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CONSTANT MEAN CURVATURE FOLIATION:
SINGULARITY STRUCTURE AND CURVATURE ESTIMATE

RUGANG YE

We study constant mean curvature foliations with isolated
center singularities in 3-dimensions. We prove that the leaves
become round upon approaching a center. We also derive
a priori curvature estimates for constant mean curvature fo-
liations without stability condition. A complete existence,
uniqueness and non-existence result for constant mean cur-
vature foliations around a center is derived as a consequence.
These results are extended to constant mean curvature folia-
tions on asymptotically flat ends.

0. Introduction.

Consider a foliation by constant mean curvature hypersurfaces in a Rie-
mannian manifold. Using suitable concepts for surfaces such as rectifiable
currents, singularities can be allowed in the foliation. A special case is that
all leaves have the same mean curvature. If the mean curvature is zero,
i.e. the leaves are minimal, the calibration argument shows that they are
homologically area-minimizing, and hence are smooth if the dimension of
the ambient space is no larger than 7. The same holds if all leaves have the
same nonzero mean curvature, for under this assumption the leaves still have
an area-minimizing property, namely they minimize area under the constant
volume constraint. In higher dimensions, singularities generally do occur,
and one would like to undersatnd the structure of singularities, mainly the
asymptotical behavior of leaves upon approaching singularities. Important
results on singularity structures of area-minimizing varieties have been ob-
tained by L.Simon in [Sml ], [Sm2 ]. These results apply to the said special
case of constant mean curvature foliations and gives e.g. information on the
asymptotical behavior of a single leaf upon approaching singularities.

The situation changes dramatically if we allow mean curvature to vary
from leaf to leaf without assuming any control over its variation. In general,
singularities occur, even in the lowest dimension. No nontrivial result about
singularity structures has been known before. Besides, we emphasize that
the question is not only about a single leaf. The asymptotical behavior of all
relevant leaves upon approaching singularities is at the heart of the problem.
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In this paper we study a model case: constant mean curvature foliations with
center singularities. A center singularity, or simply a center, is an isolated
singularity surrounded by closed leaves. In [Yl ], the concept of "regularity"
was introduced. A constant mean curvature foliation is said to be "regular"
or "controlled" at a center, or the given center is "controlled", if the rescaled
second fundamental form of the surrounding leaves is uniformly bounded.
Regularity controls the asymptotical geometry of leaves around center sin-
gularities. Indeed, the shape of the leaves becomes round upon approaching
a controlled center, in the sense that they converge to the Euclidean sphere
after rescaling, see [Yl]. The fundamental question is then whether a con-
stant mean curvature foliation is regular at every center, at least in lower
dimensions.

For a constant mean curvature foliation on an asymptotically flat manifold
or end, the infinity can be thought of as a special kind of singularity. Here,
"regular at oo" is a natural concept concerning structures at infinity. Note
that from the point of view of physics, the most significant dimension is 3.

The main results in this paper concerning singularity structures are the
following structure theorems in dimension 3. (The 2 dimensional case is
rather easy, and should be considered as a trivial case.)

Theorem 1. Let T be a C2 constant mean curvature foliation in a 3-
manifold. Then T is regular at its centers. Consequently, the leaves become
round upon approaching a center. {The same holds for a 2-manifold.)

Theorem 2. Let T be a C2 constant mean curvature foliation with compact
leaves on an asymptotically flat end of dimension 3. If it is diameter-pinched
at oo, then it is regular at oo. Consequently, the leaves become round upon
approaching infinity.

Regularity is a very strong geometric property, and the above results
are quite delicate. Note that in a Euclidean space these results become
trivial on account of the Alexandrov reflection principle. In the general
Riemannian case, since the metric is almost Euclidean near a center, one
might hope to apply this principle to show that the leaves become round
upon approaching the center. However, the Alexandrov reflection principle
depends in a crucial way on the symmetry properties of the Euclidean space,
and a quantitative version of it allowing small perturbations does not seem to
hold. Hence in general it does not predict the shape of a closed, embedded
surface of constant mean curvature in a space which is arbitarily close to
being Euclidean. Conceivably such a surface can be dramatically different
from round spheres. Indeed, it should be possible to construct such examples
by using the classical Delauney surfaces. This issue will be taken up in a
subsequent paper.
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It is not clear whether Theorem 2 is optimal. Technically, the "diameter-
pinched" condition is used to prevent the leaves from falling to the "black
hole" singularity after a certain rescaling. On the other hand, there are
technical obstacles to extending Theorem 1 and Theorem 2 to higher dimen-
sions. All ingredients in their proof work in arbitary dimensions, except two,
which are restricted to dimension 3. The first is the Bernstein type result
of Fischer-Colbrie-Schoen [FS] and Do Carmo-Peng [CP]. Experts believe
that it extends to dimensions 4-7, but no proof has become available. The
second is an argument for finding "necks", but it seems that an refinement of
this argument works in higher dimensions. With such a refinement, a weak
version of Theorems 1 and 2 then hold in dimensions 4-7. We replace namely
the above Bernstein type result by the result in [SS]. An additional condition
on rescaled area is needed here. Details will be discussed in another paper.

