$\left(A_{2}\right)$-CONDITIONS AND CARLESON INEQUALITIES IN BERGMAN SPACES

Takahiko Nakazi and Masahiro Yamada

Let ν and μ be finite positive measures on the open unit disk D. We say that ν and μ satisfy the (ν, μ)-Carleson inequality, if there is a constant $C>0$ such that

$$
\int_{D}|f|^{2} d \nu \leq C \int_{D}|f|^{2} d \mu
$$

for all analytic polynomials f. In this paper, we study the necessary and sufficient condition for the (ν, μ)-Carleson inequality. We establish it when ν or μ is an absolutely continuous measure with respect to the Lebesgue area mesure which satisfy the (A_{2})-condition. Moreover, many concrete examples of such measures are given.

§1. Introduction.

Let D denote the open unit disk in the complex plane. For $1 \leq p \leq \infty$, let L^{p} denote the Lebesgue space on D with respect to the normalized Lebesgue area measure m, and $\|\cdot\|_{p}$ represents the usual L^{p}-norm. For $1 \leq p<\infty$, let L_{a}^{p} be the collection of analytic functions f on D such that $\|f\|_{p}$ is finite, which are so called the Bergman spaces. For any z in D, let ϕ_{z} be the Möbius function on D, that is

$$
\phi_{z}(w)=\frac{z-w}{1-\bar{z} w} \quad(w \in D)
$$

and put,

$$
\beta(z, w)=1 / 2 \log \left(1+\left|\phi_{z}(w)\right|\right)\left(1-\left|\phi_{z}(w)\right|\right)^{-1} \quad(z, w \in D) .
$$

For $0<r<\infty$ and z in D, set

$$
D_{r}(z)=\{w \in D ; \beta(z, w)<r\}
$$

be the Bergman disk with "center" z and "radius" r, and we define an average of a finite positive measure μ on $D_{r}(a)$ by

$$
\hat{\mu}_{r}(a)=\frac{1}{m\left(D_{r}(a)\right)} \int_{D_{r}(a)} d \mu \quad(a \in D)
$$

and if there exists a non-negative function u in L^{1} such that $d \mu=u d m$, then we may write it \hat{u}_{r}, instead of $\hat{\mu}_{r}$.

Let ν and μ be finite positive measures on D, and let P be the set of all analytic polynomials. We say that ν and μ satisfy the (ν, μ)-Carleson inequality, if there is a constant $C>0$ such that

$$
\int_{D}|f|^{2} d \nu \leq C \int_{D}|f|^{2} d \mu
$$

for all f in P. Our purpose of this paper is to study conditions on ν and μ so that the (ν, μ)-Carleson inequality is satisfied. If $\nu \leq C \mu$ on D, then the (ν, μ)-Carleson inequality is true. However it is clear that this sufficient condition for the (ν, μ)-Carleson inequality is too strong. A reasonable and natural condition is the following: there exist $r>0$ and $\gamma>0$ such that

$$
\begin{equation*}
\hat{\nu}_{r}(a) \leq \gamma \hat{\mu}_{r}(a) \quad(a \in D) \tag{*}
\end{equation*}
$$

The average $\hat{\mu}_{r}(a)$ are sometimes computable. If $\mu=m$, then $\hat{\mu}_{r}(a)=1$ on D. If $d \mu=\left(1-|z|^{2}\right)^{\alpha} d m$ for $\alpha>-1$, then $\hat{\mu}_{r}(a)$ is equivalent to $\left(1-|a|^{2}\right)^{\alpha}$ on D.

When $d \mu=\left(1-|z|^{2}\right)^{\alpha} d m$ for $\alpha>-1$, Oleinik-Pavlov [7], Hastings [2], or Sitegenga [8] showed that ν and μ satisfy the Carleson inequality if and only if they satisfy $\left(^{*}\right)$. In $\S 3$ of this paper, when $d \mu=u d m$ and u satisfies the $\left(A_{2}\right)_{\partial}$-condition (the definition is in $\S 3$), we obtain that the (ν, μ)-Carleson inequality is satisfied if and only if they satisfy (*). We show that if both u and u^{-1} are in $B M O_{\partial}$ (see [9, p. 127]), then u satisfies the $\left(A_{2}\right)_{\partial}$-condition. We give some concrete examples which satisfy the $\left(A_{2}\right)_{\partial}$-condition.

When $\nu=m$ and $d \mu=\chi_{G} d m$, where χ_{G} is a characteristic function of a measurable subset G of D, Luecking [4] showed the equivalence between the (ν, μ)-Carleson inequality and the condition $\left({ }^{*}\right)$. If we do not put any hypotheses on μ, the problem is very difficult. The equivalence between the (ν, μ)-Carleson inequality and the condition (*) is not known even if $\nu=m$. Luecking [5] showed the following:
(1) If there exists $\gamma>0$ such that $\hat{m}_{r}(a) \leq \gamma \hat{\mu}_{r}(a)$ for all $r>0$ and a in D, then the (m, μ)-Carleson inequality is satisfied.
(2) Suppose the (μ, m)-Carleson inequality is valid (equivalently $\hat{\mu}_{r}$ is bounded on D). Then the (m, μ)-Carleson inequality implies the condition (*).

In $\S 2$ of this paper, we give a sufficient condition (close to that of (1)) for the (ν, μ)-Carleson inequality when ν is not necessarily m. Moreover, using the idea of Luecking's proof of (2), a generalization of (2) is given. In $\S 4$, when $d \nu=v d m$ and v satisfies the $\left(A_{2}\right)$-condition (the definition is in
§3), we establish a more natural extension of (2) under some condition of a quantity $\varepsilon_{r}(\nu)$ (the definition is in §2), that is $\varepsilon_{r}(\nu) \rightarrow 0$ as $r \rightarrow \infty$. The $\left(A_{2}\right)$-condition is weaker than the $\left(A_{2}\right)_{\partial}$-condition. We give some concrete examples which satisfy the $\left(A_{2}\right)$-condition or the above condition of $\varepsilon_{r}(\nu)$.

$\S 2$. (ν, μ)-Carleson inequality.

Let G be a measurable subset of D and u be a non-negative function in L^{1}, and put

$$
\left(u_{G}^{-1}\right)_{r}^{\wedge}(a)=\frac{1}{m\left(D_{r}(a)\right)} \int_{D_{r}(a)} u^{-1} \chi_{G} d m
$$

Particular, when $G=D$, we will omit the letter D in the above notation. The following Proposition 1 gives a general sufficient condition on ν and μ which satisfy the (ν, μ)-Carleson inequality. In order to prove it we use ideas in [5] and [9, p. 109]. Since $\left(u^{-1}\right)_{r}^{\wedge}(a)^{-1} \leq \hat{u}_{r}(a)$ for all a in D, Proposition 1 is also related with (1) of $\S 1$ (cf. [$\mathbf{5}$, Theorem 4.2]).

Proposition 1. Suppose that $d \mu=u d$ m. Put $E_{r}=\{z \in D$; there is a $w \in \operatorname{supp} \nu$ such that $\beta(z, w)<r / 2\}$. If there exist $r>0$ and $\gamma>0$ such that $u>0$ a.e. on $E=E_{r}$, and $\hat{\nu}(a) \times\left(u_{E}^{-1}\right)_{r}^{\wedge}(a) \leq \gamma$ for all a in D, then there is a constant $C>0$ such that

$$
\int_{D}|f|^{2} d \nu \leq C \int_{E}|f|^{2} d \mu
$$

for all f in P.
Proof. Suppose that $\hat{\nu}_{2 r}(a) \times\left(u_{E}^{-1}\right)_{2 r}^{\wedge}(a) \leq \gamma$ for all a in D, and put $E=\{z \in$ D; there is a $w \in \operatorname{supp} \nu$ such that $\beta(z, w)<r\}$. By an elementary theory for Bergman disks, there is a positive integer $N=N_{r}$ such that there exists $\left\{\lambda_{n}\right\} \subset D$ satisfying that $D=\cup D_{r}\left(\lambda_{n}\right)$ and any z in D belongs to at most N of the sets $D_{2 r}\left(\lambda_{n}\right)$ (cf. [$\mathbf{9}$, p. 62] therefore

$$
\begin{aligned}
\int_{\operatorname{supp} \nu}|f|^{2} d \nu & \leq \sum \int_{D_{r}\left(\lambda_{n}\right) \cap \operatorname{supp} \nu}|f|^{2} d \nu \\
& \leq \sum \nu\left(D_{r}\left(\lambda_{n}\right)\right) \times \sup \left\{|f(z)|^{2} ; z \in D_{r}\left(\lambda_{n}\right) \cap \operatorname{supp} \nu\right\}
\end{aligned}
$$

