(A₂)-CONDITIONS AND CARLESON INEQUALITIES IN BERGMAN SPACES

TAKAHIKO NAKAZI AND MASAHIRO YAMADA

Let ν and μ be finite positive measures on the open unit disk D. We say that ν and μ satisfy the (ν, μ) -Carleson inequality, if there is a constant C > 0 such that

$$\int_D |f|^2 d \ \nu \leq C \int_D |f|^2 d \ \mu$$

for all analytic polynomials f. In this paper, we study the necessary and sufficient condition for the (ν, μ) -Carleson inequality. We establish it when ν or μ is an absolutely continuous measure with respect to the Lebesgue area mesure which satisfy the (A_2) -condition. Moreover, many concrete examples of such measures are given.

§1. Introduction.

Let D denote the open unit disk in the complex plane. For $1 \leq p \leq \infty$, let L^p denote the Lebesgue space on D with respect to the normalized Lebesgue area measure m, and $\|\cdot\|_p$ represents the usual L^p -norm. For $1 \leq p < \infty$, let L^p_a be the collection of analytic functions f on D such that $\|f\|_p$ is finite, which are so called the Bergman spaces. For any z in D, let ϕ_z be the Möbius function on D, that is

$$\phi_z(w) = \frac{z - w}{1 - \bar{z}w} \qquad (w \in D),$$

and put,

$$\beta(z,w) = 1/2 \log(1 + |\phi_z(w)|)(1 - |\phi_z(w)|)^{-1} \quad (z,w \in D).$$

For $0 < r < \infty$ and z in D, set

$$D_r(z) = \{ w \in D; \beta(z, w) < r \}$$

be the Bergman disk with "center" z and "radius" r, and we define an average of a finite positive measure μ on $D_r(a)$ by

$$\hat{\mu}_r(a) = \frac{1}{m(D_r(a))} \int_{D_r(a)} d\ \mu \qquad (a \in D),$$

and if there exists a non-negative function u in L^1 such that $d \mu = ud m$, then we may write it \hat{u}_r , instead of $\hat{\mu}_r$.

Let ν and μ be finite positive measures on D, and let P be the set of all analytic polynomials. We say that ν and μ satisfy the (ν, μ) -Carleson inequality, if there is a constant C > 0 such that

$$\int_D |f|^2 d \ \nu \leq C \int_D |f|^2 d \ \mu$$

for all f in P. Our purpose of this paper is to study conditions on ν and μ so that the (ν, μ) -Carleson inequality is satisfied. If $\nu \leq C\mu$ on D, then the (ν, μ) -Carleson inequality is true. However it is clear that this sufficient condition for the (ν, μ) -Carleson inequality is too strong. A reasonable and natural condition is the following: there exist r > 0 and $\gamma > 0$ such that

(*)
$$\hat{\nu}_r(a) \le \gamma \hat{\mu}_r(a) \quad (a \in D).$$

The average $\hat{\mu}_r(a)$ are sometimes computable. If $\mu = m$, then $\hat{\mu}_r(a) = 1$ on D. If $d \mu = (1 - |z|^2)^{\alpha} d m$ for $\alpha > -1$, then $\hat{\mu}_r(a)$ is equivalent to $(1 - |a|^2)^{\alpha}$ on D.

When $d \mu = (1 - |z|^2)^{\alpha} d m$ for $\alpha > -1$, Oleinik-Pavlov [7], Hastings [2], or Sitegenga [8] showed that ν and μ satisfy the Carleson inequality if and only if they satisfy (*). In §3 of this paper, when $d \mu = ud m$ and u satisfies the $(A_2)_{\partial}$ -condition (the definition is in §3), we obtain that the (ν, μ) -Carleson inequality is satisfied if and only if they satisfy (*). We show that if both u and u^{-1} are in $B \ M \ O_{\partial}$ (see [9, p. 127]), then usatisfies the $(A_2)_{\partial}$ -condition. We give some concrete examples which satisfy the $(A_2)_{\partial}$ -condition.

When $\nu = m$ and $d \mu = \chi_G d m$, where χ_G is a characteristic function of a measurable subset G of D, Luecking [4] showed the equivalence between the (ν, μ) -Carleson inequality and the condition (*). If we do not put any hypotheses on μ , the problem is very difficult. The equivalence between the (ν, μ) -Carleson inequality and the condition (*) is not known even if $\nu = m$. Luecking [5] showed the following:

(1) If there exists $\gamma > 0$ such that $\hat{m}_r(a) \leq \gamma \hat{\mu}_r(a)$ for all r > 0 and a in D, then the (m, μ) -Carleson inequality is satisfied.

(2) Suppose the (μ, m) -Carleson inequality is valid (equivalently $\hat{\mu}_r$ is bounded on D). Then the (m, μ) -Carleson inequality implies the condition (*).

In §2 of this paper, we give a sufficient condition (close to that of (1)) for the (ν, μ) -Carleson inequality when ν is not necessarily m. Moreover, using the idea of Luccking's proof of (2), a generalization of (2) is given. In §4, when $d \nu = vd m$ and v satisfies the (A_2) -condition (the definition is in

§3), we establish a more natural extension of (2) under some condition of a quantity $\varepsilon_r(\nu)$ (the definition is in §2), that is $\varepsilon_r(\nu) \to 0$ as $r \to \infty$. The (A_2) -condition is weaker than the $(A_2)_{\partial}$ -condition. We give some concrete examples which satisfy the (A_2) -condition or the above condition of $\varepsilon_r(\nu)$.

§2. (ν, μ) -Carleson inequality.

Let G be a measurable subset of D and u be a non-negative function in L^1 , and put

$$(u_G^{-1})_r^{\wedge}(a) = rac{1}{m(D_r(a))} \int_{D_r(a)} u^{-1} \chi_G d \ m.$$

Particular, when G = D, we will omit the letter D in the above notation. The following Proposition 1 gives a general sufficient condition on ν and μ which satisfy the (ν, μ) -Carleson inequality. In order to prove it we use ideas in [5] and [9, p. 109]. Since $(u^{-1})_r^{\wedge}(a)^{-1} \leq \hat{u}_r(a)$ for all a in D, Proposition 1 is also related with (1) of §1 (cf. [5, Theorem 4.2]).

Proposition 1. Suppose that $d \mu = ud m$. Put $E_r = \{z \in D; \text{ there is a } w \in \text{supp } \nu \text{ such that } \beta(z,w) < r/2\}$. If there exist r > 0 and $\gamma > 0$ such that u > 0 a.e. on $E = E_r$, and $\hat{\nu}(a) \times (u_E^{-1})^{\wedge}_r(a) \leq \gamma$ for all a in D, then there is a constant C > 0 such that

$$\int_D |f|^2 d \ \nu \leq C \int_E |f|^2 d \ \mu$$

for all f in P.