Besides singularity structures, another important question about constant
mean curvature foliations is a priori curvature estimates. For a minimal
foliation, the leaves are stable, and hence the curvature estimates in e.g. [SS]
are applicable. If the mean curvature is a fixed nonzero constant, the leaves
are mean stable, and the estimates in [SS] apply with some modifications.
See also Section 4 of this paper for stronger estimates in dimension 3. No
result has been known for the case that the mean curvature varies from leaf
to leaf.

In this paper we obtain the following a priori curvature estimates. Note
that the regularity results stated above are implied by these estimates, but
their seperate formulation helps to make the different aspects of our topic
clear. (The 2-dimensional case is again trivial.)

Theorem 3. Let M be a 3-manifold, Ω a region in M and p a point in Ω.
Let T be a C2 contant mean curvature foliation of Ω or Ω\{p} with closed
leaves, which we assume to be simply connected {hence topological spheres).
Then there are positive constants R = iϊ(Λ, δ) and C — C(Λ, δ) such that if
diam Ω < iϊ, then

(0.1) sup ( s u p p 5 | | min{l,σ(S),diamSr}>) < C.
SζT \ S /

Here Λ denotes an absolute bound on Ricci curvatures, δ a positive lower
bound on conjugate radius, and the thickness c(S) of T along S is defined to
be the supremum of positive numbers r with the following property. If q G S,
then one of the two geodesies which start at q in the direction of one normal
of S and have length r is contained in Ω.

The remarks above about higher dimensions also apply here. We point
out that the condition on the diameter of T is solely for the purpose of
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having T contained in a (geometrically controlled) coordinate chart. Thus
an alternative version of Theorem 3 is the following result.

Theorem 4. Let K3 be equipped with a Riemannian metric g . Assme that
the C2-norm (or a CliOί~norm) of g is bounded by a constant K and that
g > λgQ for a positive constant λ, where g0 denotes the Euclidean metric.
Let T be a constant mean curvature foliation of Ω\{p} or Ω for a bounded
region Ω in R3 with p G ί l , where mean curvature is measured in g. Assume
that its leaves are all topolgical spheres. Then there is a positive constant
C = C(K, D, λ) such that

(0.2) sup (supllAsll min{l,σ(5),diamS} ) < C,
ST \ S J

where D denotes an upper bound for the maximum distance of points in T
from the origin. In the estimates, all geometric quantities can be measured
in g as well as in the Euclidean metric.

A parallel version for foliations on asymptotically flat ends holds, in which
the number 1 is removed from (0.2), but the constant C depends in addition
on a measure of the asymptotical flatness and a measure of the diameter-
pinching property. Moreover, the foliation is required to be contained in
an asymptotical chart. We leave it to the reader to formulate the precise
statements. An open question regarding the above curvature estimates is
whether the condition of simple connectedness is indispensible. Note that it
is quite unusual that global topological structure plays a role in pointwise
curvature estimates. On the other hand, it would be very nice if the condition
on the size of the foliation can be dropped.

The initial motivation for the research undertaken in this paper came
from the following context: exsitence and uniqueness of foliations by con-
stant mean curvature spheres around a point and on an aymptotically flat
end. In [Yl], we showed that around a nondegenerate critical point of the
scalar curvature function in a Riemannina manifold, there exists a regular fo-
liation by constant mean curvature spheres. Uniqueness was obtained there
under the regularity assumption. The arguments in [Yl] extend to produce
so-called "balanced" foliations by constant mean curvature spheres on an
asymptotically flat end. Uniqueness in this context is more subtle, but a
crucial ingredient is still regularity. For a detailed discussion see [Y2].

As a consequence of Theorem 1 and [Yl], we obtain the following complete
existence (non-existence) and uniqueness results for constant mean curvature
foliations around a point in dimensions 3 and 2:

Theorem 5. Let M be a 3-manifold or a 2-manifold and p 6 M. If there
is a C2 foliation by constant mean curvature spheres around p, then p must



CONSTANT MEAN CURVATURE FOLIATION 573

be a critical point of the scalar curvature function. If p is a non-degenerate
critical point of the scalar curvature function, then there is a neighborhood of
p which contains a unique C2 foliation by constant mean curvature spheres
around p, which is actually smooth.

Part of the above results can be formulated in the following way:

Theorem 5'. In dimensions 2 and 3, the center singularities of a con-
stant mean curvature foliation must be critical points of the scalar curvature
function.

Similarly, Theorem 2 and the Main Theorem in [Y2] imply the following

Theorem 6. On a 3-dimensional asymptotically flat end of non-zero mass,
there is a unique diameter-pinched C2 foliation by constant mean curvature
spheres, which is actually smooth.

We would like to mention that G.Huisken and S.T.Yau [HY] obtained
independently existence of foliations by constant mean curvature spheres on
asymptotically flat ends of positive mass, and showed uniqueness in the class
of foliations with (mean) stable leaves in this case.

