proj}(V)$. Clearly, $L_{1}=\mathbf{C}[1,1,-1,1,0]$ and $L_{2}=\mathbf{C}[1,1,1,1,1]$ are q isotropic. Also, the T-orbits of L_{1} and L_{2} are "generic" in the sense of $[\mathbf{F}-\mathbf{H}]$, but only $T L_{2}$ is generic in the sense of the Definition 1.1. Also, $\Pi\left(L_{1}\right) \neq \Pi\left(L_{2}\right)=\Pi$, where Π denotes the set of weights of V. This directly contradicts Lemma 13 in $[\mathbf{F}-\mathbf{H}]$. Let $X_{i}=\overline{T L_{i}}, \quad i=1,2$, where the closure is taken in Q (or in $\operatorname{Proj}(V)$, since Q is closed in $\operatorname{Proj}(V)$). It is easy to see that X_{1} is isomorphic to $\mathbf{C} P^{1} \times \mathbf{C} P^{1}$. On the other hand X_{2} is the singular closed subvariety of $\operatorname{Proj}(V)$ given by homogeneous equations $x_{1} x_{3}=x_{5}^{2}$, $x_{2} x_{4}=x_{5}^{2}$ (the singular points of X_{2} are $[1: 1: 0: 0: 0],[1: 0: 0: 1: 0]$, $[0: 1: 1: 0: 0]$, and $[0: 0: 1: 1: 0])$. Therefore, the example shows that two T-orbits "generic" in the sense of $[\mathbf{F}-\mathbf{H}]$ may not have isomorphic closures in G / P.

2. Weights of Weyl G-modules.

We will need the following notation. For any additive set A of real numbers and any subset Y of E, let $A Y$ denote the set of all linear combinations of elements in Y with coefficients in A. By definition, a semigroup S contained in a lattice L in E is saturated in L if and only if

$$
L \cap \mathbf{Q}_{+} S=S
$$

(see [K, Chapter 1, Section 1]). Equivalently, S is saturated in L if and only if for any positive integer $m, m \mu \in S$ and $\mu \in L$ imply $\mu \in S$.

Proposition 2.1. S^{P} is saturated in R.
Proof. Let Φ_{+}^{P} denote the set of positive roots which are not linear combinations of roots in Δ_{P}. Then $S^{P}=\mathbf{Z}_{+} \Phi_{+}^{P}$. Suppose that S^{P} is not saturated in R. Let $\mu \in R$ be an element of minimal height among the elements of $\mathbf{Q}_{+} \Phi_{+}^{P}$ which are not elements of S^{P}. Then $\mu=\mu_{1}+\mu_{2}$, with

$$
\mu_{1}=\sum_{\beta \in M} m_{\beta} \beta
$$

where $M \subseteq \Phi_{+}^{P}, m_{\beta}$ are positive integers, and

$$
\mu_{2}=\sum_{\alpha \in N} n_{\alpha} \alpha
$$

where $N \subseteq \Delta_{P}$, and n_{α} are positive integers. From the above decompositions of μ we choose one with μ_{2} of minimal height. Since the sum of any two roots with negative scalar product is again a root, minimality of μ_{2} implies that

$$
(\alpha, \beta) \geq 0
$$

for all $\alpha \in N, \beta \in M$. Take any simple root α in N, such that $\left(\mu_{2}, \alpha\right)>0$. Consider $\nu=s_{\alpha}(\mu) \in R$. Since elements of Φ_{+}^{P} are permuted by s_{α}, ν belongs to $\mathrm{Q}_{+} \Phi_{+}^{P}$ but not to S^{P}. This is a contradiction, since $\operatorname{ht}(\nu)<\operatorname{ht}(\mu)$ and μ was assumed to be of minimal height among the root lattice elements in $\mathrm{Q}_{+} \Phi_{+}^{P}$, not in S^{P}.

Let $V(\lambda), \lambda, \Pi_{\lambda}$ be as in the introduction. The following proposition lists some basic properties of Π_{λ}.

Proposition 2.2.

(i) $\lambda-\Pi_{\lambda}$ coincides with the set of root lattice points in the convex hull of $\{\lambda-w \lambda \mid w \in W\}$.
(ii) S^{P} is generated by $\lambda-\Pi_{\lambda}$. If $P=B$ and λ is the sum of fundamental weights then S^{P} is generated by $\{\lambda-w \lambda, w \in W\}$.

