
PACIFIC JOURNAL OF MATHEMATICS

Vol. 173, No. 2, 1996

POLYNOMIALS WITH A GIVEN DISCRIMINANT OVER
FIELDS OF ALGEBRAIC FUNCTIONS OF POSITIVE

CHARACTERISTIC

ALEXANDRA SHLAPENTOKH

The author extend some results obtained by K Gyδry and
I. Gaal for number fields and algebraic function fields of char-
acteristic 0, to the fields of algebraic functions of positive
characteristic. Though characteristic 0 results in their origi-
nal form are not true for positive characteristic, one can still
effectively classify polynomials with a given discriminant over
the fields of algebraic functions of positive characteristic.

§1. Introduction.

This paper extends some results obtained by K. Gyόry and I. Gaal for num-
ber fields and algebraic function fields of characteristic 0, to the fields of
algebraic functions of positive characteristic. Though characteristic 0 re-
sults in their original form are not true for positive characteristic, one can
still effectively classify polynomials with a given discriminant over the fields
of algebraic functions of positive characteristic.

Gyδry defined the following equivalence relation between polynomials over
Z:

Difinition 1.1. Let F(X),F*(X) G Z[X], then F ~z F* if there exists
o E Z such that F*(X) = F(a + X).

It is clear that equivalent polynomials have the same discriminant.
One of the main results obtained by Gyδry is the following theorem:

Theorem 1.2 (Gyδry). Let D > 1 be a fixed number and consider a monic
polynomial F(X) G Z[X] such that 0 < \D(F)\ < D. Then there exist
explicitly computable constants Cχ(D) and c2(D), depending only on D, such
that degree(F) < cx and F ~ z F* with H(F*) < c2, where H(F*) is the
maximal absolute value of all the coefficients of F*.

An interesting corollary of this theorem is the fact that up to translation
by a rational integer, a number field K of degree n contains only finitely many
elements a for which {l,α, α 2 , . . . ,αn~1} is an integral basis of K over Q.
(For these and related results of Gyόry see [7]-[13].) Gyόry used Minkowski's
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inequality to bound the degree of the polynomials by an expression involving
the discriminant. Over function fields one cannot hope to bound the degree
of the polynomials by the height of the discriminant, since discriminant can
be a constant. Therefore, we can expect that the degree of the polynomial
will appear in the height bound for F*.

Results of Gyόry depended on the following lemma and its p-adic gener-
alization:

Lemma 1.3. Let K be a number field of degree ΊΪK over Q and of discrimi-
nant Dκ oυerQ. Let/?i,/?2>/?3 be algebraic integers such thatΣβi = 0, while
βi φ 0, and Nκ/q(βi) < G, where G is a positive constant. Then there exists
a unit of K, which will be called ε, such that H(εβi) < C{G,nκ,Dκ), where
H(εβi) denotes the height of εβi {the maximum absolute value of any coeffi-
cient of the monic irreducible polynomial of εβi over Z) and C(G,nκ,Dκ)
is an explicitly computable function depending only on the listed arguments.

The proof of this lemma depends on Baker's method (see [2]) and its p-
adic analog (see van der Poorten [15]). Gyory in [13] and Gaal in [6] have
obtained some analogs of Theorem 1.2 for function fields of characteristic 0.
They used an analog of the Lemma 1.3 established by Gyory in [13] and
Mason in [14] for function field case. To prove our results in the case of
the function fields of positive characteristic we shall use Mason's inequality
in the case of arbitrary characteristic. As we will see later, in general the
results which have been obtained for characteristic 0 will not be true for the
case of positive characteristic. In characteristic 0 one could show that every
root of a given polynomial was equivalent to an element of a bounded height,
because it was possible to bound the height of a root difference by a constant
depending on discriminant and the degree of the polynomial. In the case of
positive characteristic, we will not be able, in general, to bound the height
of the difference of a root pair of a polynomial under consideration using the
height of its discriminant and its degree. Nevertheless, we will be able to
describe effectively all the possible values of this difference.

§2. Some General Function Field Facts and Definitions.

We will start with defining the objects over which the discussion is carried
out. All the fields discussed in the paper will be assumed to be of charac-
teristic p > 0.

Definition 2.1. Let R be a field of rational functions over a constant field
CR and let K be a finite extension of R. Then K is called a field of algebraic
functions. The subfield of K containing all the elements of K which are
algebraic over CR is called the field of constants of K and will be denoted
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byCκ.

Lemma 2.2. Let K be an algebraic function field over a perfect constant
field CK- (A perfect field of positive characteristic p is a field containing all
the pth roots of all its elements, so that every finite extension of a perfect
field is separable.) Then there exists an element t of K such that K/Cκ(β)
is separable. (See Eichler [4, Lemma on p. 143].)

The following sequence of lemmas and definitions 2.3-2.6 establishes the
necessary framework and states Mason's fundamental inequality which is the
main technical device used in this paper.