Proof. Suppose that $\hat{\nu}_{2r}(a) \times (u_E^{-1})_{2r}^{\wedge}(a) \leq \gamma$ for all a in D, and put $E = \{z \in D; \text{ there is a } w \in \text{supp } \nu \text{ such that } \beta(z, w) < r\}$. By an elementary theory for Bergman disks, there is a positive integer $N = N_r$ such that there exists $\{\lambda_n\} \subset D$ satisfying that $D = \bigcup D_r(\lambda_n)$ and any z in D belongs to at most N of the sets $D_{2r}(\lambda_n)$ (cf. [9, p. 62] therefore

$$\begin{split} \int_{\text{supp }\nu} |f|^2 d \ \nu &\leq \sum \int_{D_r(\lambda_n) \cap \text{supp }\nu} |f|^2 d \ \nu \\ &\leq \sum \nu(D_r(\lambda_n)) \times \sup\{|f(z)|^2; \ z \in D_r(\lambda_n) \cap \text{supp }\nu\}. \end{split}$$

By Proposition 4.3.8 in [9, p. 62], there is a constant $C = C_r > 0$ such that

$$|f(z)| \le \frac{C}{m(D_r(z))} \int_{D_r(z)} |f(w)| d m(w)$$

for all f analytic, z in D. If z in $D_r(\lambda_n) \cap \operatorname{supp} \nu$, then $D_r(z)$ is contained in $D_{2r}(\lambda_n) \cap E$, and there exists a constant $K = K_r > 0$ such that $m(D_{2r}(\lambda_n)) \leq C_r(\lambda_n)$

 $Km(D_r(z))$ for all $n \ge 1$ (cf. [9, p. 61]). Hence the Cauchy-Schwarz's inequality implies that

$$\begin{split} \int_{D} |f|^{2} d \ \nu &\leq \sum \nu(D_{r}(\lambda_{n})) \times \left(\frac{KC}{(m(D_{2r}(\lambda_{n})))} \int_{D_{2r}(\lambda_{n}) \cap E} |f| d \ m\right)^{2} \\ &\leq \sum \nu(D_{r}(\lambda_{n})) \times K^{2}C^{2} \\ & \times \left(\frac{1}{m(D_{2r}(\lambda_{n}))} \int_{D_{2r}(\lambda_{n})} |f|^{2} u \chi_{E} d \ m\right) \\ & \times \left(\frac{1}{m(D_{2r}(\lambda_{n}))} \int_{D_{2r}(\lambda_{n})} u^{-1} \chi_{E} d \ m\right) \\ &\leq K^{2}C^{2} \sum \hat{\nu}_{2r}(\lambda_{n}) \times (u_{E}^{-1})^{\wedge}_{2r}(\lambda_{n}) \\ & \times \left(\int_{D_{2r}(\lambda_{n}) \cap E} |f|^{2} u d \ m\right). \end{split}$$

By the hypothesis and a choice of disks, it follows that

$$\int_D |f|^2 d \
u \leq K^2 C^2 \gamma N \int_E |f|^2 d \ \mu.$$

This completes the proof.

Let μ be a finite nonzero positive measure on D. For any a in D, put

$$k_a(z) = (1 - |a|^2)/(1 - \bar{a}z)^2$$
 $(z \in D),$

and a function $\tilde{\mu}$ on D is defined by

$$\tilde{\mu}(a) = \int_D |k_a|^2 d \ \mu.$$

Moreover, for any fixed $r < \infty$, put

$$\varepsilon_r(\mu) = \sup_{a \in D} \left(\int_{D \setminus D_r(a)} |k_a|^2 d \ \mu \right) \times \left(\int_D |k_a|^2 d \ \mu \right)^{-1}.$$

If there exists a non-negative function u in L^1 such that $d \mu = ud m$, then making a change of variable, it is easy to see that

$$\varepsilon_r(\mu) = \sup_{a \in D} \left(\int_{D \setminus D_r(0)} u \circ \phi_a d \ m \right) \times \left(\int_D u \circ \phi_a d \ m \right)^{-1}.$$

In general $0 < \varepsilon_r(\mu) \le 1$. In this section and §4, this quantity ε_r is important. The following Proposition 2 gives two general necessary conditions on ν

 \Box

and μ which satisfy the (ν, μ) -Carleson inequality. In order to prove (2) of Proposition 2 we use ideas in [5, Theorem 4.3]. Since $\varepsilon_r(m) < 1$ and $\varepsilon_r(m) \to 0$ $(r \to \infty)$, (2) of Proposition 2 is related with (2) of §1.

Lemma 1. Let μ be a finite positive measure on D and $0 < r < \infty$, then the following $(1) \sim (3)$ are equivalent.

(1) $\varepsilon_r(\mu) < 1.$

(2) There is a $\delta = \delta_r < \infty$ such that

$$\int_{D\setminus D_r(a)} |k_a|^2 d \ \mu \leq \delta \int_{D_r(a)} |k_a|^2 d \ \mu$$

for all a in D.

(3) There is a $\rho = \rho_r < \infty$ such that

$$\tilde{\mu}(a) \leq \rho \hat{\mu}_r(a)$$

for all a in D

Proof. The implication $(1) \Rightarrow (2)$ is trivial. $(2) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ follow from Lemma 4.3.3 in [9, p. 60]. In fact, by Lemma 4.3.3, there exist $L = L_r > 0$ and $M = M_r > 0$ such that

$$L \le m(D_r(a)) \times \inf\{|k_a(z)|^2; z \in D_r(a)\}$$

and

$$m(D_r,(a)) imes \sup\{|k_a(z)|^2;z\in D_r(a)\}\leq M$$

for all a in D. Thus remainder implications are obtained.

Proposition 2. Suppose that ν and μ satisfy the (ν, μ) -Carleson inequality, then the following are true.

(1) If there exists $r < \infty$ such that $\varepsilon_r(\mu) < 1$, then there exists $\gamma > 0$ such that $\hat{\nu}_r(a) \leq \gamma \hat{\mu}_r(a)$ for all a in D.

(2) If $d \nu = vd m$, v > 0 a.e. on D, $\varepsilon_t(\nu) \to 0$ $(t \to \infty)$, and there are l > 0 and $\gamma' > 0$ such that $\hat{\mu}_l(a) \times (v^{-1})_l^{\wedge}(a) \leq \gamma'$ for all a in D, then there are r > 0 and $\gamma = \gamma_r > 0$ such that $\hat{\nu}_r(a) < \gamma \hat{\mu}_r(a)$ for all a in D.

Proof. Since $k_a(z)$ is uniformly approximated by polynomials, the inequality is valid for $f = k_a$, that is

$$\int_D |k_a|^2 d \ \nu \leq C \int_D |k_a|^2 d \ \mu$$

Firstly, we show that (1) is true. The above inequality and Lemma 1 imply that

$$\tilde{\nu}(a) \le C\tilde{\mu}(a) \le C\rho\hat{\mu}_r(a)$$

for all a in D. Moreover, by Lemma 4.3.3 in [9, p. 60], there exists a constant L > 0 such that

$$\hat{\nu}_r(a) \le L^{-1} \tilde{\nu}(a)$$

for all a in D. Hence we have that

$$\hat{\nu}_r(a) \le C\rho L^{-1}\hat{\mu}_r(a).$$

Next, we prove that (2) is true. For any a in D and $r \ge l$, put $d \mu_{a,r} = (1 - \chi_{D_r(a)})d \mu$. By the latter half of the hypothesis in (2), we have that

$$(\mu_{a,r})_l^\wedge(\lambda) \times (v^{-1})_l^\wedge(\lambda) \le \gamma'$$

for all a, λ in D, and $r \geq l$. Set $E_{a,r,l} = \{z \in D; \text{ there is a } w \text{ in supp } \mu_{a,r}, \text{ such that } \beta(z,w) < l/2\}$. By Proposition 1, there exists a constant C' > 0 such that