Remark. Part (i) is well known, but were not able to locate an appropriate reference.

Proof. We first observe that the weights of the Weyl module $V(\lambda)$ (λ integral dominant) are independent of the characteristic of k. This follows from thefact that character formulas for Weyl modules are the same in each characteristic. Therefore we can assume, that $\operatorname{char}(k)=0$.

Part (i). Let C denote the convex hull of $\{w \lambda \mid w \in W\}$ and we let $\Pi=$ $(\lambda+R) \cap C$. We have to prove that $\Pi=\Pi_{\lambda}$. It is a known fact that $\Pi_{\lambda} \subset \lambda+R$.

Therefore it is enough to show that Π_{λ} is contained in C. Suppose that this is not the case, and let μ be a weight in Π_{λ}, not in C. Assume also, that μ is a maximal such weight in the usual order in E relative to Φ_{+}. Since both Π_{λ} and C are W-invariant, we must have $s_{\alpha}(\mu) \leq \mu$ for all positive roots α. Hence μ is dominant. Since μ is not the highest weight λ, there must be a positive root α and a positive integer m such that $\mu_{1}=\mu+m \alpha \in \Pi_{\lambda}$. Then by maximality of μ, μ_{1} (hence also $s_{\alpha}\left(\mu_{1}\right)$) is in C. A straightforward computation shows that μ belongs to the line segment connecting μ_{1} and $s_{\alpha}\left(\mu_{1}\right)$. This is a contradiction, since we have assumed that μ is not in C.

We are left with showing that Π is contained in Π_{λ}. An easy argument by induction on the length function in W, shows that for any $w \in W, \lambda-w \lambda$ is a sum of roots in Φ_{+}^{P}. Therefore Π is contained in $\lambda-\mathbf{Z}_{+} \Phi_{+}$. It is proved in [H, Proposition, p. 114] that the elements of Π_{λ} are exactly the weights whose W-orbit is contained in $\lambda-\mathbf{Z}_{+} \Phi_{+}$. Hence $\Pi \subseteq \Pi_{\lambda}$, as required.

Part (ii) We have observed in the proof of Part (i) that $\lambda-C$ is contained in convex cone spanned by Φ_{+}^{P}. Therefore

$$
\lambda-\Pi_{\lambda}=R \cap(\lambda-C) \subseteq S^{P}
$$

since S^{P} is saturated in R. The opposite inclusion holds since $\Phi_{+}^{P} \subseteq \lambda-\Pi_{\lambda}$. This follows from the fact that weigths of irreducible G-representations (in characteristic 0) satisfy the following property: for any positive root α, and a positive integer n, if μ and $\mu-n \alpha$ are weights of the representation, so are $\mu-q \alpha$ for any $q, 0 \leq q \leq n$ (see e.g. [H, Sec. 21.3, Prop.]). One applies this property to λ and $s_{\alpha}(\lambda)$, where $\alpha \in \Phi_{+}^{P}$.

The second claim of Part(ii) follows since $\Delta \subseteq\{\lambda-w \lambda \mid w \in W\}$ if λ is the sum of fundamental weights.

3. Generic orbits of T in G / P.

Let $x \in G / P$ and let X denote the the closure of $T x$ in G / P. For any $w \in W$, let

$$
Y_{w}=\left\{y \cdot P \mid f_{w \lambda}(y) \neq 0\right\}=\left\{y \cdot P \mid w \lambda \in \Pi_{\lambda}(y \cdot P)\right\}
$$

and

$$
X_{w}=Y_{w} \cap X
$$

It is well known that each Y_{w} is an affine space which is open in G / P and whose coordinate ring is generated by functions $f_{\mu} / f_{w \lambda}, \mu \in \mathcal{A}_{\lambda}$. Moreover, the union of $Y_{w}, w \in W$ is G / P. Let $T_{x}=\{t \in T \mid t x=x\}$ and $T^{x}=T / T_{x}$. We have the following proposition