Now some words about the proof of Theorem 1. Since the proof is rather
technical, we try to describe its main points here. We start with a rescaling
procedure. Assuming namely that there is a non-controlled center, we rescale
the leaves around it suitably to make the maximum value of the norm of
their second fundamental form become 1, and then obtain limits. The limits
more or less constitute a foliation of some Euclidean region by constant
mean curvature surfaces. If these surfaces are actually minimal, then we can
apply the Bernstein type theorem mentioned before to derive a contradiction.
Hence the key is to show the minimality of the limit leaves. This is rather
intricate and quite involved. The basic idea is this. There is a known height
estimate for compact graphs of constant mean curvature, say 1, which is
obtained by applying the maximum principle to a natural function which
we call the geometric height function. If our limit leaves are not minimal,
we can rescale them to achieve mean curvature 1. On the other hand, they
are noncompact and come from compact surfaces, and hence we hope to
find portions in them which are compact, tall graphs, thereby producing a
contradiction to the said height estimate.

One might want to try to apply the height estimate directly to the rescaled
leaves before taking limit. One trouble here is that for this purpose we need
the leaves to be uniformly close to having Euclidean constant mean curvature
1, which may not happen because of the noncompactness of their limits.
Another more important point is that this estimate only applies to graphs.
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On the other hand, it is not clear how to find tall graphs in the rescaled
leaves without utilizing limits. A basic method for proving graph property
of constant mean curvature surfaces is the Alexandrov reflection principle,
which does not extend to an almost Euclidean situation in general (c.f. a
relevant discussion before). Now how can one find compact, tall graphs in
the limit leaves? The limit leaves come from compact surfaces, so one may
naively think that they are easy to come by. But it is by no means clear that
they can always be found. The whole process of finding useful graphs turns
out to be rather involved, and the fact that the original leaves are simply
connected is used in a crucial way. First we observe that we can utilize
the entire rescaled leaves, namely we can use limits of them other than the
chosen ones.

To construct useful graphs in limits of the rescaled leaves, we design a
key cutting scheme: trimming. Using it we isolate pieces which are suitably
confined and sufficiently tall. It is here that we need to use the fact that
the original leaves are simply connected. After enough trimming, we pass
to a limit. The limit surface contains a point where the geometric height
function assumes a maximum. To show that it is a graph, we try to apply
the Alexandrov reflection principle as mentioned before. But there is an
obstacle here: the limit surface may not be compact. It also bring with it
another difficulty, namely the tallness may be lost in the limit. The trick
for overcoming this obstacle is to build the reflection argument into the
limit process. An ingredient here is an argument for finding necks, which
is a device for utilizing the trimming property. Eventually we arrive at a
situation in which we have a tall graph and the said height estimate holds,
and we obtain the desired contradiction.

The proof of the curvature estimates is essentially the same as the above
arguments. We find it convenient to also include some results on a priori
estimates for mean stable surfaces, see Section 4. These are quite easy, but
useful. A relevant open question here is this: when are the leaves in the
constant mean curvature foliations constructed in [Yl] stable or unstable?

We acknowledge interesting discussions with G. Huisken concerning foli-
ations on asymptotically flat manifolds.

1. Regularity and Curvature Estimates.

Let M be a Riemannian manifold of dimension n + 1 with n > 1. Let T be
a codimension one foliation on a domain Ω of M. We shall assume that T
has C2 leaves. We say that T is of class Cfc, if the local coordinates for T
are of class Ch.

Definition 1. A point p £ M\Ω is called a center or center singularity of
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T, if there is a neighborhood Uofp such that U \{p} C Ω and the restriction
of T to U \{p} has closed leaves. U is called a center region of T. If we have
moreover

sup (sup||Λs||diam5') < oo,

where T1 is the restriction of T to U\{p} and As denotes the second funda-
mental form of 5, then we say that T is regular or controlled at p, and that
p is a controlled center.

Lemma 1. Let U be a center region of a foliation T of class Ck and p the
corresponding center. Let T1 denote the restriction of T to U\{p}. Then the
leaves of T1 can be parametrized as a Ck-family St, 0 < t < 1 with St φ St* if
t φ t' and limt^o diam St = 0. Moreover, these leaves are simply connected
ifn>2.

Proof. The proof of Lemma 2.1 in [Yl] can be quoted word by word to
produce the desired parametrization. Now assume n > 2. Consider the
closed region Vt bounded by SΊ and St, which is homotopy equivalent to SΊ
on account of the parametrization. If t is sufficiently small, then all loops on
St can be homotoped to a point in a closed region which is enclosed in SΊ
and does not contain the center. Hence they can be homotoped to a point in
the region Vt> for a smaller t1. By the said homotopy equivalence we deduce
that all the leaves are simply connected. D

Definition 2. A constant mean curvature foliation in M is a codimension
one foliation of class C2 on a domain of M whose leaves have (generally
varying) constant mean curvature.