Definition 2.3. Let K be an algebraic function field, 21 divisor of K of
degree 0, then define the K-height of %l(Hκ($ί)) to be

= £ max(0, ordp 21) degreeκ(q).
all q

(Hκ (21) is the degree of zero or pole divisor of 21 in K.)
If a e K then Hκ(a) will be equal to the height of the divisor of

Lemma 2.4. Let K be an algebraic function field, and let α, β G K be of
height less or equal to Hi and H2 respectively. Then the heights of a ± /3,
a β, a/β are bounded by Hλ + H2, and

Vm e Z, Hκ(am) = mHκ(a).

Proof. Let p be any valuation of K, then

ordp (α ± β) > min(ordp α, ordp β).

Hence,

min(ordp(α ± /?), 0) degree(p) > ^ min(ordp α, ordp /?, 0) degree(p)
all p all p

> ^2 min(ordp α, 0) degree(p)
all p

+ ]Γ min(ordp β, 0) degree(p)
all p

> -jffx - H2.
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On the other hand,

min(ordp(α/?), 0) degree(p) = ̂  min(ordp a + ordp /?,0) degree(p)
all p all p

> ^2 min(ordp α, 0) degree(p)
all p

+ ] P min(ordp β, 0) degree(p)
all p

>-Hλ-H2.

The assertion concerning the H(a/β) follows from the fact that the prod-

uct formula and the definition of height insure that H(a) = H(a~1).

Next note that for any prime p of if, ordp a
m = m ordp a and the assertion

concerning the height of a power follows. D

L e m m a 2.5 (Fundumental inequality). Let M be an algebraic function

field of positive characteristic over an algebraically closed field of constants,

let V be a fine set of its valuations, let 71,72,73 £ M\{0}, and assume

7i + 72 + 73 = 0 ; with ordp 7* = 0 for all p 0 V. {Another way to state the

preceding condition is to say that 7̂  's are V-units.) Then either

(2-5-1) # M ( ^ ) < |V| + 29M ~ 2,

where g^ is the genus of the field or for some x E M, 71/72 = xp- (See

Mason [14, p. 97].)

Corollary 2.6. Let M be an algebraic function field over an algebraically

closed field of constants of positive characteristic p > 0, let V be a finite set

of its valuations, let 71,72,73 G Λf\{0} and assume 7 1 + 7 2 + 7 3 = 0, with

ordq 7i = 0 for all q 0 V. Finally suppose 71/72 = xpr, where x is not a pth

power in K. Then

Hφ)<\V\+2gM-2.

Proof. By assumption we have 71 = 7 2 ^ . Then

7s = -72 - 7i = 72(-l ~ x)pr-

Therefore, For all p £ V, ordp x = o r d p ( - l - x) = ordp 1 = 0. Thus, if we

apply the preceding lemma to (x + 1) — x — 1 we will conclude, since by

assumption x is not a pth power in K, that H^(x) < \V\ + 2g^ — 2. D

L e m m a 2.7. Let M — R(y) be an algebraic function field, where R = C#(£)

is a rational function field, M and R have the same constant field, y is
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separable over R and integral over Cβ[ί]. Assume V, a finite set of degree one
primes of M, contains all the primes of M extending the infinite valuation
of Cjι[t], and all primes which are zeros or poles of the discriminant of y.
Assume additionally that all the primes of R with factors in V are also
of degree 1, and V contains all their factors in M. Moreover assume the
following:

1. There is an algorithm to solve any system of linear equations over CR

or determine that it has no solutions,

2. All the primes of V are presented by producing the coefficients of
the p-adic expansions of t and y with respect to some local uniformizing
parameters.

Let 21 be a zero degree divisor of M such that all the primes which are
zeros or poles of 21 are contained in V. Then we can effectively determine
whether M contains an element a whose divisor is 21. If such an a exists,
it can be effectively computed and it is unique up to a constant factor.

(The proof is essentially the same as the proof of the Lemma 1 on page

11 of Mason [14].)

The next two lemmas consider the effects of the finite extensions on the

degree of the divisors.

L e m m a 2.8.
1. If M/K is a finite separable extension of degree k of algebraic function

fields and kc is the degree of the constant field extension, then a divisor 21 of

K of degree d, will have degree (k/kc) d as a divisor of M. (See Theorem

4 on pagejllh and Theorem 9 on page 279 of Artin [1].)

2. If K/K is any separable constant field extension of K, then a divisor

of K will have the same degree as a divisor of K. (See Theorem 14 p. 282

and Theorem 17 on page 283 of Artin [1].)

L e m m a 2.9. Let M/K be a finite separable extension of algebraic function
fields over constant fields CM and CK respectively. Let p be a prime of K, OS
a prime of M above p. Then degreeM(55) < [M : K] degree^(p).

Proof.

e(33/p)degreeM(<B) < degreeM(p) = [M : K]/[CM : Cκ] - degree^(p),

by the previous lemma. Therefore,

degreeM(Q5) <[M:K] degreeκ(p).

