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A MEAN VALUE INEQUALITY WITH APPLICATIONS TO
BERGMAN SPACE OPERATORS

PATRICK AHERN AND ZELJKO Cuckovié

If u is integrable over the unit disc and u = Tu, where
T is the Berezin operator then it is known that u must be
harmonic. In this paper we give examples to show that the
condition Ty > u does not imply that u is subharmonic, but we
are able to show that the condition Tu > u does imply that
u must be “almost” subharmonic near the boundary in an
appropriate sense. We give two versions of this “almost” sub-
harmonicity, a “pointwise” version and a “weak-star” version.
We give applications of these results to hyponormal Toeplitz
operators on the Bergman space.

Introduction.

Let D be the open unit disc in the complex plane. We let H>*(D) denote
the space of bounded holomorphic functions in D and let B(D) denote the
Bergman space on D; the set of holomorphic functions f on D such that

[ f@FdA) < oo
D

where dA denotes planar Lebesgue measure on D. B(D) is a closed subspace
of the Hilbert space L?(dA) and so there is an orthogonal projection P :
L?(dA) — B(D). If ¢ € L*(dA) we define the Toeplitz operator T, :
B(D) - B(D) by T,f = P(¢f). For each z € D we have the kernel function
k.(¢) = A —207 _1202. For each f € B(D) we have f(z) = (f,k.) where (f,g)
denotes the inner product in L?(dA). We use the usual notation of ||f||3 =

(f, f) for f € L*(dA). Note that ||k.[I = (k.,k.) = k.(2) =

m(1—[2[?)?
For each z € D we have the biholomorphic involution ¢, : D — D given by
v.(¢) = lz ——_. With these involutions we can define the Berezin transform

Tu of any u € L*(dA), by

Tu(z) = %/Duocpsz.

295



296 PATRICK AHERN AND ZELJKO CUCKOVIC

Equivalently, after a change of variables, we have

1—|z|2 / Il-cz 2dA(C).

Finally, if A is a bounded operator on a Hilbert space X, with norm ||z||,
we say A is hyponormal if A*A > AA*, or in other words, if

Tu(z) =

|Az|| > ||A*z| for all z € X.

It is a simple matter to check that if u is harmonic in D, i.e., Au(z) =

2
6382u(z) = 0, and u € L*(dA), then Tu(z) = u(z) for all z € D. In [1],
the converse was established, i.e., if Tu = » in D then 4 must be harmonic.
Now if u is subharmonic and in L'(dA) then it follows easily that Tu > u
in D. We start Section 1 by showing the converse of this statement to be
false, i.e., we show that there exists u (indeed a large class of such u) so that
Tu > u in D but u is not subharmonic. However in Theorem 2 we show
that the condition T'u > u in D implies some sort of vestigal subharmonicity
near the boundary. We show, under a rather mild integrability condition on
Au, that if Tu > u in D then lim,,;Au(z) > 0 for all { € 8D. Actually
Theorem 2 gives a more precise “local” theorem. The main tool in the proof
is a formula that represents T'u — u as an integral of Au times a positive
kernel. This is the content of Theorem 1.

Our second result of this type says that if Tu > u in D and if the measures
Au(re?)df have a weak-star limit as 7 — 1 on some interval I, then that
limit is a positive measure on I. This is Theorem 3.

In the second section we give two applications of the results of the first
section. In [2] H. Sadraoui showed that if f,g € H*(D) and if Ty; is
hyponormal and if we assume that f',g’ both lie in the Hardy class H?,
then |f'(e®)| > |g'(¢?)| a.e. on the unit circle. Our first result says that if
f,9 € H*(D) and T},5 is hyponormal, then lim, . (|f'(2)| — |¢'(2)]) = 0
for all €. Our second result says that if, in addition, there is an arc I on the
circle such that f' € H?(I), (this is defined precisely in Section 2), then ¢’
has the same property and |f'(e??)| > |g'(e*’)| a.e. on I. This last result can
be viewed as a local version of Sadraoui’s result and it contains his theorem
as a special case.

Section 1.

We begin with an example of a function u such that Tu > u in D but u is
not subharmonic. Note that A(a) = [, |<pa|‘“ is continuous and A(0) = 2/3
so there exists § > 0 such that A(a) > % if |a] < §. Now let u be any
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strictly convex function that is continuous and integrable on [0, 1) such that
u(0) = u() = 0 for some 0 < & < 1. Then we have u(r) <0for 0 <7 < «
and v has a minimum at a unique point 3, 0 < 8 < a. We further assume
that # < §. We regard u as a radial function on D. We claim any such u
satisfies Tu > u. First suppose |a| < 3 then u(a) = u(|a]) < 0. On the other

hand
dA _ 1
__>_.
/I% T 2

dA dA
O<u(/l¢al_>§/u°¢a_a
™ ™

the latter inequality is Jensen’s. Hence

SO

u(a) < /uowa%

in this case.