Proof of Theorem 1. Let T be a constant mean curvature foliation in a 3-
manifold M and p a center of T. Consider an associated center region U.
Let Sf> 0 < t < 1 be the parametrization of the restriction T1 oίT to U\{p}
as given by Lemma 1. We assume lim^o supSf ||^4st|| diamS^ = oo and are
going to derive a contradiction. Choose tk —> 0, Tk —> 0 with Tk > tk such
that,

i) diam STk -» 0,
ϋ) s uPs ί f c \\Astk\\ d i a m Stk = s u p ^ ^ (sup5t ||A5t | | diam St),
iii) supStfc \\AStk\\ diam Sth -> oo,
iv) dist(,Sίfc, STh) > 10 diam Stk and
v)dist(5 t t, STk) >l/supStk \\AStk\\.
It's not hard to see that such a choice is possible. Note that ii) implies

(1.1) s u p | μ 5 t j | = sup
St. k tk<t<l
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because the diameter is an increasing function. We denote by Tk the foliation
T' restricted to the parameter range tk < t < Tk and by Ωk the domain
bounded by Sτk> Via the exponential map at p we can consider the Ω*'s
as domains in R3. For each fixed &, we choose pk G Stk with ||4stfc(p*)ll =
sup5ί \\ASt || and translate Ωk so that pk becomes the origin. Then we dilate
Ωfc by the factor ak = \\Ast (Pk)\\ to get a new domain Ω£. The dilation of
Tk yields a foliation Tk whose leaves have constant mean curvature with
respect to the dilated metric gk. Moreover,

(1.2) sup sup U 5 ( J = 1 = μ 5 ( *,(0)
tk<t<τk » ~(kλ " * " ' I ' <fc

where Si denotes the image of St under the dilation and the second fun-
damental form is measured in gk. We also have

(1.3) min (diam S**M —» oc as k —> oo,
tk<t<τk \ ι ) '

where the diameter of St is measured in gk. Notice that the domains Ω£
approach IR3 and gk approach the euclidean metric in the smooth topol-
ogy everywhere uniformly in ΩJ; (the uniform convergence follows from the
property i) above).

Our goal is to obtain suitable limits from the foliations Tk in order to
derive a contradiction. We start with the "innermost" leaves S\h . By the
curvature bound (1.2), the constancy of mean curvature and the smooth
convergence of gk it is easy to see that a subsequence of S\k converges locally
smoothly. This subsequence will still be denoted by Sth . (Throughout
the following we shall adopt this convention of retaining the notation for a
sequence when passing to a subsequence. Often we do not explicitly mention
passing to a subsequence.) The limit of S^ consists of countably many
complete, noncompact and connected immersed surfaces of constant mean
curvature. Here the noncompactness follows from (1.3) and the fact that the
Sth s are embedded (and connected). One of these surfaces passes through
the origin and its second fundamental form has length 1 there. We denote
this surface by S°°. Note that self-intersection of S°° can only occur in the
way that one (embedded) piece of S°° meets another from one side. Such
self-intersection will be called "one-sided".

We need the following crucial lemma.

Lemma 2. S°° has zero mean curvature.

Proof. Part 1. Initial Step. Assume the contrary. By rescaling and
choosing orientation we may assume that the mean curvature of S°° is 1. To
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derive a contradiction, we shall utilize the entire leaves S^ . It is convenient
to first perturb them so that the coordinate function x3 becomes a Morse
function on each of them. We can choose the perturbations so small that the
limit 5°° is unaffected. We assume that these leaves have been so perturbed
and keep their notations.

Let 5 stand for 5ίfc • Consider horizontal (with respect to x3) planes
P n i — 1,2, ...,m for some ra, which lie one above another successively at
a distance between 10 and 11 and intersect 5 transversally, such that the
highest point of 5 lies above Pi at a distance between 10 and 11, and the
lowest point of 5 lies below P m at a distance between 10 and 21. We can
assume that 5 is tall enough such that these hyperplanes exist.
Part 2. Trimming. Consider the part of 5 lying above P 1 P Let 5' be one
of its components. A component of S\S' is called a leg of 5 growing from,
5'. A leg of height at least 40 is called a long leg.

Claim 1. A leg has only one boundary component.

Consider a component 5' and the legs growing from it, one of which 5"
has at least 2 boundary components Lx and L2 Note that 5' and its legs
are topologically plane domains, and 5 is obtained by gluing S' to its legs
along their common boundary circles. Using these facts, it is easy to see that
the genus of 5 must be at least 1, contradicting the simple connectedness
assumption. (This argument can be extended to all dimensions.) Thus the
claim is proved.

Next we expand the concept of legs. First, if 5" denotes a component
of the part of 5 lying below P1 ? then following the terminology before, a
component of S\S" is called a leg of 5 growing from 5". These new legs
can be called "upward legs", whereas the old legs can be called "downward
legs". The words "upward" and "downward" indicate how a leg grows out its
boundary; both kinds of legs reach low in the end. Second, for the purpose
of defining legs, so far we have only used the plane Px to cut 5; from now
on we may use any of the P/s. With the expanded definition, Claim 1 still
holds. Now we choose a smallest long leg 5(1), i.e. a long leg which does
not contain properly another long leg.

Consider the components of the part of 5(1) above P m . One of them
connects to the boundary of S(l). Denote it by 5(2). Let 5(3) be another
component. We reach its highest level, and choose the P{ which lies right
below it. Consider an upward leg 5(4) contained in 5(3) which is defined
with respect to P i + 1 and containes a highest point of 5(3). In particular,
5(4) is no shorter than 10, measured from its boundary level P;+i Since
5(1) is a smallest leg, the height of 5(4) is less than 40. Notice that by
Claim 1, 5(4) has only one boundary component. If no 5(3) exists, then we
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consider the closure of the part of 5(1) lying below Pm. Denote it by 5(4)'.
It has only one boundary component, which is contained in Pm. Moreover,
it lies between Pm and the horizontal level 23 below Pm and is no shorter
than 10, measured downward from its boundary level Pm.