$$\int_{D\setminus D_r(a)} |f|^2 d \ \mu \leq C' \int_{E_{a,r,l}} |f|^2 d \
u$$

for all a in D, $r \ge l$ and f in P. Here we claim that $E_{a,r,l}$ is contained in $D \setminus D_{r/2}(a)$. In fact, since $D \setminus D_r(a)$ contains $\operatorname{supp} \mu_{a,r}$ and $r \ge l$, if z belongs to $E_{a,r,l}$ then there exists w in D such that $\beta(w, a) \ge r$ and $\beta(w, z) < r/2$. Therefore,

$$r \leq \beta(w,a) \leq \beta(w,z) + \beta(z,a) < r/2 + \beta(z,a),$$

thus we have that z is contained in $D \setminus D_{r/2}(a)$. Particularly put $f = k_a$ in the above inequality, then

$$\int_{D\setminus D_r(a)} |k_a|^2 d\ \mu \le C' \int_{D\setminus D_{r/2}(a)} |k_a|^2 d\ \nu$$

for all a in D and $r \ge l$. It follows that

$$\begin{split} \int_{D_r(a)} |k_a|^2 d \ \mu &= \int_D |k_a|^2 d \ \mu - \int_{D \setminus D_r(a)} |k_a|^2 d \ \mu \\ &\geq C^{-1} \int_D |k_a|^2 d \ \nu - C' \int_{D \setminus D_{r/2}(a)} |k_a|^2 d \ \nu \end{split}$$

By the definition of $\varepsilon_t(\nu)$, the above inequality implies that

$$\int_{D_{r}(a)} |k_{a}|^{2} d \ \mu \geq \left(C^{-1} - C' \varepsilon_{r/2}(\nu) \right) \int_{D} |k_{a}|^{2} d \ \nu$$

for all a in D and $r \geq l$. Here let r be sufficiently large, then by the hypothesis on $\varepsilon_r(\nu), C^{-1} - C'\varepsilon_{r/2}(\nu) > 0$, and by Lemma 4.3.3 in [9, p. 60], we conclude that

$$\hat{\mu}_r(a) \ge [M^{-1}(C^{-1}C'\varepsilon_{r/2}(\nu))L]\hat{\nu}_r(a)$$

for all a in D.

§3. (A_2) -condition.

For a complex measure μ on D, recall that a function $\tilde{\mu}$ on D is defined by

$$ilde{\mu}(a) = \int_D |k|^2 d \ \mu.$$

Particularly, if there exists a complex valued L^1 -function u such that $d \mu = ud m$, then we denote the function by \tilde{u} instead of $\tilde{\mu}$, and say that \tilde{u} is the Berezin transform of the function u.

Let v and u be non-negative functions in L^1 , put $d \nu = vd m$ and $d \mu = ud m$. Suppose that there is a constant $\gamma > 0$ such that

$$\tilde{v}(a) \times (u^{-1})^{\sim}(a) \le \gamma$$

for all a in D, then Lemma 4.3.3 in [9, p. 60] implies that there exist r > 0and $\gamma' > 0$ such that

$$\hat{v}_r(a) \times (u^{-1})^\wedge_r(a) \le \gamma'$$

for all a in D, and hence by Proposition 1, we obtain that the (ν, μ) -Carleson inequality is satisfied. In the above two inequalities, if we put u = v, then such a function u is interesting for us.

A non-negative function u in L^1 is said to satisfy an $(A_2)_{\partial}$ -condition, if there exists a constant A > 0 such that

$$\tilde{u}(a) \times (u^{-1})^{\sim}(a) \le A$$

for all a in D. If there exist r > 0 and $A_r > 0$ such that

$$\hat{u}_r(a) \times (u^{-1})^\wedge_r(a) \le A_r$$

for all a in D, then we say that u satisfies an (A_2) -condition. In [**6**], the (A_2) -condition is called Condition C_2 . It is known that u satisfies the (A_2) -condition for some $0 < r < \infty$ if and only if u satisfies the (A_2) -condition for all $0 < r < \infty$ [**6**]. Hence it shows that the definition of the (A_2) -condition is independent of r. In general, Lemma 4.3.3 in [**9**, p. 60] and the familiar inequality between the harmonic and arithmetic means imply that for any $0 < r < \infty$ there exists a constant $M = M_r > 0$ such that $M^{-1}(u^{-1})^{\sim -1} \leq (u^{-1})_r^{\wedge -1} \leq \hat{u}_r \leq M\tilde{u}$. Therefore, if u satisfies the (A_2) -condition, then $(u^{-1})^{\sim -1}, (u^{-1})_r^{\wedge -1}, \hat{u}_r$, and \tilde{u} are equivalent. Similarly, if u satisfies the (A_2) -condition, then $(u^{-1})^{\sim -1}$, $(u^{-1})_r^{\wedge -1}$, and \hat{u}_r , are equivalent. When u is in $L^1(\partial D)(L^1$ is a usual Lebesgue space on the unit circle and $k_a(z)$ is a normalized reproducing kernel of a Hardy space), the $(A_2)_{\partial}$ -condition has been studied in [**3**, (c) of Theorem 2].

The following Theorem 3 gives a necessary and sufficient condition in order to satisfy the (ν, μ) -Carleson inequality when $d \mu = u d m$ and u satisfies the $(A_2)_{\partial}$ -condition.

Theorem 3. Suppose that u satisfies the $(A_2)_{\partial}$ -condition, then the following are equivalent.

(1) There is a constant C > 0 such that

$$\int_D |f|^2 d \ \nu \leq C \int_D |f|^2 u \ d \ m$$

for all f in P.

(2) There exist r > 0 and $\gamma > 0$ such that

$$\hat{
u}_r(a) \leq \gamma \hat{u}_r(a)$$

for all a in D.

(3) For any r > 0, there exists $\gamma = \gamma_r > 0$ such that

$$\hat{\nu}_r(a) \le \gamma \hat{u}_r(a)$$

for all a in D.

Proof. Suppose that (1) holds. Since u satisfies the $(A_2)_{\partial}$ -condition, by (1) of Proposition 8, u satisfies a relation in (3) of Lemma 1 for all r > 0. Therefore, (3) follows from (1) of Proposition 2. The implication (3) \Rightarrow (2) is obvious. We will show that (2) \Rightarrow (1). Since u satisfies the $(A_2)_{\partial}$ -condition, u^{-1} is integrable, hence u > 0 a.e. on D. Moreover, by (5) of Proposition 4, usatisfies the (A_2) -condition for all r > 0 and therefore (2) implies that

$$\hat{
u}_r(a) imes (u^{-1})^\wedge_r(a) \le A_r \gamma$$

for all a in D. In the statement of Proposition 1, put E = D, then the above fact shows that the inequality in (1) is satisfied. This completes the proof.

For any u in L^2 , a in D, we put

$$MO(u)(a) = \{|u|^{2\sim}(a) - |\tilde{u}(a)|^2\}^{1/2},$$

and let BMO_{∂} be the space of functions u such that MO(u)(a) is bounded on D (cf. [9, p. 127]). We give several simple sufficient conditions.

Proposition 4. Let u be a non-negative function in L^1 , then the following are true.

(1) If both \tilde{u} and $(u^{-1})^{\sim}$ are in L^{∞} , then u satisfies the $(A_2)_{\partial}$ -condition.

(2) If both u and u⁻¹ are in BMO_∂, then u satisfies the (A₂)_∂-condition.
(3) Let 1 < p,q < ∞ and 1/p + 1/q = 1. If u₁^p and u₂^q satisfy the (A₂)_∂-

condition, then $u = u_1 u_2$ satisfies the $(A_2)_{\partial}$ -condition.