Proposition 3.1. Let $x \in G / P$.
(i) $T x$ is open in X and it is isomorphic to T^{x}. Therefore, X is an equivariant T^{x}-embedding in the sense of $[\mathbf{K}]$.
(ii) $\quad\left\{X_{w} \mid w \in W, w \lambda \in \Pi_{\lambda}(x)\right\}$ is a covering of X by T-invariant open affine subsets of X. The coordinate ring of $X_{w}, w \lambda \in \Pi_{\lambda}(x)$, is the subalgebra of $k\left[T^{x}\right]=k\left[\Gamma\left(T^{x}\right)\right]$ generated by $\Pi_{\lambda}(x)-w \lambda$.
(iii) Let $w \in W$ be such that $w \lambda \in \Pi(x)$. Then

$$
T_{x}=\{t \in T \mid \mu(t)=1 \text { for all } \mu \in w \lambda-\Pi(x)\}
$$

Proof. The fist part of (i) follows from the fact the map $t \rightarrow t x$ is a separable morphism from T onto an open subvariety $T x$ of X whose fibers are the cosets of T_{x} in T (the morphism is separable since it is the composition of the inclusion of T in G with the quotient map from G to $G / P)$.

Part (ii) follows, since for each $w \in W$ such that $w \lambda \in \Pi_{\lambda}(x), X_{w}$ can be viewed as a closed T-invariant subvariety of the affine space Y_{w}. Hence the coordinate ring of X_{w} is generated by the restrictions to X_{w} of functions $f_{\mu} / f_{w \lambda}, \mu \in \mathcal{A}_{\lambda}$.

Part(iii). Suppose that $w \in W$ satisfies $w \lambda \in \Pi(x)$. Then $x \in X_{w}$. Clearly, $t \in T_{x}$ if and only if t fixes all elements of X_{w} (or equivalently, t fixes all regular functions on X_{w}). Therefore the desired formula for T_{x} follows from the description of the coordinate ring of X_{w} given in (ii).

Before we state a corollary of Proposition 3.1, we need to introduce the following notation. Let R^{P} denote the subgroup of the root lattice generated by S^{P}. One can show that $R^{P}=R$ if Φ is an irreducible system. If Φ a union of irreducible root systems $\Phi_{j}, j \in J$, then R^{P} is the root lattice of the root system

$$
\cup\left\{\Phi_{j} \mid \Phi_{j} \cap S^{P} \neq \emptyset\right\}
$$

Let

$$
T_{P}=\bigcap_{\nu \in R^{P}} \operatorname{ker}(\nu)
$$

Note that if $R^{P}=R$, then T_{P} is coincides with the center of G.
Corollary. (Suggested by the referee.)
(i) The stabilizer of each generic torus orbit is T_{P}. Moreover, T_{P} it is the smallest subgroup of T among the T-stabilizers of elements of G / P.
(ii) (Partial converse of (i)). If $x \in G / P$ is such that $T x$ is contained in the nondegenerate stratum $Z, \overline{T x}$ is normal and $T_{x}=T_{P}$, then $T x$ is generic.

Proof. Part (i) follows from Proposition 3.1 (iii). Suppose that $T x$ satisfies the assumptions of (ii). Let S^{x} denote the semigroup generated by $\lambda-\Pi_{\lambda}(x)$. We have to show that $S^{x}=S^{P}$. Since $T_{x}=T_{P}$, one has

$$
\bigcap_{\nu \in R^{P}} \operatorname{ker}(\nu)=\bigcap_{S^{x}} \operatorname{ker}(\nu)
$$

by Proposition 3.1 (iii). Therefore R^{P} is generated by S^{x} as a subgroup of $\Gamma(T)$. Assumed normality of $\overline{T x}$ implies that S^{x} is saturated in R^{P}. On the other hand $\{\lambda-w \lambda \mid w \in W\} \subset S^{x}$ since $T x$ is assumed to be generic. Hence $S^{x}=S^{P}$ since both semigroups are saturated in R^{P} and $\mathrm{Q}_{+} S^{x}=\mathrm{Q}_{+} S^{P}$ by Proposition 2.2.

From now on we assume for simplicity that $R^{P}=R$ (equivalently, S^{P} contains at least one root from each irreducible component of Φ). Let $W^{P} \subseteq$ W be a fixed set of representatives of W / W_{P}. Let D denote the fundamental chamber $\{\nu \in E \mid(\mu, \alpha) \geq 0$ for all $\alpha \in \Delta\}$. We are now ready to state the main result of this paper.