We let S(k) denote the one among 5(4) and 5(4)' which occurs. After
suitable translation and rotation, we can achieve the following: the boundary
of S(k) is contained in P = {x3 = 0}, the highest point of S(k) occurs in the
open upper half space V = {x3 > 0} at height at least 10, and all points of
S(k) are higher than —30. We say that S(k) is trimmed in the x3-direction.
Part 3. Further Trimming. Consider a direction e orthogonal to # a.
Consider a plane P' orthogonal to e for which there is a subsequence of S(k)
with the following property. We perform an arbitarily small perturbation of
each S(k) to make them intersect P' transversally away from their boundary
(the boundary is unperturbed). Legs of S(k) with respect to P' can be
defined as before, with the additional requirement that a leg's boundary
does not intersect the boundary of S(k). We assume that each S(k) (in the
chosen subsequence) has a long leg. We replace S(k) by one such leg. This
process is called separation. If no Pf with the said property exists, then
we say that S(k) is inseparable in the direction of e, otherwise separable in
the direction of e. Now if S(k) is separable in a direction e orthogonal to
rr3, we perform the said separation process and trimm it in the e direction.
Then we change coordinates, letting e be the new #3, and change the old x3

to x2. Now we check whether the new sequence S(k) is separable in some
direction orthogonal to both x2 and x3. If it is, we perform the separation
and trimming process in that direction, and then change coordinates. It is
easy to see that we then arrive at a sequence S(k) which is trimmed in the
direction of x3 and is inseparable in all directions orthogonal to x3. We say
that it is well-trimmed.
Part 4. Controlling Graph Height. We choose a point qk on S(k) such
that the function x3 — v3 achieves its maximum at qk, where v denotes the
"upward" unit normal of S(k) (it points upward at the highest points of
S(k)). By a translation we can arrange that qk lie on the α;3-axis. Then
we obtain from qk a limit point q and from S(k) a maximal connected limit
surface 5 which contains q. Clearly the function x3 — v3 on 5 achieves its
maximum at q. Set W = {x3 > 6}. We are going to show that 5 Π W is
a graph over P. We first estimate from below the height of the portion of
S(k) which is a graph.

A horizontal plane P' intersecting S(k) is called a "critical plane" for
S(k), if the following is true. Let V be the open half space above P1. Then
S(k) Π V1 is a graph over P and its reflection across P1 lies on one side of
S{k) Π (IR3\V). Moreover, either its reflection meets S(k) Π (R 3 \y) at a
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point p £ P' or there is a point q G P' where S(k) is vertical, i.e. its normal
is parallel to P'. We call p a "first touching point" on S(k) and q a "first
vertical point". Since S(k) are compact, the Alexandrov reflection procedure
implies that S(k) Π W is a graph over P if W does not contain critical planes
of S(k). (Note that no maximum principle is needed for this assertion.) Let
δk be the maximal height of the critical planes of Sk with the convention
that δk = 0 if Sk has no critical planes. We claim l i m s u p ^ ^ δk < 6.

Assume l i m s u p ^ ^ δk > 6. We are going to derive a contradiction.
Passing to a subsequence we can assume δk > 6 for all k. For each S(k)
choose a critical plane Pk of maximal height and a first touching or vertical
point pk associated with Pk. Passing to a subsequence we may achieve that
either all pk are first touching points or they are all first vertical points.

Case 1. All pk are first touching points.

Let Vk denote the open half space above Pk and qk £ Vk the reflection of
pk across Pk. Let S(k)+ be the component of S(k) Π Vk containing qk and
S(k)~ the interior of the component of S(k) Π (M3\14) containing pk. Then
the reflection of S(k)+ across Pk lies on one side of S(k)~ and meets S(k)~
at pk. We claim that the maximal height hk of S(k)Jr measured from Pk is
uniformly bounded away from zero. To see this we first note that because
of the curvature bound (1.2) there is a number r > 0 independent of k with
the following property. If ql E S(k)+ is a point where hk is achieved, then
the component B* of S(k) Π B r (ql) containing ql is a graph over P.

Now if hk approaches zero, we would be able to find a geodesic ball Bk =
Bε(q'k) on S(k) with ε > 0 independent of A; such that Bh is disjoint from and
lies below Mk and dist(q'k,ql) -* 0. After suitable translations and passing
to subsequencies we then obtain limits q — lim ql = l iπ i^ , B°° = limB* and
B°° — YimBk. Since B°° is concave (i.e. upward convex) at q, it follows that
B°° is also concave at q. From the normal v on S(k) we obtain limit normals
v+ on B°° and v~ on B. Since we assumed that S°° has mean curvature 1, B°°
and B°° also have mean curvature 1 with respect to z/+ and v~ respectively.
We conclude that v*(q) = v~(q) This, however, is impossible because Mk

and Bk belong to the embedded and closed hypersurface Slk , which bounds
a domain and does not permit its inside (outside) to approach its outside
(inside). Thus the uniform positivity of hk is verified.

Now we translate S(k) so that pk, qk are moved to the xn + 1-axis. Then
we obtain a limit plane P^ from Pk, a limit point p ^ from pk and a limit
point ς̂ o from qk. We deal with two possible cases separately.