(4) Suppose that f is a complex valued function in L^1 such that $f \neq 0$ on D, f^{-1} is in L^1 , $\tilde{f} \times (f^{-1})^{\sim}$ is in L^{∞} , and $|\arg f| \leq \pi/2 - \varepsilon$ for some $\varepsilon > 0$. If u = |f|, then u satisfies the $(A_2)_{\partial}$ -condition.

(5) If u satisfies the $(A_2)_{\partial}$ -condition, then u satisfies the (A_2) -condition.

Proof. (1) is trivial. By Proposition 6.1.7 in [9, p. 108], we have that

$$\tilde{u}(a) \times (u^{-1})^{\sim}(a) \le MO(u)(a) \times MO(u^{-1})(a) + 1.$$

This implies that (2) is true. The Hölder's inequality implies that (3) is true. (5) follows from Lemma 4.3.3 in [9, p. 60].

We show that (4) is true. Suppose that u = |f| and there exists $\varepsilon > 0$ such that $|\arg f| \le \pi/2 - \varepsilon$ on *D*. Since $|\arg f| \le \pi/2 - \varepsilon$ on *D*, there exists $\delta > 0$ such that $\cos(\arg f) \ge \delta$ on *D*. Therefore, we have that

$$\operatorname{Re} f = |f| \times \cos(\arg f) \ge |f| \cdot \delta = \delta u.$$

For any a in D, it follows that

$$\delta ilde{u}(a) \leq \int \operatorname{Re} f \cdot |k_a|^2 d \ m \leq | ilde{f}(a)|.$$

Similarly, we have that

$$\delta(u^{-1})^{\sim}(a) \le |(f^{-1})^{\sim}(a)|.$$

Thus,

$$\tilde{u}(a) \times (u^{-1})^{\sim}(a) \leq \delta^{-2} \times |\tilde{f}(a)| \times |(f^{-1})^{\sim}(a)|$$

for all a in D, and hence (4) follows.

We exhibit some concrete examples which satisfy the $(A_2)_{\partial}$ -condition.

Proposition 5. If u is a function that is given by (1), (2), or (3), then u satisfies the $(A_2)_{\partial}$ -condition.

(1) For any $-1 < \alpha < 1$, put $u(z) = (1 - |z|^2)^{\alpha}$.

(2) Let $\{b_j\}$ be a finite sequence of complex numbers in $D \cup \partial D$ with $b_i \neq b_j (i \neq j)$, and let $0 \leq \alpha(j) < 2$ for all j or $-2 < \alpha(j) \leq 0$ for all j. Put $u = \prod p_j^{\alpha(j)}$ where $p_j(z) = |z - b_j|$.

(3) Let
$$\{b_j\}, \{p_j\}$$
 as in (2) and $-1 < \alpha(j) < 1$ for all j. Put $u = \prod p_j^{\alpha(j)}$.

Proof. We suppose that u has the form of (1). For any a in D, making a change of variable, we have that

$$\begin{split} \tilde{u}(a) \times (u^{-1})^{\sim}(a) &= \int (1 - |a|^2)^{\alpha} (1 - |z|^2)^{\alpha} |1 - \bar{a}z|^{2\alpha} d \ m(z) \\ &\times \int (1 - |a|^2)^{-\alpha} (1 - |z|^2)^{-\alpha} |1 - \bar{a}z|^{2\alpha} d \ m(z) \\ &= \int (1 - |z|^2)^{\alpha} |1 - \bar{a}z|^{-2\alpha} d \ m(z) \\ &\times \int (1 - |z|^2)^{-\alpha} |1 - \bar{a}z|^{2\alpha} d \ m(z). \end{split}$$

Since $-1 < \alpha < 1$, Rudin's lemma (cf. [9, p. 53]) implies that both factors of the right hand side in the above equality are bounded. Hence satisfies the $(A_2)_{\partial}$ -condition.

We show that u satisfies the $(A_2)_{\partial}$ -condition when u has the form of (2). Let α be a real number such that $0 < \alpha < 2$. For any fixed b in D, put p(z) = |z-b|. Firstly, we show that the Berezin transform of $p^{-\alpha}$ is bounded. In fact, making a change of variable, elementary calculations show that

$$(p^{-\alpha})^{\sim}(a) \leq |1 - \bar{a}b|^{-\alpha} \cdot ||1 - \bar{a}z||_{\infty}^{a} \times \int |\phi_{a}(b) - z|^{-\alpha} d m(z).$$

Since $\phi_a(b) - z$ lies in $2D = \{2z; z \in D\}$ for any a, z in D and an area measure is translation invariant, we have that

$$(p^{-\alpha})^{\sim}(a) \le (1-|b|)^{-\alpha} \cdot ||1-\bar{a}z||_{\infty}^{\alpha} \times \int_{2D} |w|^{-\alpha} d m(w)$$

for all a in D. Hence we obtain that the Berezin transform of $p^{-\alpha}$ is bounded. Next, let b be in ∂D and put p(z) = |z - b|. Then, as in the proof of the above case, we have that

$$(p^{\alpha})^{\sim}(a) \leq |a-b|^{\alpha} \cdot ||\phi_a(b)-z||_{\infty}^{\alpha} \times \int |1-\bar{a}z|^{-\alpha} d m(z),$$

and

$$(p^{-lpha})^{\sim}(a) \leq |a-b|^{-lpha} \cdot \|1-\bar{a}z\|_{\infty}^{lpha} imes \int_{2D} |w|^{-lpha} d m(w).$$

Therefore, Rudin's lemma implies that p^{α} satisfies the $(A_2)_{\partial}$ -condition. For any b_1 in D and b_2 in ∂D , put $p_1(z) = |z - b_1|$ and $p_2(z) = |z - b_2|$. Fix $0 < \alpha(j) < 2$ for j = 1, 2 and $\varepsilon > 0$. Because $b_1 = b_2$, there exist measurable subsets B_j of D such that $B_1 \cap B_2 = \phi$ and $p_j \ge \varepsilon$ on B_j^c for j = 1, 2. Set $B_0 = D \setminus B_1 \cup B_2$, then

$$\begin{split} (p_{1}^{\alpha(1)} \cdot p_{1}^{\alpha(2)})^{\sim} & (a) \times (p_{1}^{-\alpha(1)} \cdot p_{2}^{-\alpha(2)})^{\sim}(a) \\ & \leq (p_{1}^{\alpha(1)} \cdot p_{2}^{\alpha(2)})^{\sim}(a) \times \left(\varepsilon^{-\alpha(1)-\alpha(2)} \int_{B_{0}} |k_{a}|^{2} d \ m \\ & + \varepsilon^{-\alpha(2)} \int_{B_{1}} p_{1}^{-\alpha(1)} |k_{a}|^{2} d \ m \\ & + \varepsilon^{-\alpha(1)} \int_{B_{2}} p_{2}^{-\alpha(2)} |k_{a}|^{2} d \ m \right) \\ & \leq M_{0} \times \varepsilon^{-\alpha(1)-\alpha(2)} + M_{0} \times \varepsilon^{-\alpha(2)} \cdot (p_{1}^{-\alpha(1)})^{\sim}(a) \\ & + M_{1} \times \varepsilon^{-\alpha(1)} \cdot (p_{2}^{\alpha(2)})^{\sim}(a) \cdot (p_{2}^{-\alpha(2)})^{\sim}(a), \end{split}$$

where $M_0 = \|p_1^{\alpha(1)} \cdot p_2^{\alpha(2)}\|_{\infty}$ and $M_1 = \|p_1^{\alpha(1)}\|_{\infty}$. Hence we have that $p_1^{\alpha(1)} \cdot p_2^{\alpha(2)}$ satisfies the $(A_2)_{\partial}$ -condition. If u has the form of (2), then applying the same argument for finitely many factors of u and u^{-1} , we obtain that u satisfies $(A_2)_{\partial}$ -condition.