D
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Lemma 2.10. Let K be an algebraic function field over a perfect field of
constants C, let C be the algebraic closure of C, and let x G K. Then x is
a pth power in CK if and only if x is a pth power in K.

Proof. Assume the opposite. Then CK would contain an element inseparable
over K which would contradict the assumption that every constant extension
of K is separable. D

The following lemma considers the effects of field extensions on the genus.

Lemma 2.11.
1. Let M be an algebraic function field, and let M be any constant exten-

sion of K. Then g^ < gM {See Artin Theorem 6 p. 276 and Theorem 21
p. 290 [1].)

2. Let M be an algebraic function field and assume M = R{y), where
R = C(t) is a rational function field over a constant field C which is also
the constant field of M, and y is separable over R. Assume t and y satisfy
a polynomial equation G{t,y) = 0 of degree n over C. Then the genus gM of
M satisfies the following inequality:

gM<\{n-ΐ){n-2).

{See Artin [1, Theorem 12, p. 311].)

The next two definitions are function field versions of the polynomial
height and polynomial equivalence.

Definition 2.12. Let K be an algebraic function field, let WK —
\j\ > > c\wκ } be a set of prime of K and let Oκ,wκ be the set of PF-integers
of K, i.e., the set of all the elements of K having no poles outside Wκ Next
let F, F* e OκyVκ [X] be such that F*{X) = F{X + a) for some a E Oκ,Wκ.
Then F and F* will be called Oκyvκ -equivalent and this relation will be
denoted by

F —κ,wκ F-

Definition 2.13. Let K be an algebraic function field, let F{X) =
ΣZl(F) aiχi b e a polynomial over K. Then define HK(F) - the ΛΓ-height of
F to be:

HK{F) = max{Hκ{ai)}.

The next lemma will establish a connection between the height of the
polynomial and the height of its roots.
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Lemma 2.14. Let K be an algebraic function field, let F(X) — a0 + . . . +
Ofe-iJ*"1 + Xk be of K-height less or equal to B, a positive constant Then
if M is the splitting field of F, the the M-height of any root is less than
{2Bk\)2.

Proof First of all we note the following. By Lemma 2.9, HM(F) < k\Hκ(F)
and for any prime p of M|ordpαi| < Bk\. Finally, we note that the total
number of distinct primes in the pole divisor or zero divisor of any α̂  is also
bounded by JBA;!. Next let a be a root of F(X) and assume that for some
pole p of α, | ordp α| > 2Bk\. Then since,

ak = -(ao + ... + ak_1a
k-1),

and for i = 1,... , k — 1,

\(i - 1) ordp a\ + | ordp a^x\ < | ordp α< aι\ < \{i + 1) ordp a\ - | ordp o ί +i |,

we must conclude that

k ordp a = min (ordp aid1) = (k — 1) ordp a + ordp ak-X.

This is impossible, however, and hence | ordp a\ < 2J5A;!, so that
HM(a) < (2Bk\)\ D

The last proposition in this section deals with the relationship of pth
powers of bounded height.

L e m m a 2.15. Let K be a function field of positive characteristic p over
perfect field of constants and let x,y,z G K. Assume x, z are not pth powers,
y is either a constant or is not a pth power, and for some l^i^j E N the
following equality holds:

(2.15.1) xpl =ypizpj,

while for some positive constant B,Hκ(x) < B,Hκ(y) < B,Hκ(z) < B.
Then \j-l\ <log p 2£.

Proof First assume y is a constant and j > I. Then, using the fact that
constant field is perfect, let wp3 — yp% and conclude that x = p(wz)p3 ,
where p is a pzth root of unity of K. Since the constant field is perfect,
p = rp3 for some constant r G UΓ, and thus a: is a pth power. Thus we
have a contradiction with our assumption on x and conclude that I > j . By
symmetry, I < j , and hence, I = j .
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Next assume y is not a constant and i > j and I > j . Then

Thus,

z — τ \xp (y~ ) J ,

where r is a p*ith root of unity of K. Since the field of constants is perfect,

for some constant p and consequently

Z = (pχpl~mMli) (y'Y mm(''t

However, min(Z, i) > j and, hence, z is a pth power which contradicts our
assumptions. Therefore, by symmetry, we can conclude that out of (i,j,Z)
at least two indices are equal. If / = j , we are done. Suppose not. By
symmetric considerations, without loss of generality, assume i = j . Then
(2.15.1) becomes xpl = {yz)p3 and / > j . On the other hand, xpl~3 — ηyz,
where η is a p*th root of unity, and therefore pι~jHκ(x) < 2B. Since the
height is always a natural number, \l — j \ < logp 2B. D

§3. Main Theorem.