By Proposition 4.3 .8 in [$\mathbf{9}$, p. 62], there is a constant $C=C_{r}>0$ such that

$$
|f(z)| \leq \frac{C}{m\left(D_{r}(z)\right)} \int_{D_{r}(z)}|f(w)| d m(w)
$$

for all f analytic, z in D. If z in $D_{r}\left(\lambda_{n}\right) \cap \operatorname{supp} \nu$, then $D_{r}(z)$ is contained in $D_{2 r}\left(\lambda_{n}\right) \cap E$, and there exists a constant $K=K_{r}>0$ such that $m\left(D_{2 r}\left(\lambda_{n}\right)\right) \leq$
$K m\left(D_{r}(z)\right)$ for all $n \geq 1$ (cf. [9, p. 61]). Hence the Cauchy-Schwarz's inequality implies that

$$
\begin{aligned}
\int_{D}|f|^{2} d \nu \leq & \sum \nu\left(D_{r}\left(\lambda_{n}\right)\right) \times\left(\frac{K C}{\left(m\left(D_{2 r}\left(\lambda_{n}\right)\right)\right.} \int_{D_{2 r}\left(\lambda_{n}\right) \cap E}|f| d m\right)^{2} \\
\leq & \sum \nu\left(D_{r}\left(\lambda_{n}\right)\right) \times K^{2} C^{2} \\
& \times\left(\frac{1}{m\left(D_{2 r}\left(\lambda_{n}\right)\right)} \int_{D_{2 r}\left(\lambda_{n}\right)}|f|^{2} u \chi_{E} d m\right) \\
& \times\left(\frac{1}{m\left(D_{2 r}\left(\lambda_{n}\right)\right)} \int_{D_{2 r}\left(\lambda_{n}\right)} u^{-1} \chi_{E} d m\right) \\
\leq & K^{2} C^{2} \sum \hat{\nu}_{2 r}\left(\lambda_{n}\right) \times\left(u_{E}^{-1}\right)_{2 r}\left(\lambda_{n}\right) \\
& \times\left(\int_{D_{2 r}\left(\lambda_{n}\right) \cap E}|f|^{2} u d m\right) .
\end{aligned}
$$

By the hypothesis and a choice of disks, it follows that

$$
\int_{D}|f|^{2} d \nu \leq K^{2} C^{2} \gamma N \int_{E}|f|^{2} d \mu
$$

This completes the proof.
Let μ be a finite nonzero positive measure on D. For any a in D, put

$$
k_{a}(z)=\left(1-|a|^{2}\right) /(1-\bar{a} z)^{2} \quad(z \in D),
$$

and a function $\tilde{\mu}$ on D is defined by

$$
\tilde{\mu}(a)=\int_{D}\left|k_{a}\right|^{2} d \mu .
$$

Moreover, for any fixed $r<\infty$, put

$$
\varepsilon_{r}(\mu)=\sup _{a \in D}\left(\int_{D \backslash D_{r}(a)}\left|k_{a}\right|^{2} d \mu\right) \times\left(\int_{D}\left|k_{a}\right|^{2} d \mu\right)^{-1} .
$$

If there exists a non-negative function u in L^{1} such that $d \mu=u d m$, then making a change of variable, it is easy to see that

$$
\varepsilon_{r}(\mu)=\sup _{a \in D}\left(\int_{D \backslash D_{r}(0)} u \circ \phi_{a} d m\right) \times\left(\int_{D} u \circ \phi_{a} d m\right)^{-1} .
$$

In general $0<\varepsilon_{r}(\mu) \leq 1$. In this section and $\S 4$, this quantity ε_{r} is important. The following Proposition 2 gives two general necessary conditions on ν
and μ which satisfy the (ν, μ)-Carleson inequality. In order to prove (2) of Proposition 2 we use ideas in [5, Theorem 4.3]. Since $\varepsilon_{r}(m)<1$ and $\varepsilon_{r}(m) \rightarrow 0 \quad(r \rightarrow \infty),(2)$ of Proposition 2 is related with (2) of $\S 1$.

Lemma 1. Let μ be a finite positive measure on D and $0<r<\infty$, then the following $(1) \sim(3)$ are equivalent.
(1) $\varepsilon_{r}(\mu)<1$.
(2) There is a $\delta=\delta_{r}<\infty$ such that

$$
\int_{D \backslash D_{r}(a)}\left|k_{a}\right|^{2} d \mu \leq \delta \int_{D_{r}(a)}\left|k_{a}\right|^{2} d \mu
$$

for all a in D.
(3) There is a $\rho=\rho_{r}<\infty$ such that

$$
\tilde{\mu}(a) \leq \rho \hat{\mu}_{r}(a)
$$

for all a in D
Proof. The implication (1) $\Rightarrow(2)$ is trivial. $(2) \Rightarrow(3)$ and (3) \Rightarrow (1) follow from Lemma 4.3.3 in [9, p. 60]. In fact, by Lemma 4.3.3, there exist $L=$ $L_{r}>0$ and $M=M_{r}>0$ such that

$$
L \leq m\left(D_{r}(a)\right) \times \inf \left\{\left|k_{a}(z)\right|^{2} ; z \in D_{r}(a)\right\}
$$

and

$$
m\left(D_{r},(a)\right) \times \sup \left\{\left|k_{a}(z)\right|^{2} ; z \in D_{r}(a)\right\} \leq M
$$

for all a in D. Thus remainder implications are obtained.
Proposition 2. Suppose that ν and μ satisfy the (ν, μ)-Carleson inequality, then the following are true.
(1) If there exists $r<\infty$ such that $\varepsilon_{r}(\mu)<1$, then there exists $\gamma>0$ such that $\hat{\nu}_{r}(a) \leq \gamma \hat{\mu}_{r}(a)$ for all a in D.
(2) If $d \nu=v d m, \quad v>0$ a.e. on $D, \varepsilon_{t}(\nu) \rightarrow 0 \quad(t \rightarrow \infty)$, and there are $l>0$ and $\gamma^{\prime}>0$ such that $\hat{\mu}_{l}(a) \times\left(v^{-1}\right)_{l}^{\wedge}(a) \leq \gamma^{\prime}$ for all a in D, then there are $r>0$ and $\gamma=\gamma_{r}>0$ such that $\hat{\nu}_{r}(a)<\gamma \hat{\mu}_{r}(a)$ for all a in D.

Proof. Since $k_{a}(z)$ is uniformly approximated by polynomials, the inequality is valid for $f=k_{a}$, that is

$$
\int_{D}\left|k_{a}\right|^{2} d \nu \leq C \int_{D}\left|k_{a}\right|^{2} d \mu
$$

Firstly, we show that (1) is true. The above inequality and Lemma 1 imply that

$$
\tilde{\nu}(a) \leq C \tilde{\mu}(a) \leq C \rho \hat{\mu}_{r}(a)
$$

for all a in D. Moreover, by Lemma 4.3 .3 in [$\mathbf{9}, \mathrm{p} .60]$, there exists a constant $L>0$ such that

$$
\hat{\nu}_{r}(a) \leq L^{-1} \tilde{\nu}(a)
$$

for all a in D. Hence we have that

$$
\hat{\nu}_{r}(a) \leq C \rho L^{-1} \hat{\mu}_{r}(a)
$$

Next, we prove that (2) is true. For any a in D and $r \geq l$, put $d \mu_{a, r}=\left(1-\chi_{D_{r}(a)}\right) d \mu$. By the latter half of the hypothesis in (2), we have that

$$
\left(\mu_{a, r}\right)_{l}^{\wedge}(\lambda) \times\left(v^{-1}\right)_{l}^{\wedge}(\lambda) \leq \gamma^{\prime}
$$

for all a, λ in D, and $r \geq l$. Set $E_{a, r, l}=\left\{z \in D\right.$; there is a w in $\operatorname{supp} \mu_{a, r}$, such that $\beta(z, w)<l / 2\}$. By Proposition 1 , there exists a constant $C^{\prime}>0$ such that

$$
\int_{D \backslash D_{r}(a)}|f|^{2} d \mu \leq C^{\prime} \int_{E_{a, r, l}}|f|^{2} d \nu
$$