Apparently, (3) follows from (2) of this proposition and (3) of Proposition 4. In fact, we let $-1 < \alpha(j) < 1$ for all j, and set

$$j(+) = \{j; \ \alpha(j) \ge 0\}, \quad j(-) = \{j; \ \alpha(j) < 0\}.$$

Put $u_1 = \prod_{j(+)} p_j^{\alpha(j)}$ and $u_2 = \prod_{j(-)} p_j^{\alpha(j)}$, then u_1^2 and u_2^2 satisfy the $(A_2)_\partial$ -condition. Hence, (3) of Proposition 4 implies that $u = u_1 \times u_2$ satisfies the $(A_2)_\partial$ -condition.

Corollary 1 is a partial result of [2], [7] and [8].

Corollary 1, Oleinik-Pavlov-Hastings-Stegenga. Let ν be a finite positive measure on D. For any $-1 < \alpha < 1$, there is a constant C > 0 such that

$$\int_D |f|^2 d \,\,
u \leq C \int_D |f|^2 (1-|z|^2)^lpha d \,\, m$$

for all f in P if and only if there exist r > 0 and $\gamma > 0$ such that

$$\hat{\nu}_r(a) \leq \gamma (1 - |a|^2)^{lpha}$$

for all a in D.

Proof. Since $[(1-|z|^2)^{\alpha}]_r^{\wedge}(a)$ is comparable to $(1-|a|^2)^{\alpha}$, by Theorem 3 and (1) of Proposition 5 the corollary follows.

Lemma 2. Let $\{b_j\}$ be a finite sequence of complex numbers in $D \cup \partial D$ with $b_i \neq b_j (i \neq j)$, and let $\{\alpha(j)\}$ be a finite sequence of real numbers such that $-2 < \alpha(j)$ when j is in Λ^c (the definition of Λ is below). Put $p_j(z) = |z - b_j|$ and $u = \prod p_j^{\alpha(j)}$, and let $0 < r < \infty$, then there are constants $\gamma_1 > 0$ and $\gamma_2 > 0$ such that

$$\gamma_1 \hat{u}_r(a) \leq \prod_{j \in \Lambda} |a-b_j|^{lpha(j)} \leq \gamma_2 \hat{u}_r(a)$$

for all a in D, here $\Lambda = \{j; b_j \text{ is in } \partial D\}.$

Proof. For any fixed $0 < r < \infty$, in general, Lemma 4.3.3 in [9, p. 60] implies that there are constants L > 0 and M > 0 such that

$$L\hat{u}_r(a) \leq \int_{D_r(0)} u \circ \phi_a d \ m \leq M\hat{u}_r(a)$$

for all a in D, where u is a non-negative integrable function on D. Let $u = \prod |z - b_j|^{\alpha(j)}$, $\{b_j\} \subset D \cup \partial D$, $b_i \neq b_j (i \neq j)$, and $\alpha(j)$ be real numbers. Then, by the same calculations in the proof of (2) of Proposition 5, we have that

$$\int_{D_r(0)} u \circ \phi_a d m$$

= $\prod |1 - \bar{a}b_j|^{\alpha(j)} \int_{D_r(0)} \prod |\phi_a(b_j) - z|^{\alpha(j)} \cdot |1 - \bar{a}z|^{-\Sigma\alpha(j)} d m(z).$

 \mathbf{Put}

$$I(a) = \int_{D_r(0)} \prod |\phi_a(b_j) - z|^{a(j)} d m(z),$$

then it is easy to see that $\int_{D_r(0)} u \circ \phi_a d m$ is equivalent to

$$I(a) imes \prod_{j \in \Lambda} |a - b_j|^{\alpha(j)}.$$

Firstly, we show that the lemma is true when $0 \le \alpha(j)$ for all j. By the above facts, it is enough to prove that the integration

$$I(a) = \int_{D_r(0)} \prod |\phi_a(b_j) - z|^{\alpha(j)} d m(z)$$

is bounded below for all a in D, because $0 \leq \alpha(j)$. Conversely, suppose that there exists $\{a_n\} \subset D$ such that $I(a_n) < 1/n$. Here we can choose a subsequence $\{a_k\} \subset \{a_n\}$ such that $a_k \to a'(k \to \infty)$, where a' may be in $D \cup \partial D$. Therefore, Fatou's lemma implies that I(a') = 0, thus it follows that $\prod |\phi_{a'}(b_j) - z|^{\alpha(j)} = 0$ on $D_r(0)$. This contradiction implies that the assertion is true when $0 \leq \alpha(j)$ for all j.

Next, we prove that the lemma is true when $-2 < \alpha(j) < 0$ for all jin Λ^c and $-\infty < \alpha(j) < 0$ for all j in Λ . In fact, we claim that I(a) is bounded for all a in D. If j is in Λ , then $|\phi_a(b_j)| = 1$ for all a in D, therefore $|\phi_a(b_j) - z|^{-1}$ is bounded, because z belongs to $D_r(0)$. Analogously, if j is in Λ^c , then $|\phi_a(b_j)| \to 1$ ($|a| \to 1$), therefore $|\phi_a(b_j) - z|^{-1}$ is bounded when a is nearby ∂D , because z belongs to $D_r(0)$. Thus, it is sufficient to prove that

$$J(a) = \int_{D_r(0)} \prod_{j \in \Lambda^c} |\phi_a(b_j) - z|^{lpha(j)} d \; m(z)$$

is bounded for all a in $U_{\eta}(0) = \{a \in D; |a| \leq \eta\}$, where $0 < \eta < 1$ is a constant which is close to 1. Put

$$\Phi_{i,j}(a) = |\phi_a(b_i) - \phi_a(b_j)| \quad (i, j \in \Lambda^c, \ a \in U_\eta(0)).$$

For any fixed $i, j \in \Lambda^c$, since $\Phi_{i,j}$ is a continuous function on $U_{\eta}(0)$ and Möbius functions are one-to-one correspondence on D, there exists $\varepsilon(i,j) > 0$ such that $\Phi_{i,j}(a) \ge \varepsilon(i,j)$ for all a in $U_{\eta}(0)$ when $i \ne j$. Put $\varepsilon = \min\{\varepsilon(i,j)/2; i, j \in \Lambda^c \text{ such that } i \ne j\},$

$$B_j(a) = \{z \in D_r(0); |\phi_a(b_j) - z| < \varepsilon\}$$

and $B_0(a) = D_r(0) \setminus \bigcup B_j(a)$. For any j in $\Lambda^c \cup \{0\}$, since $|\phi_a(b_i) - z| \ge \varepsilon$ when z belongs to $B_j(a)$ and i belongs to Λ^c such that $i \neq j$, therefore we have that

$$J(a) \leq \sum_{j \in \Lambda^{c}} \varepsilon^{\alpha - \alpha(j)} \int_{B_{j}(a)} |\phi_{a}(b_{j}) - z|^{\alpha(j)} d m(z) + \varepsilon^{\alpha} \int_{B_{0}(a)} d m(z)$$
$$\leq \sum_{j \in \Lambda^{c}} \varepsilon^{\alpha - \alpha(j)} \int_{2D} |w|^{\alpha(j)} d m(w) + \varepsilon^{\alpha}$$

where

$$\alpha = \sum_{j \in \Lambda^c} \alpha(j).$$

Therefore, J is bounded on $D_{\eta}(0)$, and hence we obtain that I is bounded on D.