Theorem 3.1. Let K be an algebraic function field over a perfect field of
constants. Let F(X) G K[X] be a monic polynomial of degree k with a
non-zero discriminant D = D(F). Let c*i... ,α* be the roots of F, let
WK = {c|i,.. ,q^κ} be the set of poles of coefficients of F(X), let M be
any field containing the splitting field of F. Let d = maxi<i<u;(degreejftΓ(qi));

and without loss of generality let m = [M : K] > k. Then either

A(F) = maxHM(ai - α,-) < T(Hκ(D(F)),gM,wκ,d,m),

where T is an explicitly computable function of the listed arguments or for
every pair iφ j

where Vy is a non-constant unit of the integral closure of Oκ,wκ *n M, and

HM{y) < S(Hκ(D(F)),gM,m,wκ,d),
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where S is an explicitly computable function of the listed arguments.

Proof. We will consider the case of k = 2 first. Let

F(X) = X2 + aX + 6,

and let α x , a2 be the roots of the polynomial. Then the discriminant is
{a.1 — a2)

2 and the theorem holds for k = 2. From now on we will assume
A; > 3. Let α i , . . . , αfc be all the roots of F, and let SJC = {pi, . . . ,p 5 κ } be
the set of valuations of K which are not in WK and are zeros of D(F). Let
CM be the constant field of M, let CM be its algebraic closure, and finally
let M = C M M .

Let S M = {OS,... ,935M} and S~ = {<8i,... ,© 5~} be all the prime

ideals lying above the primes of SK in M and M respectively and let WM —
{Qi,... O^Λ^} and VFjj = {0 i . . . ,£lw~} be all the primes lying above the

primes of WK in M and M respectively. Then

(3.1.1) wM < [M : K] - wκ < m

(3.1.2) s M < [M : ίΓ] 5^ < m HK(D(F)).

Moreover, by Lemma 2.9, degreeM(Πi) < [M : K] d < md, and

degreeM(55,) < HM(D(F)) < mHκ(D(F)).

On the othe hand, by Lemma 2.8, degree^ £^ = degreeM £li and hence

Π will split in M into at most md valuations of degree 1. Similarly, 93̂  will

split into at most rπHκ(D(F)) valuations of degree 1. Thus,

(3.1.3) w~ < m2wκd,

(3.1.4) SKi < (mHκ(D(F)))2.

By the definition of the discriminant of a polynomial, in M, D(F) has the
following factorization.

(3.1.5) D(F)=

Let l < r < i < j < A and define xp

rij' *J = (α r — aj)/(ar — ai).
Next consider (αΓ — c^) + (c^ — α7) + (α^ — ar) = 0. Then by Corollary 2.6,

we have the following.

(3.1.6) ( α P - α i ) = ( α r - α J ) * j ; ' A i ) ,
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where either xrij is a constant (in which case xrij is selected so that ί(r, i, ,j)

= 0) or it is a non-constant SM U VFM - unit which is not a pth power in M,

and in either case

1 } < m2wκd+(mHκ(D(FW + 2g~-2 = Tu

where the second inequality follows from Lemma 2.11.

If we let xrii = 1 and let ί(l, i , i) = 0, then (3.1.7) will hold for 1 < r <

i < j < k Next note that in view of Lemmas 2.8 and 2.10, (3.1.6) is true

over M and in (3.1.7), H~ can be replaced by HM Further note that

(αi - a2)/(a1 - OLJ) = x\2j ,

and for 2 < i < j < fc,

(«i - <*i)/(αi - α7) = ((αi - α2)/(αi - ^^/((αx - a2)/(a1 - «<)),

so that
t(1.2,0 «(M.i) _ *d.2.i)

X12i x l i j ~ xl2j 5

and, by Lemma 2.15, either x12i or x12j is a constant or

Let t 1 2 = min{t(l, 2, i)}, where min is taken over all 2 < i < k such that x12i

is not a constant. Then for all 2 < i < k such that Xχ2i is not a constant

Furthermore, for 2 < i < j < k consider

(3.1.8) = ( α i t i a

where we define yι2ij = [%i2j ~ %\2i )5 and note that

HM{yi2ij) < HM [x^i ) +HM [x^

(3.1.9) <2(2T1)T1 =4T 2

2 .
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Since the constant field is perfect the above computation goes through even

if one or both of Xχ2i and x12j are constants. Next, note that

where define y12ij = xϊ2j ' 1 2 , and conclude that HM(yι21j) < 4T*.
Therefore, HM{y12ij) < 4TX

2 for 1 < i < j < k. Finally, let

(3.1.10)

Then

^Af (I12) < Hk - 1)(4Ί*) < m(m - 1)42?,

and thus in M,

(3.1.11)

We now have two cases:

Case 1. Y12 is not a unit of OM,WM

 O Γ i* *s a constant.
Case 2. Y12 is a non-constant unit of OM,wM

We need to consider only the first case. If Y12 is not a unit, then it is

divisible by at least one prime 95 ̂  WM, and so

(3.1.12) p ί l 2 < HM(D(F)) < mHκ(D(F)),

and consequently,

HM(Yii12) < m(m - l)(4T?)mHκ(D(F)) = T2.

In this case, jffM(<*i ~ ^2) < (mHκ(D{F)) + T2) = T3.

Similarly, if Y12 is a constant then HM(a1-a2) = (k(k-1))-1^^(J5(F)).