Subcase 1. p^ φ q^.

We obtain from S(k) a maximal connected limit surface S(oo) which con-
tains Poo and a maximal connected limit surface S'(oo) which contains q^. (It
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will be shown that these two limits are actually the same.) Let S"(oo)+ be the
component of S"(oo)nFoo which contains g^, where I4o denotes the open half
space above P^. (Note that by the maximum principle the closure S'(oo)+
can meet P^ only along its boundary.) The interior of S(oo) Π (R3\Vr

σo)
has one component which contains p^. We call it 5(00)". We can choose
5'(oo), S(oo) and £(00)" in such a way that the reflection POO(SI(oo)+) of
S"(oo)+ across P^ lies on one side of £(00)" and meets S(oo)~ at p^. Then
the maximum principle implies that Poo(5f/(oo)+) coincides with S(oo)~.

Now if S'(oo)+ is disjoint from P^, then it is a complete surface which
covers the entire P^. We take a sphere of mean curvature 1/2 lying below
P(oo), and move it upward until it touches 5"(oo)+ for the first time. Since
S"(oo)+ is a limit of graphs, the sphere has to meet it from its downward
side. This violates the maximum principle. Thus the closure of S"(oo)+

must intersect P^, and it extends across the intersection into 5'(00). Next
consider an arbitary point p in this intersection, which is the same as the
intersection of the closure of S'(oo)+ with the closure of S(oo)~. At p, the
two surfaces must be tangent to each other, because they are limits from the
same sequence of embedded surfaces. One sees readily that their commom
tangent plane is either horizontal or vertical. The former can be ruled out.
Indeed, if it happens, then S'(oo) and S(oo) are different. They must meet
each other from one side at p. But this violates the maximum principle on
acount of their orientation. Note that one consequence of vertical tangent
planes is that the commom boundary L of the two surfaces is a smooth
submanifold in P^. Next we claim that S'(oo) and S(oo) are indeed the
same limit. In other words, S"(oo)+ and S(oo)~ fit together along their
common boundary to make a maximal limit. There are various ways to see
this. One way is this. If these two surfaces do not fit together at some point
p G ί , then near it one piece of S(k) approaches another from the wrong
side, in a way similar to the one discussed earlier in the argument about the
uniform positivity of the numbers hk.

To proceed, let Ω denote the domain in P^ which lies underneath S(ρό).
Thus L = <9Ω. We first observe that Ω must be unbounded, for otherwise
5(oo) would be a closed surface, which is impossible because S{k) have
nonempty boundary. Consequently we can find a straight line σ in P^
which divides Ω into components, such that one is unbounded and at least
one on the other side of σ is 50 tall (seen in the direction orthogonal to
σ). We can choose σ such that the the intersection of the vertical plane
Pσ containing it with S{oό) is transversal. If the intersection of σ with the
closure of Ω is compact, then we choose a component σ0 of it, such that one
unbounded component of Ω\σ lies on one side of it, while another component
of at least 50 tall lies on the other side. The corresponding component of the
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intersection of Pσ with S(oo) which lies above σ0 is then a closed curve, which
we call a neck of S(oo). Using this neck it is easy to find long legs in S{k)
for k large, contradicting their well-trimmed property. It follows that σ Π Ω
is unbounded. We choose one unbounded component σi. Consider a round
disk in P^ whose radius is 4 and whose center p0 lies on σx, such that both
components of σi\{p0} are longer than 60. It is divided by σλ into two half
disks. Both must meet L. Othewise, using the moving process introduced
before, we can find a sphere of mean curvature 1/2 touching the interior of
^(oo) from below, violating the maximum principle. Now it is easy to find
a neck of £(00) whose projection in P^ is a line segment connecting L from
one half disk to another. One then readily finds a long leg in S(k) for k
large, contradicting the well-trimmed property.

We have arrived at contradictions in all possiblities of Subcase 1.

Subcase 2. p^ = q^ G Poo

We can again obtain two maximal connected limit surfaces S(00) and
S"(oo), both passing through p^ this time. Their choice is as follows. Take
a local piece of S(k) containing pk for each k and obtain from them a limit
containing p^. Extend it maximally we obtain S(oo). S'(oo) is obtained
similarly by considering qk. By the arguments in Subcase 1, S(oo)~ and
S"(oo)+ must meet at p^ vertically. Applying the Hopf boundary point
lemma to ^(oo)" and the reflection P00(5"(oo)+) we deduce that they coin-
cide with each other. From now on we can apply the arguments in Subcase
1 to reach condradictions.

Case 2. All pk are first vertical points.

This is clearly similar to Subcase 2 of Case 1.
We have proven that limsup^.^^ δk < 6. Applying the Alexandrov moving

plane process we then deduce that for each plane P' parallel to P whose
height lies in the open interval (6,10) the following holds. For large k the
intersection S(k) Π V (V is the open half space above P') is a graph over
P and its reflection across P' lies on one side of S(k) Π (M3\VΓ/). Taking
limits we conclude that the reflection of S Π V across P' lies on one side
of S Π (R3\V) or S Π V is empty. Now if S Π W is not a graph, then we
would be able to find one such P1 along with a point p' G P1 Π S such that
S is vertical at p'. But then the above arguments for proving the inequality
lim sup^oQ δk < 6 can be applied to yield contradictions.