Using the above facts, we can show that the assertion is true when u has the general form of the statement of this lemma. Let $\{\alpha(j)\}$ be a finite sequence of real numbers such that $-2 < \alpha(j) < \infty$ when j is in Λ^c and $-\infty < \alpha(j) < \infty$ when j is in Λ . As in the proof of Proposition 5, set $j(+) = \{j; \ \alpha(j) \ge 0\}$ and $j(-) = \{j; \ \alpha(j) < 0\}$, then we have that

$$I(a) \leq 2^{\Sigma_{j(+)}lpha(j)} \int_{D_r(0)} \prod_{j(-)} |\phi_a(b_j) - z|^{lpha(j)} d \; m(z)$$

and

$$I(a) \geq 2^{\sum_{j(-)} lpha(j)} \int_{D_r(0)} \prod_{j(+)} |\phi_a(b_j) - z|^{lpha(j)} d m(z).$$

Therefore, we obtain that I is bounded and bounded below on D. Hence, this completes the proof.

Corollary 2. Let u be a non-negative function in L^1 that is given by (2), or (3) of Proposition 5 and ν be a finite positive measure on D, then there is a constant C > 0 such that

$$\int_D |f|^2 d \ \nu \leq C \int_D |f|^2 u \ d \ m$$

for all f in P if and only if there exist r > 0 and $\gamma = \gamma_r > 0$ such that

$$\hat{
u}_r(a) \leq \gamma \prod_{j \in \Lambda} |a - b_j|^{lpha(j)}$$

for all a in D, here $\Lambda = \{j; b_j \text{ is in } \partial D\}.$

Proof. The corollary follows from Theorem 3, Proposition 5 and Lemma 2. \Box

We give a characterization of u which satisfies the (A_2) -condition or the $(A_2)_{\partial}$ -condition when u is a modulus of a rational function or a modulus of a polynomial, respectively. Let u be a non-negative integrable function on D, then it is easy to see that if u satisfies the $(A_2)_{\partial}$ -condition then u^{-1} is integrable on D. But, we claim that the converse is true, when u is a modulus of a polynomial. As the result, we show that the $(A_2)_{\partial}$ -condition is properly contained in the (A_2) -condition. The essential part of the following theorem is proved in Proposition 5 and Lemma 2.

Theorem 6. Let $\{b_j\}$ be a finite sequence of complex numbers such that $b_i \neq b_j (i \neq j)$ and $\{\alpha(j)\}$ be a finite sequence of real numbers. Put $p_j(z) = |z - b_j|$ and $u = \prod p_j^{\alpha(j)}$, then the following are true.

(1) If $\alpha(j) \geq 0$ for all j or $\alpha(j) \leq 0$ for all j, then u satisfies the $(A_2)_{\partial}$ -condition if and only if $\alpha(j) < 2$ or $\alpha(j) > -2$ when b_j is in $D \cup \partial D$ respectively.

(2) u satisfies the (A_2) -condition if and only if $-2 < \alpha(j) < 2$ when b_j is in D.

Proof. (1) By (2) of Proposition 5 and the remark above this theorem, it is enough to prove that u^{-1} is not integrable on D when $\alpha(j) \geq 2$ for some b_j in $D \cup \partial D$. Suppose that there is a j such that b_j in $D \cup \partial D$ and $\alpha(j) \geq 2$, then there exists a L^{∞} -function h such that $u(z) = |z - b_j|^2 \cdot h(z)$. It is easy to see that u^{-1} is not integrable on $U = \{z \in D; |z - b| < \operatorname{dist}(b_j, \partial D)\}$ when b_j is in D, therefore we consider the case when $b_j = 1$. Put $M_2 = ||h||_{\infty}$, then

$$\int u^{-1}d \ m \ge M_2^{-1} \int_0^1 2r \int_0^{2\pi} |1 - re^{i\theta}|^2 d \ \theta / 2\pi d \ r$$
$$= M_2^{-1} \int_0^1 2r (1 - r^2)^{-1} \ d \ r = M_2^{-1} \int_0^1 t^{-1} \ d \ t.$$

Hence we obtain that u^{-1} is not integrable.

(2) Suppose that $-2 < \alpha(j) < 2$ when b_j is in D, then apparently Lemma 2 implies that u satisfies the (A_2) -condition. Conversely, suppose that there exist r > 0 and $A_r > 0$ such that

$$\hat{u}_r(a) \times (u^{-1})^{\wedge}_r(a) \le A_r$$

for all a in D. Since \hat{u}_r is non-zero on D, therefore $(u^{-1})_r^{\wedge}(a) < \infty$ for all a in D. By the same argument in (1), we have that $\alpha(j)$ must be less than 2 when b_j is in D. In fact, if $\alpha(j) \geq 2$ for some b_j in D, then there exists a function h such that $u(z) = |z - b_j|^2 \cdot h(z)$. Put

$$\varepsilon = \min\{\operatorname{dist}(b_i, b_j)/2; i \neq j\}$$

 and

$$U(j) = \{ z \in D; |z - b_j| < \varepsilon \},\$$

then obviously h is bounded on U(j). Since there exists a_j such that a center of the Bergman disk $D_r(a_j)$ is just equal to b_j , therefore we have that u^{-1} is not integrable on $D_r(a_j) \cap U(j)$, and thus, it follows that the average of u^{-1} on $D_r(a_j)$ is infinite. This contradicts the above fact. Consequently, we obtain that $\alpha(j)$ must lie in $(-\infty, 2)$ when b_j is in D. Applying the same argument to u^{-1} , we have that $\alpha(j)$ must lie in $(-2, \infty)$ when b_j is in D. Therefore, we conclude that $-2 < \alpha(j) < 2$ when b_j is in D.

§4. Uniformly absolutely continuous.

Recall that

$$\varepsilon_r(\mu) = \sup_{a \in D} \left(\int_{D \setminus D_r(a)} |k_a|^2 \ d \ \mu \right) \times \left(\int_D |k_a|^2 \ d \ \mu \right)^{-1},$$

where μ is a finite positive measure on D (see Lemma 1 and Proposition 2). Using the quantity ε_r we give a necessary condition on ν and μ which satisfy the (ν, μ) -Carleson inequality.

Theorem 7. Suppose that $d \nu = vd m$, $\varepsilon_t(\nu) \to 0$ $(t \to \infty)$, and that v satisfies the (A_2) -condition, furthermore μ and ν satisfy the (μ, ν) -Carleson inequality. If there is a constant C > 0 such that

$$\int_D |f|^2 d \ \nu \leq C \int_D |f|^2 d \ \mu$$

for all f in P, then there exist r > 0 and $\gamma > 0$ such that

$$\hat{
u}_r(a) \leq \gamma \hat{\mu}_r(a)$$

for all a in D.

Proof. By hypotheses on ν and Lemma 1, there exist $t > 0, \rho > 0$ and A > 0 such that

$$\tilde{\nu} \le \rho \cdot \hat{\nu}_t \le A\rho \cdot (v^{-1})_t^{\wedge -1}.$$

Moreover, Lemma 4.3.3 in [9, p. 60] and the (μ, ν) -Carleson inequality imply that there exist L > 0 and C' > 0 such that

$$L \cdot \hat{\mu}_t \leq \tilde{\mu} \leq C' \cdot \tilde{\nu}.$$

Thus, a desired result follows from (2) of Proposition 2.