for all a in $D, r \geq l$ and f in P. Here we claim that $E_{a, r, l}$ is contained in $D \backslash D_{r / 2}(a)$. In fact, since $D \backslash D_{r}(a)$ contains supp $\mu_{a, r}$ and $r \geq l$, if z belongs to $E_{a, r, l}$ then there exists w in D such that $\beta(w, a) \geq r$ and $\beta(w, z)<r / 2$. Therefore,

$$
r \leq \beta(w, a) \leq \beta(w, z)+\beta(z, a)<r / 2+\beta(z, a)
$$

thus we have that z is contained in $D \backslash D_{r / 2}(a)$. Particularly put $f=k_{a}$ in the above inequality, then

$$
\int_{D \backslash D_{r}(a)}\left|k_{a}\right|^{2} d \mu \leq C^{\prime} \int_{D \backslash D_{r / 2}(a)}\left|k_{a}\right|^{2} d \nu
$$

for all a in D and $r \geq l$. It follows that

$$
\begin{aligned}
\int_{D_{r}(a)}\left|k_{a}\right|^{2} d \mu & =\int_{D}\left|k_{a}\right|^{2} d \mu-\int_{D \backslash D_{r}(a)}\left|k_{a}\right|^{2} d \mu \\
& \geq C^{-1} \int_{D}\left|k_{a}\right|^{2} d \nu-C^{\prime} \int_{D \backslash D_{r / 2}(a)}\left|k_{a}\right|^{2} d \nu
\end{aligned}
$$

By the definition of $\varepsilon_{t}(\nu)$, the above inequality implies that

$$
\int_{D_{r}(a)}\left|k_{a}\right|^{2} d \mu \geq\left(C^{1}-C^{\prime} \varepsilon_{r / 2}(\nu)\right) \int_{D}\left|k_{a}\right|^{2} d \nu
$$

for all a in D and $r \geq l$. Here let r be sufficiently large, then by the hypothesis on $\varepsilon_{r}(\nu), C^{-1}-C^{\prime} \varepsilon_{r / 2}(\nu)>0$, and by Lemma 4.3.3 in [9, p. 60], we conclude that

$$
\hat{\mu}_{r}(a) \geq\left[M^{-1}\left(C^{-1} C^{\prime} \varepsilon_{r / 2}(\nu)\right) L\right] \hat{\nu}_{r}(a)
$$

for all a in D.

§3. $\left(A_{2}\right)$-condition.

For a complex measure μ on D, recall that a function $\tilde{\mu}$ on D is defined by

$$
\tilde{\mu}(a)=\int_{D}|k|^{2} d \mu
$$

Particularly, if there exists a complex valued L^{1}-function u such that $d \mu=$ $u d m$, then we denote the function by \tilde{u} instead of $\tilde{\mu}$, and say that \tilde{u} is the Berezin transform of the function u.

Let v and u be non-negative functions in L^{1}, put $d \nu=v d m$ and $d \mu=$ $u d m$. Suppose that there is a constant $\gamma>0$ such that

$$
\tilde{v}(a) \times\left(u^{-1}\right)^{\sim}(a) \leq \gamma
$$

for all a in D, then Lemma 4.3 .3 in [$\mathbf{9}, \mathrm{p} .60]$ implies that there exist $r>0$ and $\gamma^{\prime}>0$ such that

$$
\hat{v}_{r}(a) \times\left(u^{-1}\right)_{r}^{\wedge}(a) \leq \gamma^{\prime}
$$

for all a in D, and hence by Proposition 1 , we obtain that the (ν, μ)-Carleson inequality is satisfied. In the above two inequalities, if we put $u=v$, then such a function u is interesting for us.

A non-negative function u in L^{1} is said to satisfy an $\left(A_{2}\right)_{\partial}$-condition, if there exists a constant $A>0$ such that

$$
\tilde{u}(a) \times\left(u^{-1}\right)^{\sim}(a) \leq A
$$

for all a in D. If there exist $r>0$ and $A_{r}>0$ such that

$$
\hat{u}_{r}(a) \times\left(u^{-1}\right)_{r}^{\wedge}(a) \leq A_{r}
$$

for all a in D, then we say that u satisfies an $\left(A_{2}\right)$-condition. In [6], the $\left(A_{2}\right)$-condition is called Condition C_{2}. It is known that u satisfies the $\left(A_{2}\right)$ condition for some $0<r<\infty$ if and only if u satisfies the $\left(A_{2}\right)$-condition for all $0<r<\infty[\mathbf{6}]$. Hence it shows that the definition of the $\left(A_{2}\right)$ condition is independent of r. In general, Lemma 4.3 .3 in [9, p. 60] and the familiar inequality between the harmonic and arithmetic means imply that for any $0<r<\infty$ there exists a constant $M=M_{r}>0$ such that $M^{-1}\left(u^{-1}\right)^{\sim-1} \leq\left(u^{-1}\right)_{r}^{\wedge} \leq \hat{u}_{r} \leq M \tilde{u}$. Therefore, if u satisfies the $\left(A_{2}\right)-$ condition, then $\left(u^{-1}\right)^{\sim-1},\left(u^{-1}\right)_{r}^{\wedge-1}, \hat{u}_{r}$, and \tilde{u} are equivalent. Similarly, if u satisfies the $\left(A_{2}\right)$-condition, then $\left(u^{-1}\right)_{r}^{\wedge-1}$, and \hat{u}_{r}, are equivalent. When u is in $L^{1}(\partial D)\left(L^{1}\right.$ is a usual Lebesgue space on the unit circle and $k_{a}(z)$ is a normalized reproducing kernel of a Hardy space), the $\left(A_{2}\right)_{\partial}$-condition has been studied in [3, (c) of Theorem 2].

The following Theorem 3 gives a necessary and sufficient condition in order to satisfy the (ν, μ)-Carleson inequality when $d \mu=u d m$ and u satisfies the $\left(A_{2}\right)_{\partial}$-condition.

Theorem 3. Suppose that u satisfies the $\left(A_{2}\right)_{\partial}$-condition, then the following are equivalent.
(1) There is a constant $C>0$ such that

$$
\int_{D}|f|^{2} d \nu \leq C \int_{D}|f|^{2} u d m
$$

for all f in P.
(2) There exist $r>0$ and $\gamma>0$ such that

$$
\hat{\nu}_{r}(a) \leq \gamma \hat{u}_{r}(a)
$$

for all a in D.
(3) For any $r>0$, there exists $\gamma=\gamma_{r}>0$ such that

$$
\hat{\nu}_{r}(a) \leq \gamma \hat{u}_{r}(a)
$$

for all a in D.
Proof. Suppose that (1) holds. Since u satisfies the $\left(A_{2}\right)_{\partial}$-condition, by (1) of Proposition $8, u$ satisfies a relation in (3) of Lemma 1 for all $r>0$. Therefore, (3) follows from (1) of Proposition 2. The implication (3) $\Rightarrow(2)$ is obvious. We will show that $(2) \Rightarrow(1)$. Since u satisfies the $\left(A_{2}\right)_{\partial}$-condition, u^{-1} is integrable, hence $u>0$ a.e. on D. Moreover, by (5) of Proposition 4, u satisfies the $\left(A_{2}\right)$-condition for all $r>0$ and therefore (2) implies that

$$
\hat{\nu}_{r}(a) \times\left(u^{-1}\right)_{r}^{\wedge}(a) \leq A_{r} \gamma
$$

for all a in D. In the statement of Proposition 1 , put $E=D$, then the above fact shows that the inequality in (1) is satisfied. This completes the proof.

For any u in L^{2}, a in D, we put

$$
M O(u)(a)=\left\{|u|^{2 \sim}(a)-|\tilde{u}(a)|^{2}\right\}^{1 / 2}
$$

and let $B M O_{\partial}$ be the space of functions u such that $M O(u)(a)$ is bounded on D (cf. [$\mathbf{9}, \mathrm{p} .127]$). We give several simple sufficient conditions.