If |a| > B we have a = [, %4 |44

and hence |a| < [ |p,| and therefore

Uy

) <u([ledZ),

because u is strictly increasing on (3,1). Another application of Jensen’s
inequality proves that u(a) < fuo ¢,% in this case. Clearly u is not
subharmonic since u(0) = 0 and

2
2_17r-/0 u(re?®)dd = u(r) < 0

if0<r<a.
Suppose u € C?(D) and 0 < r < 1, then starting from one of Green’s
identities we obtain the familiar formula

(1) w(0) = — / " u(re)do + % Au(¢) log KIdA(()

2m Jo Ig<r
which we may rewrite as

27
L / w(re®)d —u(0) = 2 [ Au(¢)log —dA(C).
27 Jo T Jigl<r 1q
Next we multiply both sides of (2) by 2r and integrate on 7 from 0 to 1. We
obtain

(3) (Tw)(0) — u(0) = Au(Q)K(C)dA(C),

[gl<1

(2)
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where

@ K@ =% [ riog i = flog g - 1= cP)]

<12

So far this is a purely formal calculation. To see what conditions are required
on u, we look at the kernel K. We let f(z) = log: — (1 — z), then an
application of Taylor’s formula with remainder shows that

1
(5) f(z) = 572 —(z—-1)® where0<z <t<1.
From this we see that f(z) > 0,0 < z <1 and

1
(1-z)*for 0 <z <1, and f(z) <2(1 —x)? for §<z<1.

l\?[n-—l

(6) flz)=

So (3) holds if u € C?*(D) and if
[ WQ)ldAQ) <o and [ [Au(QI(1 - [¢)*dA() < o0
[¢l<1 [<l<1

Now we wish to apply (3) not to u but to u o ¢,. This yields

Tu(z) —u(z) = A(u o @) (O K (¢)dA(Q).

[¢l<1

Recalling that A(uo¢,)(¢) = (Au)(p.(¢))|¢.(¢)|*and making the change of
variables w = @, () we arrive at the following

Theorem 1. Suppose that u € C*(D) and that

/1¢|<1 ()] dA(C) < 00

and
/qu |Au(Q)I(1 ~ [€7)*dA(¢) < oo.
Then
Tu(z) ~ () = [ Au(QK(z OdA()
where

K(20) = 7 [log ot ~ (1= 1(OP)]
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Moreover the kernel K satisfies:

™ K0 2 - [RGB porscen
and
" Izl )(1 —kP) 1
T—=zpF 2

Proof. Everything has been proved except (7) and (8) but they follow from
(6) and the well-known identity

(1= [Pt = [g)

1- |€0z(C)|2 = ll — 7('2

O

The following well-known estimate is proved by a straightforward calcu-
lation that we omit.

Lemma 1. There exists a constant Cy > 0 such that

(1 - I¢P*)* 1
/<!<1 ll _ z<l4 dA(C) 2 CO IOg 1— IZI .

Theorem 2. Suppose that u € C?(D),
| W(O1d4(0) < oo,
/|<I Au(Q)I(1 — [¢[?)?dA(C) < oo,

and that lim ,_,¢, Au(z) < 0 for some (o € D. Then there exists § > 0 such
that Tu(z) < u(z) for all z € D such that |z — (o| < 4.

Proof. For convenience we assume that {, = 1. By assumption there exists
a > 0 and € > 0 such that if z € D and |z — 1| < ¢, then Au(z) < —a.
If D(1,€) denotes the set of points in D with |z — 1| < € and D(1,€)’ the
complement of D(1,¢) in D, then we have

| AuOK@0dAQ) = [ AuQ)K (2 OdAE)

D D(1,¢)
+ / Au(Q)K (z,¢)dA(C).
D(1,¢)!
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We deal with the second integral: if |z — 1| < €/2 and ¢ € D(1,€)’, then
,1 - z, is bounded away from 0 and hence

1-12)01 —2 1<1) <C(1-|z*) <1/2
]1 —Zzl N

if 1 — |2|? is sufficiently small, and hence by (8) we have K(z,¢) < C(1 —
[21%)*(1 = [€]%)?, so

Loy AHOK (044 < 00 2 [ 1au(Q)I(1 - [ dA).

Note that this is O ((1 — |2|?)?). Next
/ Au(Q)K (z,C)dA(C) < —a / K(z,)dA(C)
D(1,¢)
- —a /D K(z,g dA(C) +a /D o, K024

,€

<o [(A-]zP)ru - Klz)sz(c)
T '/ '1 - Zzl

2a (1 — 2% — ¢1?)”
+ = /D(l N Il-Czl dA(¢)

+0 (1= 12P)%).