We have established that S Π W is a graph. By the moving sphere argu-
ment used before, we then deduce that the closure of S Π W must intersect
the horizontal plane dW at height 6. Now we can argue as e.g. in [M]. We
have

Δ(z3 - ι/3) = (-2 + \A\2)u3>0
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on the domain Ω in P which lies below SOW. Hence the maximum principle
implies that x3—v3 is a constant on SOW. Since S Π WΠ(dW) φ φ, it follows
that x3 — v3 < 6 on 5, contradicting the obvious fact that the maximum of
x3 — v3 on S is at least 9.

The proof of Lemma 2 is now finished. D

Now we proceed with the proof of Theorem 1. We are going to show that
S°° is stable. It is possible to construct a minimal foliation which contains
5°° as a leaf. Then it will follow that S°° is area-minimizing in the support
region of the foliation. But we shall follow a somewhat different strategy.
Since S°° is minimal, it follows that S°° is embedded. Now we choose for
a fixed k and each σ £ (0,1) a leaf Sk(σ) in the foliation Tk along with a
point qk such that dist(ς£,pfc) = σ/(sup5t \\Ast | |). (Note that the points
pk were introduced before the proof of Lemma 2.) Translating pk to the
origin and then dilating Sk(σ) by the factor ak we obtain surfaces Sk(σ)*.
Note that Sk(σ)* contains a point qk such that dist(qk^o) = σ. Now we
choose a sequence σm -» 0. Fixing m and letting k -> oo we obtain from
q^m a limit point qσm and from Sk(σm)* a limit surface S(σm) containing
qσrn. The proof of Lemma 2 implies that S(σm) is minimal. Note that the
S(σmys are disjoint from S°°. Since dist(#στn,o) = crm, the surfaces S(σm)
approach S°° locally smoothly as m —» oo. For each large m we can represent
a suitable geodesic ball in S(σm) with center qσrn as a normal graph over a
domain Ωm in 5°°, such that Ωm approaches S°° and the positive defining
function φm for the graph approaches zero locally smoothly as m —> oo.
We put φm = ψmlψm{o). Since <pm satisfies the minimal surface equation,
the Harnack inequality implies that a subsequence of φm converges locally
smoothly to a positive function φ on 5°°. Let L be the Jacobi operator on
S°°. Then Lψ = 0. It follows that 5°° is stable. Indeed, let u be a positive
eigenfunction on a compact domain Ω of S°°. Multiplying the equation
Lψ — 0 by u and integrating over Ω show that the first eigenvalue is positive
(see [FS] for the simple details).

Now the Berstein type theorem of Fischer-Colberie-Schoen [FS] and Do
Carmo-Peng [CP] implies that 5°° is a plane. This contradicts the fact that
the maximal length of the second fundamental form of S°° is 1. D

Proof of Theorem 3. We apply the proof for Theorem 1 with minor modi-
fications. Basically, we need to consider all possible metrics which satisfy a
given C1)C*-norm bound. Thus we deal with sequences of foliations associated
with sequences of metrics. Scaling is slightly more complicated, but scaling
limits will always consist of surfaces of constant Euclidean mean curvature.
We omit the details. D
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Proof of Theorem 4. By passing to a local covering, we can replace the
conjugate radius bound by an injectivity radius bound. It is well-known
that controlled harmonic coordinates exist under a Ricci curvature bound
and an injectivity radius bound. In these coordinates C1'α-bounds on the
metric tensor hold. Now we work in harmonic coordinates, and the situation
is similar to that in Theorem 4. D

Proof of Theorem 5. This is a direct consequence of Theorem 1 and the main
result in [Yl]. D

2. Asymptotically Flat Manifolds.

Let M be a complete Riemannian manifold of dimension n + 1 with n > 2.
Let g be the metric of M. A closed domain Ω of M is called an asymptotically
flat end of order σ > 0 if there is a coordinate map (i.e. a diffeomorphism)

o

from Ω to Mn+1\BΛ(o) for some R > 0 such that on this coordinate chart
the metric g satisfies

gtj = δij + O(r'σ), dk9ij = O(r- σ - χ ), dkdi9ij = O(r" σ - 2 ),

as r = \x\ —> oo. (c.f. [LP]) The most important asymptotically flat ends
arising in general relativity have the following more special property in place
of the above asymptotical formulas

9ij(x) =

with

hu = O(r~n), dhhii = 0{r-n-1), dkdehi:ί = O(r-"" 2 ),

dkdιdtιhij = O(r~n~~3), dkdιdk>dι>hij = O(r~n~4),

where m is a constant called "mass" or "energy" (this differs from the con-
ventional definition of mass by a dimensional factor). We shall call them
"standard asymptotically flat ends". For sake of convenience, requirements
on asymptotical flat ends were not spelled out in Theorem 2 and Theorem
5. The specific requirements are as follows: in Theorem 2 we allow general
asymptotically flat ends of an arbitrary order σ > 0; in Theorem 5 we only
allow standard asymptotically flat ends.