Proposition 4. Let u be a non-negative function in L^{1}, then the following are true.
(1) If both \tilde{u} and $\left(u^{-1}\right)^{\sim}$ are in L^{∞}, then u satisfies the $\left(A_{2}\right)_{\partial}$-condition.
(2) If both u and u^{-1} are in $B M O_{\partial}$, then u satisfies the $\left(A_{2}\right)_{\partial}$-condition.
(3) Let $1<p, q<\infty$ and $1 / p+1 / q=1$. If u_{1}^{p} and u_{2}^{q} satisfy the $\left(A_{2}\right)_{\partial^{-}}$ condition, then $u=u_{1} u_{2}$ satisfies the $\left(A_{2}\right)_{\partial}$-condition.
(4) Suppose that f is a complex valued function in L^{1} such that $f \neq 0$ on D, f^{-1} is in $L^{1}, \tilde{f} \times\left(f^{-1}\right)^{\sim}$ is in L^{∞}, and $|\arg f| \leq \pi / 2-\varepsilon$ for some $\varepsilon>0$. If $u=|f|$, then u satisfies the $\left(A_{2}\right)_{\partial}$-condition.
(5) If u satisfies the $\left(A_{2}\right)_{\partial}$-condition, then u satisfies the $\left(A_{2}\right)$-condition.

Proof. (1) is trivial. By Proposition 6.1.7 in [9, p. 108], we have that

$$
\tilde{u}(a) \times\left(u^{-1}\right)^{\sim}(a) \leq M O(u)(a) \times M O\left(u^{-1}\right)(a)+1
$$

This implies that (2) is true. The Hölder's inequality implies that (3) is true. (5) follows from Lemma 4.3 .3 in [9, p. 60].

We show that (4) is true. Suppose that $u=|f|$ and there exists $\varepsilon>0$ such that $|\arg f| \leq \pi / 2-\varepsilon$ on D. Since $|\arg f| \leq \pi / 2-\varepsilon$ on D, there exists $\delta>0$ such that $\cos (\arg f) \geq \delta$ on D. Therefore, we have that

$$
\operatorname{Re} f=|f| \times \cos (\arg f) \geq|f| \cdot \delta=\delta u
$$

For any a in D, it follows that

$$
\delta \tilde{u}(a) \leq \int \operatorname{Re} f \cdot\left|k_{a}\right|^{2} d m \leq|\tilde{f}(a)|
$$

Similarly, we have that

$$
\delta\left(u^{-1}\right)^{\sim}(a) \leq\left|\left(f^{-1}\right)^{\sim}(a)\right| .
$$

Thus,

$$
\tilde{u}(a) \times\left(u^{-1}\right)^{\sim}(a) \leq \delta^{-2} \times|\tilde{f}(a)| \times\left|\left(f^{-1}\right)^{\sim}(a)\right|
$$

for all a in D, and hence (4) follows.
We exhibit some concrete examples which satisfy the $\left(A_{2}\right)_{\partial}$-condition.
Proposition 5. If u is a function that is given by (1), (2), or (3), then u satisfies the $\left(A_{2}\right)_{\partial}$-condition.
(1) For any $-1<\alpha<1$, put $u(z)=\left(1-|z|^{2}\right)^{\alpha}$.
(2) Let $\left\{b_{j}\right\}$ be a finite sequence of complex numbers in $D \cup \partial D$ with $b_{i} \neq b_{j}(i \neq j)$, and let $0 \leq \alpha(j)<2$ for all j or $-2<\alpha(j) \leq 0$ for all j. Put $u=\Pi p_{j}^{\alpha(j)}$ where $p_{j}(z)=\left|z-b_{j}\right|$.
(3) Let $\left\{b_{j}\right\},\left\{p_{j}\right\}$ as in (2) and $-1<\alpha(j)<1$ for all j. Put $u=\Pi p_{j}^{\alpha(j)}$.

Proof. We suppose that u has the form of (1). For any a in D, making a change of variable, we have that

$$
\begin{aligned}
\tilde{u}(a) \times\left(u^{-1}\right)^{\sim}(a)= & \int\left(1-|a|^{2}\right)^{\alpha}\left(1-|z|^{2}\right)^{\alpha}|1-\bar{a} z|^{2 \alpha} d m(z) \\
& \times \int\left(1-|a|^{2}\right)^{-\alpha}\left(1-|z|^{2}\right)^{-\alpha}|1-\bar{a} z|^{2 \alpha} d m(z) \\
= & \int\left(1-|z|^{2}\right)^{\alpha}|1-\bar{a} z|^{-2 \alpha} d m(z) \\
& \times \int\left(1-|z|^{2}\right)^{-\alpha}|1-\bar{a} z|^{2 \alpha} d m(z)
\end{aligned}
$$

Since $-1<\alpha<1$, Rudin's lemma (cf. [9, p. 53]) implies that both factors of the right hand side in the above equality are bounded. Hence satisfies the $\left(A_{2}\right)_{\partial}$-condition.

We show that u satisfies the $\left(A_{2}\right)_{\partial}$-condition when u has the form of (2). Let α be a real number such that $0<\alpha<2$. For any fixed b in D, put $p(z)=|z-b|$. Firstly, we show that the Berezin transform of $p^{-\alpha}$ is bounded. In fact, making a change of variable, elementary calculations show that

$$
\left(p^{-\alpha}\right)^{\sim}(a) \leq|1-\bar{a} b|^{-\alpha} \cdot\|1-\bar{a} z\|_{\infty}^{a} \times \int\left|\phi_{a}(b)-z\right|^{-\alpha} d m(z) .
$$

Since $\phi_{a}(b)-z$ lies in $2 D=\{2 z ; z \in D\}$ for any a, z in D and an area measure is translation invariant, we have that

$$
\left(p^{-\alpha}\right)^{\sim}(a) \leq(1-|b|)^{-\alpha} \cdot\|1-\bar{a} z\|_{\infty}^{\alpha} \times \int_{2 D}|w|^{-\alpha} d m(w)
$$

for all a in D. Hence we obtain that the Berezin transform of $p^{-\alpha}$ is bounded. Next, let b be in ∂D and put $p(z)=|z-b|$. Then, as in the proof of the above case, we have that

$$
\left(p^{\alpha}\right)^{\sim}(a) \leq|a-b|^{\alpha} \cdot\left\|\phi_{a}(b)-z\right\|_{\infty}^{\alpha} \times \int|1-\bar{a} z|^{-\alpha} d m(z)
$$

and

$$
\left(p^{-\alpha}\right)^{\sim}(a) \leq|a-b|^{-\alpha} \cdot\|1-\bar{a} z\|_{\infty}^{\alpha} \times \int_{2 D}|w|^{-\alpha} d m(w)
$$

Therefore, Rudin's lemma implies that p^{α} satisfies the $\left(A_{2}\right)_{\partial}$-condition. For any b_{1} in D and b_{2} in ∂D, put $p_{1}(z)=\left|z-b_{1}\right|$ and $p_{2}(z)=\left|z-b_{2}\right|$. Fix $0<\alpha(j)<2$ for $j=1,2$ and $\varepsilon>0$. Because $b_{1}=b_{2}$, there exist measurable
subsets B_{j} of D such that $B_{1} \cap B_{2}=\phi$ and $p_{j} \geq \varepsilon$ on B_{j}^{c} for $j=1,2$. Set $B_{0}=D \backslash B_{1} \cup B_{2}$, then

$$
\begin{aligned}
&\left(p_{1}^{\alpha(1)} \cdot p_{1}^{\alpha(2)}\right)^{\sim}(a) \times\left(p_{1}^{-\alpha(1)} \cdot\right.\left.p_{2}^{-\alpha(2)}\right)^{\sim}(a) \\
& \leq\left(p_{1}^{\alpha(1)} \cdot p_{2}^{\alpha(2)}\right)^{\sim}(a) \times\left(\varepsilon^{-\alpha(1)-\alpha(2)} \int_{B_{0}}\left|k_{a}\right|^{2} d m\right. \\
&+\varepsilon^{-\alpha(2)} \int_{B_{1}} p_{1}^{-\alpha(1)}\left|k_{a}\right|^{2} d m \\
&\left.+\varepsilon^{-\alpha(1)} \int_{B_{2}} p_{2}^{-\alpha(2)}\left|k_{a}\right|^{2} d m\right) \\
& \leq M_{0} \times \varepsilon^{-\alpha(1)-\alpha(2)}+M_{0} \times \varepsilon^{-\alpha(2)} \cdot\left(p_{1}^{-\alpha(1)}\right)^{\sim}(a) \\
& \quad+M_{1} \times \varepsilon^{-\alpha(1)} \cdot\left(p_{2}^{\alpha(2)}\right)^{\sim}(a) \cdot\left(p_{2}^{-\alpha(2)}\right)^{\sim}(a)
\end{aligned}
$$

where $M_{0}=\left\|p_{1}^{\alpha(1)} \cdot p_{2}^{\alpha(2)}\right\|_{\infty}$ and $M_{1}=\left\|p_{1}^{\alpha(1)}\right\|_{\infty}$. Hence we have that $p_{1}^{\alpha(1)}$. $p_{2}^{\alpha(2)}$ satisfies the $\left(A_{2}\right)_{\partial}$-condition. If u has the form of (2), then applying the sarne argument for finitely many factors of u and u^{-1}, we obtain that u satisfies $\left(A_{2}\right)_{\partial}$-condition.