Theorem 3.2. Let $x \in G / P$ be such that $T x \subset G / P$ is generic. Let $X=\overline{T x}$. Then:
(i) X is a normal variety (hence by [K, Theorem 14, page 52], also CohenMacaulay with rational singularities).
(ii) The fan corresponding to X consists of the cones

$$
C_{w}=-w \bigcup_{z \in W_{P}} z D, \quad w \in W^{P}
$$

together with their faces. In particular, the closures of any two generic orbits in G / P are isomorphic as T-equivariant embeddings.

Proof. Part (i). By [K, Theorem 6, p. 24] a general equivariant T-embedding is a normal variety if and only if it admits a covering by open affine T-stable subvarieties whose coordinate rings are generated by semigroups saturated in $\Gamma(T)$. Hence Part(ii) follows from Propositions 3.1 and 2.1.

Part(ii) follows, since the dual cone of S^{P} is $\bigcup_{z \in W_{P}} z D$, and by Proposition 3.1(ii) the coordinate ring of $X_{w}, w \in W$, is $k\left[-w S^{P}\right]$.

The following theorem shows that Definition 1.1 of a generic torus orbit does not depend on the choice of the Weyl module $V(\lambda)$.

Theorem 3.3. Let $x \in G / P$. The following statements are equivalent.
(i) There exist an integral dominant weight λ whose stabilizer in W is W_{P}, such that for any $w \in W$, the semigroup generated by $\lambda-w \Pi_{\lambda}(x)$ is S^{P}.
(ii) For each integral dominant weight λ whose stabilizer in W is W_{P}, and each $w \in W$, the semigroup generated by $\lambda-w \Pi_{\lambda}(x)$ is S^{P}.
(iii) There exists an integral dominant weight λ whose stabilizer in W is W_{P}, such that $\Pi_{\lambda}(x)=\Pi_{\lambda}$.

Proof. Clearly, (ii) implies (i). Also, by Proposition 2.2, (iii) implies (i). We have to prove that if (i) holds, so do (ii) and (iii). Let $X=\overline{T x}$ and let $X_{w}, w \in W$ be as in Theorem 3.1. Since the coordinate ring of X_{w} does not depend on the choice of a Plücker embedding, Theorem 3.1(ii) implies that (ii) follows from (i).

It remains to prove that (i) implies (iii). Let $x \in G / P$ and let λ be as in (i). For any integral dominant weight μ whose stabilizer in W is W_{P}, let \mathcal{L}^{μ} denote the corresponding line bundle on G / P. Let \mathcal{L}_{X}^{μ} denote the pullback of \mathcal{L}^{μ} to $X=\overline{T x}$. Since X contains an open, dense T-orbit, every weight of $H^{0}\left(X, \mathcal{L}_{X}^{\mu}\right)$ under the natural T-action has multiplicity one. Therefore the dimension of the image of the restriction map

$$
H^{0}\left(G / P, \mathcal{L}^{\mu}\right) \rightarrow H^{0}\left(X, \mathcal{L}_{X}^{\mu}\right)
$$

is $\sharp\left(\Pi_{\mu}(x)\right)$. We observe that line bundle \mathcal{L}_{X}^{μ} is ample. This is because the piecewise linear function on E corresponding to \mathcal{L}_{X}^{μ} (see $[\mathbf{F}-\mathbf{H}$, Theorem 2]) is strictly upper convex. Then the description of the fan of X given in Theorem 3.2(iii), [Oda1, Theorem 2.13 and Corollary 2.9], and Proposition 2.2 (i) imply that

$$
\operatorname{dim} H^{0}\left(X, \mathcal{L}_{X}^{\mu}\right)=\sharp\left(\Pi_{\mu}\right) .
$$

Since \mathcal{L}^{λ} is ample there exists a positive integer q such that the restriction map

$$
H^{0}\left(G / P, \mathcal{L}^{q \lambda}\right) \rightarrow H^{0}\left(X, \mathcal{L}_{X}^{q \lambda}\right)
$$

is surjective. Hence $\Pi_{q \lambda}(x)=\Pi_{q \lambda}$ as required.
It is easy to see that Theorem 3.3 and Proposition 2.2 imply:
Corollary. Let $x \in G / B$. Then $T x$ is generic if and only if $x \in \bigcap_{w \in W} w B^{+} . B$ (i.e. it is "generic" in the sense of $[\mathbf{F}-\mathbf{H}]$). Moreover, if $x T$ is generic then $X=\overline{T x}$ is smooth.