< ~Coa(l — [2[*)*log

1
1 -z

Here we have used (7) and (8) again as well as Lemma 1. Combining these
estimates we have, for |1 — z| < €/2,

Tu(z) — u(z) < —Coa(1 — |2|*)* log +0((1 = |2*)*),

1
1—|z]

which becomes negative as z approaches 1. O

The next lemma shows that the inequality T'u > u is preserved under certain
convolutions.

Lemma 2. Suppose u € L'(D) and Tu > u in D. Suppose w > 0 is a
bounded measurable function on the circle. Define, for z € D,

L / " u(ze (e dt.

©) v =5 |
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Then U € L'(D) and
TU >U nD.

Proof. Note that if z = re®, then
. 1 2 . .
0y _ i(0—t) it
U(re”) = 27r/0 u(re )w(e )dt
1 21

= 2—1;/0 u(re“)w( i6- ‘)) dt.

(]_ —r2 2w 1.(t 8)
u(re’ / / |1 rpe“*l‘1 dsdp.

Since w > 0 we can multiply both sides of this inequality by w(e*®~?) and
integrate on ¢. After interchanging the order of integration we get

2
Ul(re) = i/ u(ret)w ( i(e"t)) dt
(1-1r?) 2m . . dt
i(t—s) i(0—t) | 2
o [ e [ () w (o) o
_ (1 - 7' / /2" 1 /27r it i(0—t—s) dt
= p = rpei3|4 u(pe)w (e ) 27rdsdp

(1—7” 2 i(6—s)
/ / Tpew|4 U (pe*=) dsdp

(TU)(

By hypothesis,

O

The next theorem says that if Tu > u and Au has a weak* limit on some
interval, that limit is non-negative.

Theorem 3. Suppose that u € C*(D) N L*(D), and that [, |Au(¢)|(1 -
[€|?)2dA(¢) < oo. Suppose further that Tu > u in D and that there is a
closed arc I on the boundary of the unit circle and a finite Borel measure p
on I such that for all continuous functions ¢ on I we have
lim Au(reie)cp(eio)d—a =/<pdu,
2T I

r—1 I

then u > 0 on I, the interior of I.

Proof. Let w(e~%) be a continuous non-negative function with compact sup-

port in I, let
1

- /27r u(ze"*)w(e™)dt.

U(z) = o o
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From Lemma 2 we know that TU > U in D. Since the Laplacian commutes
with rotations it follows from (9) that

(10) AU(z) = i (Au)(ze ) (et)dt,

and hence that
[ 1AUQI1 - ) dA(Q) < o0

It follows from Theorem 2 that there exists 7, — 1 and 8, — 0 such that
limy_, oo AU (r1€%*) > 0. Now it follows from (10) that

27
AU (re?) = % i Au(rie)w (ei(ak‘t)) dt.

Notice that for all k sufficiently large w (e'(®*~?) will have its support in I.
We have

/w(e"“)dp(t) — AU(rie*)
_/w (e™*)du(t) —/Au(rke Yw(e™ ‘t)—

dt
it —it) __ i(0x—t)
+/1Au(rke ) 'w(e ) ( ) 3

The first difference above goes to 0 as r, — 1 by hypothesis. The second
difference is bounded in modulus by

(s%p/I |Au(rke“)|—;—;—) (sx:p Iw(e'“) —w (ei("“"))l) .

The first factor is bounded, by the principle of uniform boundedness and
the second goes to zero as kK — oo by the uniform continuity of w. We have
shown that [, w(e=*)du(t) > 0 for all non-negative w(e™*) continuous with

compact support in [ ; the result follows. a

Section 2.

Now suppose that f and g are holomorphic in D and f + g = ¢ is bounded.
We wish to calculate ||T,,F||3 for F € H*(D)

T,F = P(f +9)F = fF + P(gF),
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SO

IT,Fliz = (fF + P(GF), fF + P(gF))
= |fF| + |[PgF|l; + (PgF, fF) + (f F, PgF)

=l FII3 + IPGFI; + (F3F, F) + (fF, F),

since P is self-adjoint.
By interchanging the roles of f and g we see that

— — 2
IT5F13 = l9F |} + (FgF, F) + (fgF, F) + | PFF| .

Hence T, is hyponormal if and only if

2 2 2 3 2
9) IfFIZ + IPgFIE > llgFIl3 + |PTF
for all F € H*(D).

In particular (9) holds if F' = k, for some z € D. Now it is immediate that

gk, — g(2)k, L B(D) for any g € H*(D) and hence that P(gk,) = g(2)k,.