Apparently, (3) follows from (2) of this proposition and (3) of Proposition 4. In fact, we let $-1<\alpha(j)<1$ for all j, and set

$$
j(+)=\{j ; \alpha(j) \geq 0\}, \quad j(-)=\{j ; \alpha(j)<0\}
$$

Put $u_{1}=\prod_{j(+)} p_{j}^{\alpha(j)}$ and $u_{2}=\prod_{j(-)} p_{j}^{\alpha(\jmath)}$, then u_{1}^{2} and u_{2}^{2} satisfy the $\left(A_{2}\right)_{\partial}$ -condltion. Hence, (3) of Proposition 4 implies that $u=u_{1} \times u_{2}$ satisfies the $\left(A_{2}\right)_{\partial}$-condition.

Corollary 1 is a partial result of $[\mathbf{2}],[\mathbf{7}]$ and $[\mathbf{8}]$.
Corollary 1, Oleinik-Pavlov-Hastings-Stegenga. Let ν be a finite positive measure on D. For any $-1<\alpha<1$, there is a constant $C>0$ such that

$$
\int_{D}|f|^{2} d \nu \leq C \int_{D}|f|^{2}\left(1-|z|^{2}\right)^{\alpha} d m
$$

for all f in P if and only if there exist $r>0$ and $\gamma>0$ such that

$$
\hat{\nu}_{r}(a) \leq \gamma\left(1-|a|^{2}\right)^{\alpha}
$$

for all a in D.
Proof. Since $\left[\left(1-|z|^{2}\right)^{\alpha}\right]_{r}^{\wedge}(a)$ is comparable to $\left(1-|a|^{2}\right)^{\alpha}$, by Theorem 3 and (1) of Proposition 5 the corollary follows.

Lemma 2. Let $\left\{b_{j}\right\}$ be a finite sequence of complex numbers in $D \cup \partial D$ with $b_{i} \neq b_{j}(i \neq j)$, and let $\{\alpha(j)\}$ be a finite sequence of real numbers such that $-2<\alpha(j)$ when j is in Λ^{c} (the definition of Λ is below). Put $p_{j}(z)=\left|z-b_{j}\right|$ and $u=\prod p_{j}^{\alpha(j)}$, and let $0<r<\infty$, then there are constants $\gamma_{1}>0$ and $\gamma_{2}>0$ such that

$$
\gamma_{1} \hat{u}_{r}(a) \leq \prod_{j \in \Lambda}\left|a-b_{j}\right|^{\alpha(j)} \leq \gamma_{2} \hat{u}_{r}(a)
$$

for all a in D, here $\Lambda=\left\{j ; b_{j}\right.$ is in $\left.\partial D\right\}$.
Proof. For any fixed $0<r<\infty$, in general, Lemma 4.3.3 in [9, p. 60] implies that there are constants $L>0$ and $M>0$ such that

$$
L \hat{u}_{r}(a) \leq \int_{D_{r}(0)} u \circ \phi_{a} d m \leq M \hat{u}_{r}(a)
$$

for all a in D, where u is a non-negative integrable function on D. Let $u=\Pi\left|z-b_{j}\right|^{\alpha(j)},\left\{b_{j}\right\} \subset D \cup \partial D, b_{i} \neq b_{j}(i \neq j)$, and $\alpha(j)$ be real numbers. Then, by the same calculations in the proof of (2) of Proposition 5, we have that

$$
\begin{aligned}
\int_{D_{r}(0)} & u \circ \phi_{a} d m \\
& =\prod\left|1-\bar{a} b_{j}\right|^{\alpha(j)} \int_{D_{r}(0)} \prod\left|\phi_{a}\left(b_{j}\right)-z\right|^{\alpha(j)} \cdot|1-\bar{a} z|^{-\Sigma \alpha(j)} d m(z)
\end{aligned}
$$

Put

$$
I(a)=\int_{D_{r}(0)} \prod\left|\phi_{a}\left(b_{j}\right)-z\right|^{a(j)} d m(z)
$$

then it is easy to see that $\int_{D_{r}(0)} u \circ \phi_{a} d m$ is equivalent to

$$
I(a) \times \prod_{j \in \Lambda}\left|a-b_{j}\right|^{\alpha(j)}
$$

Firstly, we show that the lemma is true when $0 \leq \alpha(j)$ for all j. By the above facts, it is enough to prove that the integration

$$
I(a)=\int_{D_{r}(0)} \prod\left|\phi_{a}\left(b_{j}\right)-z\right|^{\alpha(j)} d m(z)
$$

is bounded below for all a in D, because $0 \leq \alpha(j)$. Conversely, suppose that there exists $\left\{a_{n}\right\} \subset D$ such that $I\left(a_{n}\right)<1 / n$. Here we can choose a subsequence $\left\{a_{k}\right\} \subset\left\{a_{n}\right\}$ such that $a_{k} \rightarrow a^{\prime}(k \rightarrow \infty)$, where a^{\prime} may be in $D \cup \partial D$. Therefore, Fatou's lemma implies that $I\left(a^{\prime}\right)=0$, thus it follows
that $\Pi\left|\phi_{a^{\prime}}\left(b_{j}\right)-z\right|^{\alpha(j)}=0$ on $D_{r}(0)$. This contradiction implies that the assertion is true when $0 \leq \alpha(j)$ for all j.

Next, we prove that the lemma is true when $-2<\alpha(j)<0$ for all j in Λ^{c} and $-\infty<\alpha(j)<0$ for all j in Λ. In fact, we claim that $I(a)$ is bounded for all a in D. If j is in Λ, then $\left|\phi_{a}\left(b_{j}\right)\right|=1$ for all a in D, therefore $\left|\phi_{a}\left(b_{j}\right)-z\right|^{-1}$ is bounded, because z belongs to $D_{r}(0)$. Analogously, if j is in Λ^{c}, then $\left|\phi_{a}\left(b_{j}\right)\right| \rightarrow 1(|a| \rightarrow 1)$, therefore $\left|\phi_{a}\left(b_{j}\right)-z\right|^{-1}$ is bounded when a is nearby ∂D, because z belongs to $D_{r}(0)$. Thus, it is sufficient to prove that

$$
J(a)=\int_{D_{r}(0)} \prod_{j \in \Lambda^{c}}\left|\phi_{a}\left(b_{j}\right)-z\right|^{\alpha(j)} d m(z)
$$

is bounded for all a in $U_{\eta}(0)=\{a \in D ;|a| \leq \eta\}$, where $0<\eta<1$ is a constant which is close to 1 . Put

$$
\Phi_{i, j}(a)=\left|\phi_{a}\left(b_{i}\right)-\phi_{a}\left(b_{j}\right)\right| \quad\left(i, j \in \Lambda^{c}, a \in U_{\eta}(0)\right)
$$

For any fixed $i, j \in \Lambda^{c}$, since $\Phi_{i, j}$ is a continuous function on $U_{\eta}(0)$ and Möbius functions are one-to-one correspondence on D, there exists $\varepsilon(i, j)>0$ such that $\Phi_{i, j}(a) \geq \varepsilon(i, j)$ for all a in $U_{\eta}(0)$ when $i \neq j$. Put $\varepsilon=\min \left\{\varepsilon(i, j) / 2 ; \quad i, j \in \Lambda^{c}\right.$ such that $\left.i \neq j\right\}$,

$$
B_{j}(a)=\left\{z \in D_{r}(0) ;\left|\phi_{a}\left(b_{j}\right)-z\right|<\varepsilon\right\}
$$

and $B_{0}(a)=D_{r}(0) \backslash \cup B_{j}(a)$. For any j in $\Lambda^{c} \cup\{0\}$, since $\left|\phi_{a}\left(b_{\imath}\right)-z\right| \geq \varepsilon$ when z belongs to $B_{j}(a)$ and i belongs to Λ^{c} such that $i \neq j$, therefore we have that

$$
\begin{aligned}
J(a) & \leq \sum_{j \in \Lambda^{c}} \varepsilon^{\alpha-\alpha(j)} \int_{B_{\jmath}(a)}\left|\phi_{a}\left(b_{j}\right)-z\right|^{\alpha(j)} d m(z)+\varepsilon^{\alpha} \int_{B_{0}(a)} d m(z) \\
& \leq \sum_{j \in \Lambda^{c}} \varepsilon^{\alpha-\alpha(j)} \int_{2 D}|w|^{\alpha(\jmath)} d m(w)+\varepsilon^{\alpha}
\end{aligned}
$$

where

$$
\alpha=\sum_{j \in \Lambda^{c}} \alpha(j)
$$

Therefore, J is bounded on $D_{\eta}(0)$, and hence we obtain that I is bounded on D.