Luecking [5] shows the above theorem when ν is the Lebesgue area measure m. It is clear that $\varepsilon_r(m) \to 0$ $(r \to \infty)$ and m satisfies the (A_2) condition. Now, we are interested in measures μ such that $\varepsilon_r(\mu) < 1$ or $\varepsilon_r(\mu) \to 0 (r \to \infty)$.

Proposition 8. Suppose that $d \mu = ud m$, and u is a non-negative function in L^1 . If u is the function such that (1) or (2), then there exists $0 < r < \infty$ such that $\varepsilon_r(\mu) < 1$.

- (1) u satisfies the $(A_2)_{\partial}$ -condition.
- (2) $u(z) = (1 |z|^2)^{\alpha}$ for some $1 \le \alpha < 2$.

Proof. If u has the property in (1), then by the remark above Theorem 3, for any r > 0 there is a positive constant $\rho = \rho_r$ such that $\tilde{\mu}(a) \leq \rho \hat{\mu}_r(a)$ for

all *a* in *D* and hence $\varepsilon_r(\mu) < 1$ by Lemma 1. Suppose that *u* has the form of (2). For any fixed $1 \leq \alpha < 2$, put $u(z) = (1 - |z|^2)^{\alpha}$, Then, Rudin's lemma (cf. [9, p. 53]) shows that

$$ilde{u}(a) = (1 - |a|^2)^{lpha} \int_D (1 - |z|^2)^{lpha} |1 - ar{a}z|^{-2lpha} d \ m(z) \leq \gamma (1 - |a|^2)^{lpha},$$

where $\gamma > 0$ is finite. On the other hand, Lemma 4.3.3 in [9, p. 60] implies that

$$\begin{split} \hat{u}_r(a) &\geq M^{-1} \times (1 - |a|^2)^{\alpha} \int_{D_r(0)} (1 - |z|^2)^{\alpha} |1 - \bar{a}z|^{-2\alpha} d\ m(z) \\ &\geq M^{-1} \times (1 - |z|^2)^{\alpha} (1 - \tanh^2 r)^{\alpha} \times 2^{-2\alpha}, \end{split}$$

therefore, by (3) of Lemma 1, we obtain that $\varepsilon_r(\mu) < 1$.

Proposition 9. Suppose that $d \mu = ud m$, and u is a non-negative function in L^1 . If u is one of the following functions $(1) \sim (7)$, then $\varepsilon_r(\mu) \to 0 (r \to \infty)$.

(1) There exists $\varepsilon_0 > 0$ such that $\tilde{u} \ge \varepsilon_0$ on D, and $\{u \circ \phi_a d \ m; a \in D\}$ is uniformly absolutely continuous with respect to the Lebesgue area measure m.

(2) There exists $\varepsilon_0 > 0$ such that $\tilde{u} \ge \varepsilon_0$ on D, and there is a constant C > 0 such that $(u^{1+\beta})^{\sim} \le C$ on D for some $\beta > 0$.

(3) u is in L^{∞} , and there exist r > 0 and $\delta > 0$ such that $u \ge \delta$ on $D \setminus D_r(0)$.

(4) u = |p|, where p is an analytic polynomial which has no zeros on ∂D.
(5) u(z) = (1 - |z|²)^α for some -1 < α ≤ 1.

(6) $u = \prod p_j^{\alpha(j)}$, where $p_j(z) = |z - \beta_j|$, $b_i \neq b_j (i \neq j)$, and $0 < \alpha(j) < 2$ for b_j in $D \cup \partial D$, or $-2 < \alpha(j) < 0$ for b_j in $D \cup \partial D$.

(7) $u = \prod p_j^{\alpha(j)}$ where $p_j(z) = |z - b_j|$, $b_i \neq b_j (i \neq j)$, and $-1 < \alpha(j) < 1$ for b_j in $D \cup \partial D$.

Proof. Firstly, we show that the assertion is true when u has the property of (1). Since $\{u \circ \phi_a d \ m; a \in D\}$ is uniformly absolutely continuous, for any $\varepsilon > 0$ there exists r > 0 such that $\int_{D_r(0)^{\varepsilon}} u \circ \phi_a d \ m < \varepsilon_0 \cdot \varepsilon$ for all a in D. Therefore, making a change of variable, let r be sufficiently large, then $\varepsilon_r(\mu) < \varepsilon_0^{-1} \cdot \varepsilon_0 \cdot \varepsilon = \varepsilon$. Hence, we obtain that $\varepsilon_r(\mu) \to 0 (r \to \infty)$.

Next, we prove the implications $(2) \Rightarrow (1), (3) \Rightarrow (2), \text{ and } (4) \Rightarrow (3)$. Then $\varepsilon_r(\mu) \to 0$ when u is a function such that (2), (3) or (4). In fact, suppose that there exists $\beta > 0$ such that the Berezin transform of the function $u^{1+\beta}$ is bounded, then a set of functions $\{u \circ \phi_a; a \in D\}$ is uniformly integrable (cf. [1, p. 120]), therefore it follows that $\{u \circ \phi_a d m; a \in D\}$ is uniformly

absolutely continuous with respect to m. Hence, (2) implies (1). If there exist r > 0 and $\delta > 0$ such that $u \ge \delta$ on $D \setminus D_r(0)$, then

$$\tilde{u}(a) \ge \delta - \delta \int_{D_r(0)} |k_a|^2 d\ m = \delta[1 - m(D_r(a))] \ge \delta(1 - \tanh^2 r) > 0.$$

Hence (3) implies (2) because $(u^{1+\beta})^{\sim}(a) \leq ||u||_{\infty}^{1+\beta}$ for all a in D and any $\beta > 0$. Next, let p be an analytic polynomial which has no zeros on ∂D , then there are r > 0 and $\delta > 0$ such that $u = |p| \geq \delta$ on $D \setminus D_r(0)$, therefore $(4) \Rightarrow (3)$.

We prove that the assertion is true when u has the form of (5). For any fixed $-1 < a \leq 1$, put $u(z) = (1 - |z|^2)^{\alpha}$ and making a change of variable, then

$$\varepsilon_r(\mu) = \sup\left(\int_D (1-|z|^2)^{\alpha} |1-\bar{a}z|^{2\alpha} d\ m(z)\right)$$
$$\times \left(\int_{D\setminus D_r(0)} (1-|z|^2)^{\alpha} |1-\bar{a}z|^{-2\alpha} d\ m(z)\right).$$

When $0 \le \alpha \le 1$, since $0 < 1 - |z|^2 \le 1$, we have that

$$\int_{D} (1 - |z|^2)^{\alpha} |1 - \bar{a}z|^{-2\alpha} d\ m \ge 2^{-2\alpha} \int_{D} (1 - |z|^2) d\ m = \text{constant.}$$

If $-1 < \alpha < 0$, then the familiar inequality between the harmonic and arithmetic means shows that

$$\begin{split} \int_{D} (1-|z|^{2})^{\alpha} |1-\bar{a}z|^{-2\alpha} d \ m &\geq \left(\int_{D} (1-|z|^{2})^{-\alpha} |1-\bar{a}z|^{2\alpha} d \ m \right)^{-1} \\ &\geq \ \text{constant.} \end{split}$$

Here, the last inequality follows from Rudin's lemma (cf. [9, p. 53]). Again using Rudin's lemma, since $-1 < \alpha \leq 1$, there exists $\beta > 0$ such that a set of functions $\{[(1 - |z|^2)^{\alpha}|1 - az|^{-2\alpha}]^{1+\beta}; a \in D\}$ is bounded in L^1 . This implies that the set of these functions are uniformly integrable (cf. [1, p. 120]), therefore it follows that $\varepsilon_r(\mu) \to 0(r \to \infty)$.