Obviously, the same argument can be carried out for any other pair of

distinct roots of F to obtain

(3.1.13)

and

(3.1.14) H M ( ^ ) < m(m - l)4Γχ.

D
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Corollary 3,2. Let a.\... ,ak,Yij be as in the theorem, let M be the
field obtained from M by adjoining all the (k — l)k roots of each Yij, let
Sjfi, Wjξ be primes in M above the primes of SM and WM respectively, and

let θi = Σk

j=Λai - aj)' Then θi = ^Yf™, where δk^~^ = D(F), and Ff

is a sum of k Wjξ U Sjj-units of the height bounded by a constant explicitly
computed below.

Proof. In M we have the following equality.

(3.2.1) (a, - a2) = δΰ£2,

2where δk{-k~^ = D(F), and (ΰfi*)**-1) = Y&2. On the other hand, from
(3.1.8) we have (at — otj) = (yi2ij)p'12 (oti — a2), and hence

where

<HM(Y12)+k{k-l)HM(y12ij)

< 4m(m - 1)4T2 + 4T2 = T4.

Next for i = 1... , Λ, let YJ = £ * = 0 ti^. Then 0; = δYf12. D

In the following corollaries let M — R(y) be a degree n Galois extention
of a rational function field R over a finite field of constants. Assume the
minimal polynomial of y over R is given explisitly, so that, using part 2
of Lemma 2.11 we can get an upper bound on gM. Let K be such that
R C K C M, and let the term "can be described effectively" have the
following meaning when applied to the set of all possible values which be
taken by an element of θ G M. There exists a finite set T of primes of M, a
finite explicitly given extension M of M with T being the set of primes of M
lying over primes of T, such that θ — δ(Σ'i=ι wί)p ? where 5,1^, are elements
of M and are T-units whose M-height is bounded by a constant explicitly
computable from the number and degree of primes in T, and n.

(If the constant field of M is finite, then δ and Wi can take finitely many
values only and all their possible values can be computed effectively. If the
constant field of M is infinite, then Wi and δ can take finitely many values
up to multiplication by a constant. If constant field of M and the primes of
T satisfy the conditions of Lemma 2.7, then these finitely many values can
be computed effectively.)
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Corollary 3.3. Let D be a zero degree divisor of K, and let WM be a finite
set of valuations of M such that for each prime of WM O,U of its conjugates
over K are contained in WM {In this case WM contains all the factors of
some finite set of primes of K which we will call WK, and OM,WM ^S the
integral closure of Oκ,wκ ^n M.) Let SM be the set of all the primes of M
which are zeros of D but not in WM Finally, assume the height of D is given
explicitly. Then if a G OM,WM is such that a satisfies a monic polynomial
F{X) over Oκ,wκ splitting in M, having discriminant D and degree k not
divisible by the characteristic of the field, then a = θ + A, where A G Oκ,wκ

and all the possible values of 9χ can be described effectively.

Proof. Let a = α i , . . . , ak be all the roots of F, as before let θi = Σ)i=1(c*t ~"
ocj). Then, by the previous corollary, θ{ can be described effectively. Next
observe that a{ = k~ιθι — k~ι Σ * = 1 oty

One can rephrase the preceding corollary in terms of the polynomials of

K splitting in M to obtain the following result. D

Corollary 3.4. Let WK be a finite set of primes of K and let F{X) G

Oκ,wκ[X] be a splitting in M polynomial with a non-zero discriminant D

and degree k not divisible by the characteristic of the field. Let WM be

the primes of M above the primes of WK, let SM be all the primes of M

dividing D but not in WM, o>nd assume the height of D is given explicitly.

Then F(X) is Oκ,wκ'
e(lu^va^en^ ^° a polynomial whose coefficients can be

described effectively.

Finally, we can apply Corollary 3.3 in the situation where we are looking

for an integral power basis.

Corollary 3.5. Under the assumptions of Corollary 3.3, if M has a power
basis ( 1 , . . . ^OL71"1) over R which is an integral basis for OM {the ring of
integral functions of M) over C[t], then a — θ + A, where A is a polynomial
in t, and θ can be described effectively.

Proof. Since all the elements of C[t] are allowed only the infinite valuation
as their pole, if for some a G O M , { l ,α, ••• ,®n~1} is an integral basis of
OM over C[£], then the divisor of the M/R discriminant of a must be of the
form P^DM/R where a G N and DM/R is the discriminant of the extension
(see Chevalley [3]). The product formula will determine a specific value of
α, and, hence, the discriminant of a will be given explicitly. Therefore, the
result will follow from the Corollary 3.3. D

The next sequence of corollaries will consider the case when the degree of
the polynomial is not prime to the characteristic.



546 ALEXANDRA SHLAPENTOKH

Corollary 3.6. Suppose all the assumptions of the Corollary 3.3 are true

butk^O mod p. Next let θir = Σkj=o(ai ~ ajY a n d l e t ωi = Σ*=i <*$• TAen

£Λe following statements are true.