Using the above facts, we can show that the assertion is true when u has the general form of the statement of this lemma. Let $\{\alpha(j)\}$ be a finite sequence of real numbers such that $-2<\alpha(j)<\infty$ when j is in Λ^{c} and $-\infty<\alpha(j)<\infty$ when j is in Λ. As in the proof of Proposition 5, set
$j(+)=\{j ; \alpha(j) \geq 0\}$ and $j(-)=\{j ; \alpha(j)<0\}$, then we have that

$$
I(a) \leq 2^{\Sigma_{j(+)} \alpha(j)} \int_{D_{r}(0)} \prod_{j(-)}\left|\phi_{a}\left(b_{j}\right)-z\right|^{\alpha(j)} d m(z)
$$

and

$$
I(a) \geq 2^{\Sigma_{j(-)} \alpha(j)} \int_{D_{r}(0)} \prod_{j(+)}\left|\phi_{a}\left(b_{j}\right)-z\right|^{\alpha(j)} d m(z)
$$

Therefore, we obtain that I is bounded and bounded below on D. Hence, this completes the proof.

Corollary 2. Let u be a non-negative function in L^{1} that is given by (2), or (3) of Proposition 5 and ν be a finite positive measure on D, then there is a constant $C>0$ such that

$$
\int_{D}|f|^{2} d \nu \leq C \int_{D}|f|^{2} u d m
$$

for all f in P if and only if there exist $r>0$ and $\gamma=\gamma_{r}>0$ such that

$$
\hat{\nu}_{r}(a) \leq \gamma \prod_{j \in \Lambda}\left|a-b_{j}\right|^{\alpha(j)}
$$

for all a in D, here $\Lambda=\left\{j ; b_{j}\right.$ is in $\left.\partial D\right\}$.
Proof. The corollary follows from Theorem 3, Proposition 5 and Lemma 2.

We give a characterization of u which satisfies the $\left(A_{2}\right)$-condition or the $\left(A_{2}\right)_{\partial}$-condition when u is a modulus of a rational function or a modulus of a polynomial, respectively. Let u be a non-negative integrable function on D, then it is easy to see that if u satisfies the $\left(A_{2}\right)_{\partial}$-condition then u^{-1} is integrable on D. But, we claim that the converse is true, when u is a modulus of a polynomial. As the result, we show that the $\left(A_{2}\right)_{\partial}$-condition is properly contained in the $\left(A_{2}\right)$-condition. The essential part of the following theorem is proved in Proposition 5 and Lemma 2.

Theorem 6. Let $\left\{b_{j}\right\}$ be a finite sequence of complex numbers such that $b_{i} \neq b_{j}(i \neq j)$ and $\{\alpha(j)\}$ be a finite sequence of real numbers. Put $p_{j}(z)=$ $\left|z-b_{j}\right|$ and $u=\Pi p_{j}^{\alpha(j)}$, then the following are true.
(1) If $\alpha(j) \geq 0$ for all j or $\alpha(j) \leq 0$ for all j, then u satisfies the $\left(A_{2}\right)_{\partial^{-}}$ condition if and only if $\alpha(j)<2$ or $\alpha(j)>-2$ when b_{j} is in $D \cup \partial D$ respectively.
(2) u satisfies the $\left(A_{2}\right)$-condition if and only if $-2<\alpha(j)<2$ when b_{j} is in D.

Proof. (1) By (2) of Proposition 5 and the remark above this theorem, it is enough to prove that u^{-1} is not integrable on D when $\alpha(j) \geq 2$ for some b_{j} in $D \cup \partial D$. Suppose that there is a j such that b_{j} in $D \cup \partial D$ and $\alpha(j) \geq 2$, then there exists a L^{∞}-function h such that $u(z)=\left|z-b_{\jmath}\right|^{2} \cdot h(z)$. It is easy to see that u^{-1} is not integrable on $U=\left\{z \in D ;|z-b|<\operatorname{dist}\left(b_{j}, \partial D\right)\right\}$ when b_{j} is in D, therefore we consider the case when $b_{j}=1$. Put $M_{2}=\|h\|_{\infty}$, then

$$
\begin{aligned}
\int u^{-1} d m & \geq M_{2}^{-1} \int_{0}^{1} 2 r \int_{0}^{2 \pi}\left|1-r e^{i \theta}\right|^{2} d \theta / 2 \pi d r \\
& =M_{2}^{-1} \int_{0}^{1} 2 r\left(1-r^{2}\right)^{-1} d r=M_{2}^{-1} \int_{0}^{1} t^{-1} d t
\end{aligned}
$$

Hence we obtain that u^{-1} is not integrable.
(2) Suppose that $-2<\alpha(j)<2$ when b_{j} is in D, then apparently Lemma 2 implies that u satisfies the $\left(A_{2}\right)$-condition. Conversely, suppose that there exist $r>0$ and $A_{r}>0$ such that

$$
\hat{u}_{r}(a) \times\left(u^{-1}\right)_{r}^{\wedge}(a) \leq A_{r}
$$

for all a in D. Since \hat{u}_{r} is non-zero on D, therefore $\left(u^{-1}\right)_{r}^{\wedge}(a)<\infty$ for all a in D. By the same argument in (1), we have that $\alpha(j)$ must be less than 2 when b_{j} is in D. In fact, if $\alpha(j) \geq 2$ for some b_{j} in D, then there exists a function h such that $u(z)=\left|z-b_{j}\right|^{2} \cdot h(z)$. Put

$$
\varepsilon=\min \left\{\operatorname{dist}\left(b_{i}, b_{\jmath}\right) / 2 ; i \neq j\right\}
$$

and

$$
U(j)=\left\{z \in D ;\left|z-b_{j}\right|<\varepsilon\right\}
$$

then obviously h is bounded on $U(j)$. Since there exists a_{j} such that a center of the Bergman disk $D_{r}\left(a_{j}\right)$ is just equal to b_{j}, therefore we have that u^{-1} is not integrable on $D_{r}\left(a_{j}\right) \cap U(j)$, and thus, it follows that the average of u^{-1} on $D_{r}\left(a_{j}\right)$ is infinite. This contradicts the above fact. Consequently, we obtain that $\alpha(j)$ must lie in $(-\infty, 2)$ when b_{j} is in D. Applying the same argument to u^{-1}, we have that $\alpha(j)$ must lie in $(-2, \infty)$ when b_{j} is in D. Therefore, we conclude that $-2<\alpha(j)<2$ when b_{j} is in D.

§4. Uniformly absolutely continuous.

Recall that

$$
\varepsilon_{r}(\mu)=\sup _{a \in D}\left(\int_{D \backslash D_{r}(a)}\left|k_{a}\right|^{2} d \mu\right) \times\left(\int_{D}\left|k_{a}\right|^{2} d \mu\right)^{-1}
$$

where μ is a finite positive measure on D (see Lemma 1 and Proposition 2). Using the quantity ε_{r} we give a necessary condition on ν and μ which satisfy the (ν, μ)-Carleson inequality.