Theorem 4. Suppose that f and g are holomorphic in D, that f +g = ¢
is bounded in D and that T, is hyponormal, then Tu > u in D where u(z) =

If(2)* = lg(2) .
Proof. By the above discussion, if we let F' = k, in (9) we get

(10) kN7 + l9(2) Pk N5 > llgk- I3 + |f (2) [l 13-
Since ||k,||3 = ;(l_:l—lgl—z_)—i, a minor rearrangement of (10) proves the theo-
rem. a

Corollary. Suppose that f and g are holomo_'r_'pln'c m D, that f+7 = is
bounded in D and that T, is hyponormal, then lim ,_,(|f'(2)|* —|g'(2)[?) >0
for every ¢ € dD. In particular, if f' and g' are continuous at { € 0D, then

1) = 19" ()I-

Proof. The proof follows from the theorem and the simple observation that
A|f|?> = |f'|? for any holomorphic f. O-

Suppose that f is holomorphic in an open set of the form

{re? :ry<r<1 and €“e€l}
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where I is some open arc on the boundary of the unit circle. We say that
feH*(I)if

(i) f has polynomial growth i.e., there exists A > 0 such that f(re¥) =
O((1 —r)~4) for all ¥ € I.

(i) There exists 1, — 1 such that
/ |f(ree®)[?dd < C < 00, all k.
I

The next lemma, is standard. Since we know of no convenient references
we indicate the proof.

Lemma 3. Suppose f € H*(I), then there exists F € L*(I) such that
lim,_,; f(re?®) = F(e®) a.e. on I and for every compact subinterval J C I

lim / If (rei®) — F()[2d6 = 0.
r—1 J
In particular, lim,,; [, |f(re®)|?d8 < oo.

Proof. Pick a compact interval L such that J C L C L CI. Let €1, be
the end points of L and choose N such that

li_x’l}[(reio _ eiol)(reio _ eil)g)]Nf(,reio) =0
if 8 = 0, or 8,. This is possible by i). Let g(z) = [(z — €¥)(z — €%2)]" f ().
Let 7o <ry < land Ay = {re® : r; <r < r,e? € L}. Let A, =T, U Ly

where L, = {r;e¥ : e € L}. If z €A, we have
1 9(¢) 1 9(¢)

=— [ —==d{+— | —=d(.

9(2) 27 Jr, C— 2 ¢+ 2mi Jr, C-—zdc
If we let k — oo we get g(2) = g1(z) + g2(2) where g;(z) is holomorphic on
L and g,(2) is the Cauchy integral of an L? function on the circle. It follows

that the conclusions of the lemma hold for g and hence for f. O

Theorem 5. Suppose that f and g are holomorphic in D, that f +G = ¢
is bounded in D and that T, is hyponormal. Suppose further that there is
an open interval I such that f' € H?(I). Then for any open subinterval
JCJTCIg € H*(J) and |f'(e)] > |g'(e)| almost everywhere on I.

Proof. Let w(e™™) be a continuous function with compact support in I such
that 0 < w < 1 and w(e™*) = 1 on a neighborhood of J, combining The-
orems 2 and 3 with Lemma 2 we have the existence of ry, — 1 and 6; — 0
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such that

2w
. U oYVI2 _ (ol (o oit)|2 i(0n—t)
klgn A (If (ree™))* = |g' (rre™))*)w (e . )dt >0.

Let L be compact interval so that J C LCLCI As before, for large k,
w (€®*~?)) has support in L and hence,

2w . .
|1 ey P (00 at
0
< / |f'(ree™)|?dt < C < 0o, by Lemma 3.
L
Also, for large k, w(e?®*~%) =1 on J from which it follows that
lim, oo [ I9'(ree®)?dt < C < oo.
J

Now since g € H*®(D),¢' has polynomial growth and hence g’ € H?(J).

It now follows that the measures (|f'(re®)|? — |g’(re"")|2)g have a weak *
' . : do

limit as r — 1, €? € J, and that this limit is (|f'(e?’)|> — |g’(e"’)|2)2—1r. It

follows that |f’(e®)] > |¢'(e®)| a.e. on J, and hence on I since J C J C I,
was arbitrary. O

References

[1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, Jour-
nal of Functional Analysis, vol. 111, 2 (1993), 380-397.

[2] H. Sadraoui, Hyponormal Toeplitz operators on the Bergman space, preprint.
Received October 12, 1993.
UNIVERSITY OF WISCONSIN-MADISON
MabisoN, WI 53706
E-mail address: ahern@math.wisc.edu
AND
UNIVERSITY OF TOLEDO

ToLEpO, OH 43606
E-mail address: zcuckovi@math.utoledo.edu