1. For a fixed r all the θir can be described effectively.

2. ωi G K.

3. Let z G N\{0} be such that for any i — 1,... ,z — 1 either ωi = 0 or

( . 1 = 0 mod p, then for every j = 1,... ,k,θjZ = ωz and consequently ωz

can be described effectively.

Proof. The first assertion is proved in the same fashion as the corresponding

assertion concerning θi = θu. Statement 2 is obvious. To prove 3 consider

θjz = j> , - aiγ = ±
2=1 U=0 \ /

D

We will first consider a special case, where a stronger conclusion can be

obtained.

Corollary 3.7. Under the same assumptions as in the preceding corollary,

let
771 / γ~\ I γ~ 1 I V^ — 1 _ι_ V^

where a{ G Oκyvκ and let

i* — max{i ψ 0 mod p, i <k,o,iφ 0}.

Assume, i* ψ- 1 mod p. Then for every i — 1 , . . . ,k, there exist a,b £

Oκ,wκ 5 βi £ 0M,wM

 5 ? i CA ^ α ^ aM the possible values of a and βi can be

described effectively and aoίi + b — βi.

Proof. By Lemma 4.1 of the appendix (see Section 4 of the paper), and since

k = 0 mod p, i* exists, and

k — i* = r* = min{r ^ 0 mod p, α;r 7̂  0} ψ —1 mod p.

Therefore, z* = r* + 1 ^ 0 mod p. Moreover, every z < 2:* satisfies part 3

of the Corollary 3.6, so that Mz = 1,... , z* — 1, all the values of ωz can be

described effectively.

In particular, this is true of ωr*. Next consider,

θiz = Σ ( i j) Σ ί M
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By Corollary 3.6, we are done. D

We consider a general case of a polynomial whose degree is divisible by
the characteristic next.

Corollary 3.8. Under assumptions of Corollary 3.6, let a a £ OM,WM be
a root of F(X) G Oκ,wκ[X], and assume F splits in M. Then there exists
r G N such that pr < k, there exist CQ,.. . , c r + i £ Oκ,wκ> and there exists
β £ OM,wM such that ci7 for i < r, and β can be described effectively and
such that

2 = 0

Proof Define a set of natural numbers Z in the following manner:

Z = <w e N\{0}3 i < w such that ί W. J ω{ φ 0 > .

First of all, Z is non-empty. Indeed, let r = min{t|iι;j φ 0}. By Lemma 4.1

of the appendix, we know that r < k — 1 (otherwise F is inseparable). Then

let w — rp + 1 and observe I I ωw_x — (rp + l)ωrp = (rp + l)(ωr)
p φ 0.

Next we note that if z £ Z then by part 3 of Corollary 3.6, all the possible
values of ωz can be described effectively.

Finally, denote by z* the minimal element of Z, and let z < z* be such that

I I ωz φ 0. (Such z exists by definition of Z.) Let Σ ! = O P * dip* be the p-

adic representation of z, and let j be the smallest index such that dj φp — \.

Then if we let w = (Σi^o* dip1) + pϊ, in the p-adic representation of w all

the p-adic digits will be greater or equal to digits of z, so that I I φ 0 by

\ZJ
Lemma 4.3 of the appendix. Hence, w > z*, and z* — z < pj. On the other

M
hand, let J2 fφι be the p-adic representation of z*. Then, since I J ωz φ 0,
we must have /i = dλ = p — 1,... , /j_i = d^x — p — 1. Therefore for such

& z,z — z* > pi. Hence z* — z — pi.

. (ZΛ
Next consider θiz* = Σz=o I I ωzCL\ * - ^$Y ̂ e argument above,

V z I
Z\ ωza\ * - 'φ 0 = • 3 j , z* - z = tf.
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Therefore,
[logpz*] / x

/ y I ϋ 4 ^ I z P i '

At this point we note that the obtained results even for the case of the
polynomial degree prime to the characteristic of the field are weaker than the
corresponding results for the case of characteristic 0. The relative weakness
of the main theorem is due to the second case of the theorem. Unfortunately,
as the next lemma will show, this case of the theorem does occur.

Lemma 3.9. Let K,M be as in the main theorem. Then there exists a
constant A > 0 such that for every B > 0 there exists a polynomial F with
Hκ(D(F)) < A and a pair of roots αx and a2 such that HM(&I — OL2) > B.

Proof. Consider the following equation over K : F{X) — X3 + aX + 1 = 0 ,
where α is a nonconstant element of K. Let £i,#25^3 be the roots of F and
observe that NK(δi)/>κ(δi) = —1, and TrK(δi)/κ{δi) = 0. Next let WK be the
set of poles of α in UΓ, let WM be the set of poles of a in M, let D = D{δi)

1/2

be a square root of the discriminant of δ{ with respect to if, so that D2 G K
and let

oi-i — \0ι — o2y V, a2 = {o3 — θιγ 1/, α 3 = \o2 — o^y u.