Theorem 7. Suppose that $d \nu=v d m, \varepsilon_{t}(\nu) \rightarrow 0(t \rightarrow \infty)$, and that v satisfies the $\left(A_{2}\right)$-condition, furthermore μ and ν satisfy the (μ, ν)-Carleson inequality. If there is a constant $C>0$ such that

$$
\int_{D}|f|^{2} d \nu \leq C \int_{D}|f|^{2} d \mu
$$

for all f in P, then there exist $r>0$ and $\gamma>0$ such that

$$
\hat{\nu}_{r}(a) \leq \gamma \hat{\mu}_{r}(a)
$$

for all a in D.
Proof. By hypotheses on ν and Lemma 1, there exist $t>0, \rho>0$ and $A>0$ such that

$$
\tilde{\nu} \leq \rho \cdot \hat{\nu}_{t} \leq A \rho \cdot\left(v^{-1}\right)_{t}^{\wedge-1}
$$

Moreover, Lemma 4.3.3 in [9, p. 60] and the (μ, ν)-Carleson inequality imply that there exist $L>0$ and $C^{\prime}>0$ such that

$$
L \cdot \hat{\mu}_{t} \leq \tilde{\mu} \leq C^{\prime} \cdot \tilde{\nu}
$$

Thus, a desired result follows from (2) of Proposition 2.
Luecking [5] shows the above theorem when ν is the Lebesgue area measure m. It is clear that $\varepsilon_{r}(m) \rightarrow 0(r \rightarrow \infty)$ and m satisfies the $\left(A_{2}\right)$ condition. Now, we are interested in measures μ such that $\varepsilon_{r}(\mu)<1$ or $\varepsilon_{r}(\mu) \rightarrow 0(r \rightarrow \infty)$.

Proposition 8. Suppose that $d \mu=u d m$, and u is a non-negative function in L^{1}. If u is the function such that (1) or (2), then there exists $0<r<\infty$ such that $\varepsilon_{r}(\mu)<1$.
(1) u satisfies the $\left(A_{2}\right)_{\partial}$-condition.
(2) $u(z)=\left(1-|z|^{2}\right)^{\alpha}$ for some $1 \leq \alpha<2$.

Proof. If u has the property in (1), then by the remark above Theorem 3, for any $r>0$ there is a positive constant $\rho=\rho_{r}$ such that $\tilde{\mu}(a) \leq \rho \hat{\mu}_{r}(a)$ for
all a in D and hence $\varepsilon_{r}(\mu)<1$ by Lemma 1 . Suppose that u has the form of (2). For any fixed $1 \leq \alpha<2$, put $u(z)=\left(1-|z|^{2}\right)^{\alpha}$, Then, Rudin's lemma (cf. [9, p. 53]) shows that

$$
\tilde{u}(a)=\left(1-|a|^{2}\right)^{\alpha} \int_{D}\left(1-|z|^{2}\right)^{\alpha}|1-\bar{a} z|^{-2 \alpha} d m(z) \leq \gamma\left(1-|a|^{2}\right)^{\alpha}
$$

where $\gamma>0$ is finite. On the other hand, Lemma 4.3.3 in [9, p. 60] implies that

$$
\begin{aligned}
\hat{u}_{r}(a) & \geq M^{-1} \times\left(1-|a|^{2}\right)^{\alpha} \int_{D_{r}(0)}\left(1-|z|^{2}\right)^{\alpha}|1-\bar{a} z|^{-2 \alpha} d m(z) \\
& \geq M^{-1} \times\left(1-|z|^{2}\right)^{\alpha}\left(1-\tanh ^{2} r\right)^{\alpha} \times 2^{-2 \alpha}
\end{aligned}
$$

therefore, by (3) of Lemma 1 , we obtain that $\varepsilon_{r}(\mu)<1$.
Proposition 9. Suppose that $d \mu=u d m$, and u is a non-negative function in L^{1}. If u is one of the following functions $(1) \sim(7)$, then $\varepsilon_{r}(\mu) \rightarrow 0(r \rightarrow$ $\infty)$.
(1) There exists $\varepsilon_{0}>0$ such that $\tilde{u} \geq \varepsilon_{0}$ on D, and $\left\{u \circ \phi_{a} d m ; a \in D\right\}$ is uniformly absolutely continuous with respect to the Lebesgue area measure m.
(2) There exists $\varepsilon_{0}>0$ such that $\tilde{u} \geq \varepsilon_{0}$ on D, and there is a constant $C>0$ such that $\left(u^{1+\beta}\right)^{\sim} \leq C$ on D for some $\beta>0$.
(3) u is in L^{∞}, and there exist $r>0$ and $\delta>0$ such that $u \geq \delta$ on $D \backslash D_{r}(0)$.
(4) $u=|p|$, where p is an analytic polynomial which has no zeros on ∂D.
(5) $u(z)=\left(1-|z|^{2}\right)^{\alpha}$ for some $-1<\alpha \leq 1$.
(6) $u=\prod p_{j}^{\alpha(j)}$, where $p_{j}(z)=\left|z-\beta_{j}\right|, \bar{b}_{i} \neq b_{j}(i \neq j)$, and $0<\alpha(j)<2$ for b_{j} in $D \cup \partial D$, or $-2<\alpha(j)<0$ for b_{j} in $D \cup \partial D$.
(7) $u=\prod p_{j}^{\alpha(j)}$ where $p_{j}(z)=\left|z-b_{j}\right|, b_{i} \neq b_{j}(i \neq j)$, and $-1<\alpha(j)<1$ for b_{j} in $D \cup \partial D$.

Proof. Firstly, we show that the assertion is true when u has the property of (1). Since $\left\{u \circ \phi_{a} d m ; a \in D\right\}$ is uniformly absolutely continuous, for any $\varepsilon>0$ there exists $r>0$ such that $\int_{D_{r}(0)^{c}} u \circ \phi_{a} d m<\varepsilon_{0} \cdot \varepsilon$ for all a in D. Therefore, making a change of variable, let r be sufficiently large, then $\varepsilon_{r}(\mu)<\varepsilon_{0}^{-1} \cdot \varepsilon_{0} \cdot \varepsilon=\varepsilon$. Hence, we obtain that $\varepsilon_{r}(\mu) \rightarrow 0(r \rightarrow \infty)$.

Next, we prove the implications $(2) \Rightarrow(1),(3) \Rightarrow(2)$, and (4) \Rightarrow (3). Then $\varepsilon_{r}(\mu) \rightarrow 0$ when u is a function such that (2), (3) or (4). In fact, suppose that there exists $\beta>0$ such that the Berezin transform of the function $u^{1+\beta}$ is bounded, then a set of functions $\left\{u \circ \phi_{a} ; a \in D\right\}$ is uniformly integrable (cf. [1, p. 120]), therefore it follows that $\left\{u \circ \phi_{a} d m ; a \in D\right\}$ is uniformly
absolutely continuous with respect to m. Hence, (2) implies (1). If there exist $r>0$ and $\delta>0$ such that $u \geq \delta$ on $D \backslash D_{r}(0)$, then

$$
\tilde{u}(a) \geq \delta-\delta \int_{D_{r}(0)}\left|k_{a}\right|^{2} d m=\delta\left[1-m\left(D_{r}(a)\right)\right] \geq \delta\left(1-\tanh ^{2} r\right)>0
$$

Hence (3) implies (2) because $\left(u^{1+\beta}\right)^{\sim}(a) \leq\|u\|_{\infty}^{1+\beta}$ for all a in D and any $\beta>0$. Next, let p be an analytic polynomial which has no zeros on ∂D, then there are $r>0$ and $\delta>0$ such that $u=|p| \geq \delta$ on $D \backslash D_{r}(0)$, therefore (4) \Rightarrow (3).

We prove that the assertion is true when u has the form of (5). For any fixed $-1<a \leq 1$, put $u(z)=\left(1-|z|^{2}\right)^{\alpha}$ and making a change of variable, then

$$
\begin{aligned}
\varepsilon_{r}(\mu)= & \sup \left(\int_{D}\left(1-|z|^{2}\right)^{\alpha}|1-\bar{a} z|^{2 \alpha} d m(z)\right) \\
& \times\left(\int_{D \backslash D_{r}(0)}\left(1-|z|^{2}\right)^{\alpha}|1-\bar{a} z|^{-2 \alpha} d m(z)\right) .
\end{aligned}
$$

When $0 \leq \alpha \leq 1$, since $0<1-|z|^{2} \leq 1$, we have that

$$
\int_{D}\left(1-|z|^{2}\right)^{\alpha}|1-\bar{a} z|^{-2 \alpha} d m \geq 2^{-2 \alpha} \int_{D}\left(1-|z|^{2}\right) d m=\text { constant. }
$$

If $-1<\alpha<0$, then the familiar inequality between the harmonic and arithmetic means shows that

$$
\begin{aligned}
\int_{D}\left(1-|z|^{2}\right)^{\alpha}|1-\bar{a} z|^{-2 \alpha} d m & \geq\left(\int_{D}\left(1-|z|^{2}\right)^{-\alpha}|1-\bar{a} z|^{2 \alpha} d m\right)^{-1} \\
& \geq \text { constant. }
\end{aligned}
$$

Here, the last inequality follows from Rudin's lemma (cf. [9, p. 53]). Again using Rudin's lemma, since $-1<\alpha \leq 1$, there exists $\beta>0$ such that a set of functions $\left\{\left[\left(1-|z|^{2}\right)^{\alpha}|1-a z|^{-2 \alpha}\right]^{1+\beta} ; a \in D\right\}$ is bounded in L^{1}. This implies that the set of these functions are uniformly integrable (cf. [1, p. 120]), therefore it follows that $\varepsilon_{r}(\mu) \rightarrow 0(r \rightarrow \infty)$.