Remark. Smoothness of the closure of a generic torus orbit in G / B is well known (we do not know however, to whom this fact should be attributed).

Final remarks and questions.

1. All results about closures of T-orbit in G / P stated in $[\mathbf{F}-\mathbf{H}]$ hold for generic orbits (in the sense of Definition 1.1) in any characteristic. This is
because the arguments used in $[\mathbf{F} \mathbf{- H}]$ are valid for normal equivariant T embeddings, and we have shown that the closure of a generic orbit is such an embedding. We do not know however, if the results remain valid for all T-orbits in the nondegenerate stratum if $P \neq B$.
2. Let X denote the closure of a T-orbit of an element $x \in G / P$. It is not difficult to prove that if λ is an integral dominant weight whose stabilizer in W is W_{P}, then the line bundle $\mathcal{L}_{X}^{\lambda}$ is in fact very ample (one can use the criterion for very ampleness given in [F, Lemma, p. 69] or [Oda1, Corollary 2.9]). Then it follows from [\mathbf{F}, Exercise, p. 72] that the corresponding embedding of X in $\operatorname{Proj}\left(H^{0}\left(X, \mathcal{L}_{X}^{\lambda}\right)\right)$ is projectively normal and Cohen-Macaulay (that is, the homogeneous coordinate ring of X in $\operatorname{Proj}\left(H^{0}\left(X, \mathcal{L}_{X}^{\lambda}\right)\right)$ is normal and Cohen-Maculay). Therefore, the embedding $X \subset \operatorname{Proj}\left(H^{0}\left(G, \mathcal{L}^{\mu}\right)\right)$ is also projectively normal and Cohen-Macaulay, if the restriction map from $H^{0}\left(G / P, \mathcal{L}^{\lambda}\right)$ to $H^{0}\left(X, \mathcal{L}_{X}^{\lambda}\right)$ is surjective (equivalently $\left.\Pi_{\lambda}(x)=\Pi_{\lambda}\right)$. We do not know if this is so, if $T x$ is generic and $\Pi_{\lambda}(x) \neq \Pi_{\lambda}$.
3. Since the closure of any T-orbit in an equivariant normal T-embedding is normal (see [K, Proposition 2, p. 17]), X is normal if it is contained in the closure of a generic T-orbit. In this situation, the fan corresponding to X can be described explicitly in terms of the fan defined in Theorem 3.2 (iii) (see e.g. [Oda2, Section 1.1]). Since there could be non-generic orbits of maximal dimension (see the example in the introduction) not every T-orbit is contained in the closure of a generic one. The structure of the orbit is not clear. Does it have to be normal? If yes, what is its fan? Suppose that the closures of all T-orbits in G / P are indeed normal. Then the Example and the Corollary of Proposition 3.1, suggest the conjecture that the isomorphism type of $\overline{T x}$ (as a torus equivariant embedding) is determined by two pieces of data: the stabilizer of x in T and the set $\left\{w \in W / W_{P} \mid x \in B^{+} w . P\right\}$.

References

[B] N. Bourbaki, Groupes et algèbres de Lie, Ch. 4-6, Hermann, Paris, 1968.
[F] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, New Jersey, 1993.
[F-H] H. Flaschka and L. Haine, Torus orbits in G / P, Pacific. J. Math., 149 (1991), 251-292.
[G-S] I.M. Gelfand V.V. Serganova, Combinatorial geometries and torus strata on homogeneous compact manifolds, Russian Math. Surveys, 42 (1987), 133-168.
[H] J.H. Humphreys, Introduction to Lie Algebras and Representation Theory SpringerVerlag, New York, 1972.
[J] J.C. Jantzen, Representations of Algebraic Groups, Academic Press, Boston, 1987.
[K] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Math., 339 Springer-Verlag, Berlin-Heidelberg-New York, 1973.
[Oda1] T. Oda, Convex bodies and algebraic geometry - an introduction to the theory of toric varieties, Springer-Verlag, Berlin-Heidelberg-New York, 1988.
[Oda2] , Geometry of toric varieties, Proc. of the Hyderabad conference on algebraic groups, Manoj Prakashan, Madras -India, 1991.

Received September 25, 1993 and revised February 16, 1994.
Columbia University
New York, NY 10027
E-mail address: rdab@math.columbia.edu