Then Oίi G OM,wM-> a n d

(αi - a2){a1 - a3){a2 - a3)

— [(^i ~ δ2 — δ3 + 5i)(^i — δ2 — δ2 + ^3)(^3 — δι — δ2 + δ3)]p D

= (-276^3)
prDs = 27D3.

On the other hand,

(3.9.1) HM{ax - a2) > prHM{δ1 - δ2) - HM{D).

Moreover, a is of degree 3 over K. Indeed,

aλ + a2 + a3 = 0 G K

= Dpr+3 G K.
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+ a2a3

= [(ίi - δ2)(δ3 - ίi) + (ί3 " ίi)(ί 2 ~ ί3) + (*i - δ2)(δ2 - δ3)fD2

— ($1^3 ~ ^2^3 "~ ̂ l + ^1^2 + δ3δ2 ~ $1^2 ~~ ̂ 3 + δχδ3

= (-δ2 + δλδ2 + δ3δ2 - δi + δ,δ3 -

= (α - (ίx + δ2 + δ3)
2 + 2a)prD2 =

Hence, α? + S o ^ D 2 ^ + ΰ p r + 1 = 0, and D(αi) = 272D6.
We still have to show that δλ —δ2 is not a constant. Then (3.9.1) will assure

that HM{&i — Oίj) can be made arbitrarily large relative to Dκ^a.yK{ai)^gM')
degrees of valuations in Wκ and \WK\. First of all, δi is not a constant since
otherwise a is a constant. Next suppose, δ2 = δx + c, where c is a constant.
Then

(ίi + c)3 + o(ίi + c) + 1 = 0.

(S? + 3ί?c + βίic2 + c3 + aδλ + ac + 1 = 0.

On the other hand, a — —{δ\ + l)/ίi, so that

Hence, if c is a constant then so is δi.
We should also note here, that this example shows that the analog of

Theorem 1.2 does not hold for the case of positive characteristic. Indeed, let

Gr(X) =X3 + 3aprD2X + DpΓ+\

where a and D are as above. By the above computation, we know that for
all r, D{Gr) = 272JD6. Let Wκ contain all the poles of a and D. Then
for any value of r, all the roots of Gr(X) are integral over Oκ,wκ- Next
suppose, Gr(X) —κ,wκ G>(̂ 0> where HK(G*) is bounded by a constant
depending on D,wκ (and possibly some other parameters associated with
M or K) only. Let alr,a2r,a3r and β\r,β2r,β3r be the roots of Gr and G*
respectively. Then air = /3ir + A, where A E O ^ ^ K and in M the height of
βir is again, by Lemma 2.14, bounded by a constant depending on D and WK
only. However, air — otjr = /3ίr — ^> will under these assumptions still have
the height bounded by the above described constant. The last statement
can be easily made false by the choice of sufficiently large r. D

Our next lemma provides some insight into the reasons for still weaker
results for an arbitrary polynomial in the case of k = 0 mod p.
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L e m m a 3.10. Let K,M be as in the main theorem again. Then for every
map

there exists a polynomial

F(X) = Xpr + bX + c,

such that

Vα e K, HK(F(X - a)) > ^ ( m a ^ t f ^ - α,))),

where α i , . . . , α y are the roots of F, and M is the splitting field of F(X).

Proof. Let α i , . . . , apr be all the roofs of F{X). Then for i φ j

(α< - aj)pr + 6(α< - α,-) = 0.

Therefore, (c^ — α^) is independent of value of c. Next suppose, there exists

a £ K such that

- a)) <

where C(6) is a constant depending on 6 only. Then

HK(F(X - a)) = # * ( X p r + δX - apr -ab

and consequently,

Hκ(apr-ab + c)<C(b).

Let α p r — αδ + c = ̂ , where z has a height bounded by C(b). Let p be such

that

and such that

0 > ordp 6 > -pr + 1,

ordp c < — pr

and ordp c is not a multiple of p. Then we would like to consider the five
cases which can occur:

1. ordp of > ordp ab = ordp a + ordp b > —pr > ordp c; (ordp a > 0)
2. 0 = ordp α p r > ordp αδ = ordp a + ordp 6 = ordp b > ordp c; (ordp a = 0)
3. ordp αδ = ordp α + ordp δ > ordp of > ordp c; (ordp a < 0)
4. ordp αδ = ordp α + ordp δ > ordp c > ordp of (ordp a < 0)
5. ordp c > ordp αδ = ordp a + ordp δ > ordp of (ordp α < 0).
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In the first three cases,

I ordp z\ — \ min(ordp of,ordp ab,ordp c)| = | ordp c\.

In the last two cases,

I ordp z\ = \ min(ordp of, ordp α&, ordp c) | — | ordp of \ > | ordp c\.

Therefore, in either case, assuming p is a pole of c whose degree is greater
than pr and is not a multiple of p,

(7(6) > Hκ(z) > I ordp z\ > | ordp c\.