Definition 3. Let T be a C2-foliation on an asymptotically flat end with
compact leaves. We say that T is regular at oo, if

sup (supmslldiamS) < oo.
\ J
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Definition 4. Let T be a codimension one foliation on an asymptotically
flat end Ω with compact leaves. We say that T is diameter-pinched at oo or
diameter pinched, if

limsup < oo for S £ T as diam(p0, S) -+ oo,
dist(po,6)

where p o is a fixed point in Ω and diam(po, S) — max dist(po, q).

Proof of Theorem 2. Let Ω be an asymptotically flat end of dimension 3
with metric g and T a constant mean curvature foliation on Ω whose leaves
are all closed. Lemma 1 readily extends to the situation here and we have
a C2 parametrization S*, 0 < ί < 1 of the leaves of T such that St φ St> if
t φ t1 and lim^o diam5t = oo. Moreover, the leaves are topological spheres.
Applying the arguments in the proof of Theorem 1 one readily shows that
limsup^o (sup5t ||i4st ||) = 0. Now assume that T is not regular at oc. Then
we can find tk —» 0 such that

i) sup
Sth

ii) sup
St,

A
s sup

tk>t>o

sup|μ5t
st

diam5ίfc —> oo.

We denote by Tk the foliation {St : tk > t > 0}. Dilating Tk by the

factor ak = sup5t AStk yields a new foliation Tk which has constant mean

curvature leaves in the dilated metric gk. Let S^ denote the image of St

under the dilation. Then

sup
tk>t>0

sup \\A = 1 = sup

s

where the second fundamental form is measured in gk. Moreover,

oo as kdiam 5ίfc oo.

\ )Because T is diameter-pinched at oo, we have disto(o, S\h ) —> oo as k -> oo,
where dist0 denotes Euclidean distance. This ensures that gk converges
smoothly to the Euclidean metric on the domain of Tζ. (We only need
disto(o, S[kJ) to be uniformly bounded away from zero.) From here on we
can apply the arguments in the proof of Theorem 1 to derive a contradic-
tion. D

Proof of Theorem 6. It is easy to see that the condition "diameter-pinched"
implies the weak balance condition in [Y2]. Hence Theorem 6 follows from
Theorem 2 and the Main Theorem in [Y2]. D
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Finally we note that there is another natural geometric condition which
implies regularity at oo.

Definition 6. Let T be a C2-foliation on an asymptotically flat end Ω with
compact leaves. We say that T is non-degenerate at oo or non-degenerate,
if

liminf dist(po, S^supps || > 0 for S G T,
dist(po,S)—xx) 5

where po is a fixed point in Ω. We say that T is weakly non-degenerate (at
oo), if

liminf max < dist(p0,5)supp5l |, „ . „ Ί > > 0 for S G T.
dist(p0,5)->oo 5 sup -As diam S\

y s )

It is easy to see that one can replace the condition "diameter-pinched" in
Theorem 2, Theorem 3 and Theorem 5 by "weakly non-degenerate".

3. Stable Surfaces.

Consider a Riemannian manifold M of dimension 3. Let S be a closed,
immersed surface in M which has constant mean curvature and is (mean)
stable, i.e.

/ (II Vĉ H2 - \\A\\2φ2 - Rc(u)φ2) dvol > 0
Js

for all C1 functions φ of compact support with / φdvol — 0. Here v de-
s

notes a unit normal of S and Re the Ricci curvature. Our goal is to derive
a priori curvature estimates for S which are independent of the mean cur-
vature of S. Assume that there is a sequence of such surfaces Sk so that
supSfc \\ASk\\ diam Sk —> oo as k —> oo. Choose a point pk G Sk such that
sup 11-Asfc || is achieved at pk. Let r be the injectivity radius of M. Applying
suitable coordinate maps we can consider the intersection Sk Π Br(pk) of Sk

with the geodesic ball Br(pk) as lying in the Euclidean ball Br(o). As in the
last sections, after suitable dilation we can obtain from Sk a limit S such that
S is immersed, complete and noncompact and that sup ||-Asll = Il4s(°)ll — l
Moreover, S is stable. The Bernstein type theorem of B. Palmer [P] and
A. Silveira [Sv] then implies that S is a plane, contradicting the fact that
||i4s(o)|| = 1. We conclude that the sequence Sk cannot exist. Hence we have
proved the estimate stated in the following theorem, but with a constant C
depending on the manifold. To achieve the claimed explicit dependence, we
apply the arguments in the proof of Theorem 3.

Theorem 7. Let M be a 3-manifold. Then there is a constant C > 0
depending on an absolute bound for Ricci curvatures and a positive lower
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bound for injectiυity radius, such that

S < C

for every stable closed immersed surface S of constant mean curvature in
M.

Corollary . Let M be a compact manifold of dimension 3. Then there is a
constant r > 0 with the following property. IfpζMis not a critical point of
the scalar curvature function, then Br(p) contains no stable closed immersed
surface of constant mean curvature.

This corollary follows rather easily from Theorem 7 and the arguments in
[Yl]. Note however that the Alexandrov's reflection principle used in [Yl]
should be replaced by the theorem of L. Barbosa and M. do Carmo in [BC]
(see also Wente's proof of this theorem [W]), which says that stable closed
immersed hypersurfaces of constant mean curvature in Euclidean spaces are
round spheres.
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