We show that $\varepsilon_{r}(\mu) \rightarrow 0$ when u has the form of (6). As in the proof of (2) of Proposition 5, we only prove that $\varepsilon_{r}(\mu) \rightarrow 0(r \rightarrow \infty)$ when $u=p_{1}^{\alpha(1)} \cdot p_{2}^{\alpha(2)}$, where $p_{1}(z)=\left|z-b_{1}\right|, p_{2}(z)=\left|z-b_{2}\right|, 0<\alpha(1), \alpha(2)<2$, and b_{1} is in D, b_{2} is in ∂D. We suppose that B_{j}, M_{1}, and ε are as in the proof of (2) of Proposition 5. By the definition of $\varepsilon_{r}(\mu)$, we have that

$$
\varepsilon_{r}(\mu)=\sup \left(u \chi_{D_{r}(a)^{c}}\right)^{\sim}(a) \times \tilde{u}(a)^{-1}
$$

Moreover,

$$
\begin{aligned}
\left(u \chi_{D_{r}(a)^{c}}\right)^{\sim}(a) \times \tilde{u}(a)^{-1} \leq & \left(u \chi_{D_{r}(a)^{c}}\right)^{\sim}(a) \times\left(u^{-1}\right)^{\sim}(a) \\
\leq & \left(u \chi_{D_{r}(a)^{c}}\right)^{\sim}(a) \times \varepsilon^{-\alpha(1)-\alpha(2)} \int_{B_{0}}\left|k_{a}\right|^{2} d m \\
& +\left(u \chi_{D_{r}(a)^{c}}\right)^{\sim}(a) \times \varepsilon^{-\alpha(2)} \cdot\left(p_{1}^{-\alpha(1)}\right)^{\sim}(a) \\
& +M_{1} \times \varepsilon^{-\alpha(1)} \times C \int_{D \backslash D_{r}(0)}|1-\bar{a} z|^{-\alpha(2)} d m,
\end{aligned}
$$

where

$$
C=\left\|\phi_{a}\left(b_{2}\right)-z\right\|_{\infty}^{\alpha(2)} \times\|1-\bar{a} z\|_{\infty}^{\alpha(2)} \times \int_{2 D}|w|^{-\alpha(2)} d m
$$

Since u is bounded, therefore $\left\{u \circ \phi_{a} ; a \in D\right\}$ is uniformly integrable (cf. [1, p. 120]), moreover applying the same argument in the proof of this proposition when u has the form of (5), Rudin's lemma implies that a set of functions $\left\{|1-\bar{a} z|^{-\alpha(2)} ; a \in D\right\}$ is also uniformly integrable, hence we conclude that $\varepsilon_{r}(\mu) \rightarrow 0(r \rightarrow \infty)$. The proof of the latter half of (6) of this proposition is similar that in the above.

If u has the form of (7), then by the similar arguments in the proof of (3) of Proposition 5, set $j(+)=\{j ; \alpha(j) \geq 0\}, j(-)=\{j ; \alpha(i)<0\}$. And put $u_{1}=\prod_{j(+)} p_{j}^{\alpha(j)}, u_{2}=\prod_{j(-)} p_{j}^{\alpha(j)}$, then

$$
\begin{aligned}
\left(u \chi_{D_{r}(a)^{c}}\right)^{\sim}(a) \times \tilde{u}(a)^{-1} & \leq\left(u \chi_{D_{r}(a)^{c}}\right)^{\sim}(a) \times\left(u^{-1}\right)^{\sim}(a) \\
& =\left(u_{1} u_{2} \chi_{D_{r}(a)^{c}}\right)^{\sim}(a) \times\left(u_{1}^{-1} u_{2}^{-1}\right)^{\sim}(a)
\end{aligned}
$$

Therefore, the desired result follows from the Cauchy-Schwarz's inequality and (6) of this proposition.

Corollary 3. Suppose that $d \nu=v d m$ and there is a consrant $C>0$ such that

$$
\int_{D}|f|^{2} d \nu \leq C \int_{D}|f|^{2} d \mu
$$

for all a in D, then the following are true.
(1) If $v(z)=\left(1-|z|^{2}\right)^{\alpha}$ for some $-1<\alpha \leq 1$, and there exist $l>0$ and $\gamma^{\prime}=\gamma_{l}^{\prime}>0$ such that

$$
\hat{\mu}_{l}(a) \leq \gamma^{\prime}\left(1-|a|^{2}\right)^{\alpha}
$$

for all a in D, then there exist $r>0$ and $\gamma=\gamma_{r}>0$ such that

$$
\left(1-|a|^{2}\right)^{\alpha} \leq \gamma \hat{\mu}_{r}(a)
$$

for all a in D.
(2) If $v=\prod p_{j}^{\alpha(j)}$, where $p_{j}(z)=\left|z-b_{j}\right|, b_{i} \neq b_{j}(i \neq j)$, and $0<\alpha(j)<2$ for b_{j} in $D \cup \partial D$ or $-2<\alpha(j)<0$ for b_{j} in $D \cup \partial D$, and if there exist $l>0$ and $\gamma^{\prime}=\gamma_{l}^{\prime}>0$ such that

$$
\hat{\mu}_{l}(a) \leq \gamma^{\prime} \prod_{j \in \Lambda}\left|a-b_{j}\right|^{\alpha(j)}
$$

for all a in D, then there exist $r>0$ and $\gamma=\gamma_{r}>0$ such that

$$
\prod_{j \in \Lambda}\left|a-b_{j}\right|^{\alpha(j)} \leq \gamma \hat{\mu}_{r}(a)
$$

for all a in D, where $\Lambda=\left\{j ; b_{j}\right.$ is in $\left.\partial D\right\}$.
(3) If $v=\prod p_{j}^{\alpha(j)}$ where $p_{j}(z)=\left|z-b_{j}\right|, b_{i} \neq b_{j}(i \neq j)$, and $-1<\alpha(j)<1$ for b_{j} in $D \cup \partial D$, and if there exist $l>0$ and $\gamma=\gamma_{l}^{\prime}>0$ such that

$$
\hat{\mu}_{l}(a) \leq \gamma^{\prime} \prod_{j \in \Lambda}\left|a-b_{j}\right|^{\alpha(j)}
$$

for all a in D, then there exist $r>0$ and $\gamma=\gamma_{r}>0$ such that

$$
\prod_{j \in \Lambda}\left|a-b_{j}\right|^{\alpha(j)} \leq \gamma \hat{\mu}_{r}(a)
$$

for all a in D, where $\Lambda=\left\{j ; b_{j}\right.$ is in $\left.\partial D\right\}$.
Proof. We show that (1) is true. By the fact in the proof of Corollary 1, and the fact that $u(z)=\left(1-|z|^{2}\right)^{\alpha}$ satisfies the $\left(A_{2}\right)$-condition for all $\alpha>-1$ (see [6]), the hypothesis in (1) of the Corollary and Proposition 1 imply the (μ, ν)-Carleson inequality. Hence, Theorem 7 and Proposition 9 show that the assertion is true.

Similarly, (2) and (3) follow from Proposition 1, Lemma 2, (5) of Proposition 4, Theorem 6, Theorem 7, and Proposition 9.

References

[1] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
[2] W. W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc., 52 (1975), 237-241.
[3] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227-251.
[4] D. Luecking, lnequalities in Bergman spaces, III. J. Math., 25 (1981), 1-11.
[5] \qquad , Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math., 107 (1985), 85-111.
[6] , Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J., 34 (1985), 319-336.
[7] V. Oleinik and B. Pavlov, Embedding theorems for weighted classes of harmonic and analytic functions, J. Soviet Math., 2 (1974), 135-142.
[8] D. Stegenga, Multipliers of the Dirichlet space, III. J. Math., 24 (1980), 113-139.
[9] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.

Received July 1, 1993 and revised June 1, 1994. For the first author, this research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Hokkaido University
Japan