However, by Approximation Theorem (see, for example, Fried-Jarden
[5, p. 21]), c can clearly be selected with a pole at p, whose degree is greater
than max(C(6),pr) and is not a multiple of p. D

A consequence of the lemma is the fact that even if we have a bound
on the height of the root differences, we still could not conclude that the
roots were equivalent to an element of bounded height, since these elements
would produce a polynomial of a bounded height. Finally, we would like
to make the following observation. If we suppose that the infinite valua-
tion corresponding to the pole of t has only one factor in M, then assuming
[M : R] is not a multiple of p, the theorem will guarantee that up to polyno-
mial translation we have only finitely many integral power basis. Of course,
in this situation one does not need the theorem to reach this conclusion.
Since all the functions in the integral closure of the polynomial ring are as-
sumed to have the same valuation as their pole, there can be no cancellations
in the product of root differences comprising the discriminant, so we auto-
matically get a height bound on the root differences. On the other hand,
the last lemma implies, that if the degree is divisible by the characteristic,
even under these very special circumstances we do not get a height bound
on roots and cannot conclude that we have finitely many (up to translation)
integral power basis.

§4. Appendix.

This appendix contains several technical results used in the proof of the main
theorem and its corollaries.

Lemma 4.1. Let M be a field of characteristic p > 0, α i , . . . , a^ G M. For
ra = 1,... , k define
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and let α*_m = Σi1>...>im

 ah aim> where ( i i , . . . ,im) range over all sub-
sets of size m of {1,... ,&}. £e£ A; = 0 modp, let ak = 1 and assume
Mm = 0 /or even/ m = 1,... , r, where r < k, and m ψ 0 mod p. ΓΛen
a,_ r = 0.

Conversely, if k = 0 mod p and a*.; = 0 /or even/ i = 1,... ,r,
r < k and k — i ^ 0 mod p, ίΛen ωx = 0,.. . , ωr = 0.

Proo/. For 0 < m < k - 1 define VF0,i = 1,

Wm,i =

* l > > ί m

isφi

Then we have the following equalities:

k

(4.1.1)

for every A: > i > 0

(4.1.2)

Therefore

= (m +
2 = 1

= (m

A:

It is easy to see by induction that

m+l

(4.1.3) (m +
2 = 1

Therefore, if ωx — ... = ωr = 0, mak_m = 0 for m = 1,... , r. This, in turn

implies α f c_m = 0 for (m,p) — 1, and the first assertion of the lemma is true.

On the other hand, we can rewrite (4.1.3) in the form:

r- l
(Λ 1 A \ X Λ / -i \2-|~l I / i \J*"|~1

2 = 1
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and proceed by induction. The second statement of the lemma is true
for ωι. Next assume it holds for r — 1. Then by induction hypothesis,
Σ)i=i(—^) i+l(jJiak-{r-i) — 0 and by assumption, either α fc_ r = 0 or fc — r = 0
mod p, that is r == 0 mod p. In any case the left hand side is 0 and we are
done. D

L e m m a 4.2. Let m £ N, assume m = Σ i = o p m a%Pi ** 'Λe p-adic represen-
tation of m with respect to some prime p, and let rrij = Σ t o α«P* Then

Proof. Enough to show rrij < pj. Indeed, rrij < Σi=o (P"~1)P* = (P~"l)^fr =

D

L e m m a 4.3. Let m > t be natural numbers and let

[logp m] Pogp ί]

i=0 i=0

δ e t h e i r p - a d i c r e p r e s e n t a t i o n w i t h r e s p e c t t o s o m e p r i m e p . T h e n 1 1 = 0

m o d p if a n d o n l y if t h e r e e x i s t s i > 0 s u c h t h a t b i > α * .

Proof. First assume the existence of i as described above and let i0 be the

smallest such i. Then, since for all 0 < i < i0 — 1 α* > 6̂ , for all j =

0,... , i 0, (ra — ί)j = m^ — ίj. On the other hand,

(m - ΐ ) i o + i = mio -tiQ + (p + aiQ - bio)pι°.

We also note that, since in general [x] + [y] < [x + y], for all i,

(4.3.1)

Furthemore,

+ 1 ] = (m - m i0+1)/p<0+1 = ( m -

= ( ί _
0<t<io

[(m - <)/p i0+1] = (m - ί - (m - ί) i o +i)/p< o + 1

= ( (m - ί) - Σ (o, - ft,)?' - (p + α,,, - 6 i0)p
i0
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Therefore, [t/p i o + 1] + [(m-t)/p i o + 1 ] = [m/p i o + 1 ] - l , and consequently, taking
into account (4.3.1), we conclude that

(:)•
ordp fa) = ordp

\ I

= Σ IWPΊ - Σ \P*\ - Σ K™ - *W\ +1 > °

Conversely, assume for every i, αf > b^ Then m — t =
for every i, rrii = ti + (m — t)i. Therefore, for every i

and hence,

o r d p j + J = o r d p I j = iJm/p1} - χjt/p1} - 2j.(m - t)/pι] = 0.

D
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