We show that $\varepsilon_r(\mu) \to 0$ when u has the form of (6). As in the proof of (2) of Proposition 5, we only prove that $\varepsilon_r(\mu) \to 0 (r \to \infty)$ when $u = p_1^{\alpha(1)} \cdot p_2^{\alpha(2)}$, where $p_1(z) = |z - b_1|$, $p_2(z) = |z - b_2|$, $0 < \alpha(1)$, $\alpha(2) < 2$, and b_1 is in D, b_2 is in ∂D . We suppose that B_j, M_1 , and ε are as in the proof of (2) of Proposition 5. By the definition of $\varepsilon_r(\mu)$, we have that

$$\varepsilon_r(\mu) = \sup(u\chi_{D_r(a)^c})^{\sim}(a) \times \tilde{u}(a)^{-1}.$$

Moreover,

$$\begin{aligned} (u\chi_{D_{r}(a)^{c}})^{\sim}(a) \times \tilde{u}(a)^{-1} &\leq (u\chi_{D_{r}(a)^{c}})^{\sim}(a) \times (u^{-1})^{\sim}(a) \\ &\leq (u\chi_{D_{r}(a)^{c}})^{\sim}(a) \times \varepsilon^{-\alpha(1)-\alpha(2)} \int_{B_{0}} |k_{a}|^{2} d m \\ &+ (u\chi_{D_{r}(a)^{c}})^{\sim}(a) \times \varepsilon^{-\alpha(2)} \cdot (p_{1}^{-\alpha(1)})^{\sim}(a) \\ &+ M_{1} \times \varepsilon^{-\alpha(1)} \times C \int_{D \setminus D_{r}(0)} |1 - \bar{a}z|^{-\alpha(2)} d m \end{aligned}$$

where

$$C = \|\phi_a(b_2) - z\|_{\infty}^{\alpha(2)} \times \|1 - \bar{a}z\|_{\infty}^{\alpha(2)} \times \int_{2D} |w|^{-\alpha(2)} d m$$

Since u is bounded, therefore $\{u \circ \phi_a; a \in D\}$ is uniformly integrable (cf. [1, p. 120]), moreover applying the same argument in the proof of this proposition when u has the form of (5), Rudin's lemma implies that a set of functions $\{|1 - \bar{a}z|^{-\alpha(2)}; a \in D\}$ is also uniformly integrable, hence we conclude that $\varepsilon_r(\mu) \to 0(r \to \infty)$. The proof of the latter half of (6) of this proposition is similar that in the above.

If u has the form of (7), then by the similar arguments in the proof of (3) of Proposition 5, set $j(+) = \{j; \alpha(j) \ge 0\}, \ j(-) = \{j; \alpha(i) < 0\}$. And put $u_1 = \prod_{j(+)} p_j^{\alpha(j)}, \ u_2 = \prod_{j(-)} p_j^{\alpha(j)}$, then

$$(u\chi_{D_r(a)^c})^{\sim}(a) \times \tilde{u}(a)^{-1} \leq (u\chi_{D_r(a)^c})^{\sim}(a) \times (u^{-1})^{\sim}(a) = (u_1u_2\chi_{D_r(a)^c})^{\sim}(a) \times (u_1^{-1}u_2^{-1})^{\sim}(a).$$

Therefore, the desired result follows from the Cauchy-Schwarz's inequality and (6) of this proposition.

Corollary 3. Suppose that $d \nu = vd m$ and there is a constant C > 0 such that

$$\int_D |f|^2 d\ \nu \le C \int_D |f|^2 d\ \mu$$

for all a in D, then the following are true.

(1) If $v(z) = (1 - |z|^2)^{\alpha}$ for some $-1 < \alpha \le 1$, and there exist l > 0 and $\gamma' = \gamma'_l > 0$ such that

$$\hat{\mu}_l(a) \le \gamma' (1 - |a|^2)^{\alpha}$$

for all a in D, then there exist r > 0 and $\gamma = \gamma_r > 0$ such that

$$(1-|a|^2)^{\alpha} \le \gamma \hat{\mu}_r(a)$$

for all a in D.

(2) If $v = \prod p_j^{\alpha(j)}$, where $p_j(z) = |z - b_j|$, $b_i \neq b_j (i \neq j)$, and $0 < \alpha(j) < 2$ for b_j in $D \cup \partial D$ or $-2 < \alpha(j) < 0$ for b_j in $D \cup \partial D$, and if there exist l > 0and $\gamma' = \gamma'_l > 0$ such that

$$\hat{\mu}_l(a) \leq \gamma' \prod_{j \in \Lambda} |a-b_j|^{lpha(j)}$$

for all a in D, then there exist r > 0 and $\gamma = \gamma_r > 0$ such that

$$\prod_{j\in\Lambda}|a-b_j|^{\alpha(j)}\leq\gamma\hat{\mu}_r(a)$$

for all a in D, where $\Lambda = \{j; b_j \text{ is in } \partial D\}.$

(3) If $v = \prod p_j^{\alpha(j)}$ where $p_j(z) = |z-b_j|$, $b_i \neq b_j (i \neq j)$, and $-1 < \alpha(j) < 1$ for b_j in $D \cup \partial D$, and if there exist l > 0 and $\gamma = \gamma'_l > 0$ such that

$$\hat{\mu}_l(a) \leq \gamma' \prod_{j \in \Lambda} |a - b_j|^{\alpha(j)}$$

for all a in D, then there exist r > 0 and $\gamma = \gamma_r > 0$ such that

$$\prod_{j\in\Lambda} |a-b_j|^{\alpha(j)} \le \gamma \hat{\mu}_r(a)$$

for all a in D, where $\Lambda = \{j; b_j \text{ is in } \partial D\}.$

Proof. We show that (1) is true. By the fact in the proof of Corollary 1, and the fact that $u(z) = (1 - |z|^2)^{\alpha}$ satisfies the (A_2) -condition for all $\alpha > -1$ (see [6]), the hypothesis in (1) of the Corollary and Proposition 1 imply the (μ, ν) -Carleson inequality. Hence, Theorem 7 and Proposition 9 show that the assertion is true.

Similarly, (2) and (3) follow from Proposition 1, Lemma 2, (5) of Proposition 4, Theorem 6, Theorem 7, and Proposition 9. \Box

References

- T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
- W. W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc., 52 (1975), 237-241.
- [3] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227-251.
- [4] D. Luecking, Inequalities in Bergman spaces, III. J. Math., 25 (1981), 1-11.
- [5] _____, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math., **107** (1985), 85-111.

- [6] _____, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J., **34** (1985), 319-336.
- [7] V. Oleinik and B. Pavlov, Embedding theorems for weighted classes of harmonic and analytic functions, J. Soviet Math., 2 (1974), 135-142.
- [8] D. Stegenga, Multipliers of the Dirichlet space, III. J. Math., 24 (1980), 113-139.
- [9] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.

Received July 1, 1993 and revised June 1, 1994. For the first author, this research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

Hokkaido University Japan