EXPLICIT SOLUTIONS FOR THE CORONA PROBLEM WITH LIPSCHITZ DATA IN THE POLYDISC

Steven G. Krantz and Song-Ying Li

This paper contains considerations of various versions of the classical corona problem on domains in complex n-dimensional space. Although we do not solve the H^{∞} corona problem, we do obtain positive results in other topologies. We also provide explicit constructions for solutions.

1. Introduction.

Let Δ be the unit disc in the complex plane, and let Δ^{n} be the unit polydisc in \mathbb{C}^{n}. We let $\mathcal{H}\left(\Delta^{n}\right)$ denote the space of all holomorphic functions on the polydisc, and $\mathcal{H}^{p}\left(\Delta^{n}\right)$ the holomorphic Hardy space on Δ^{n} (see [Rud]).For each $0<\alpha<\infty$, we let $\Lambda_{\alpha}\left(\Delta^{n}\right)$ denote the holomorphic Zygmund spaces over Δ^{n} (see [KR2]). Suppose that $f_{1}, \ldots, f_{m} \in \mathcal{H}^{\infty}\left(\Delta^{n}\right)$ are such that

$$
\begin{equation*}
0<\delta^{2} \leq \sum_{j=1}^{m}\left|f_{j}(z)\right|^{2} \leq 1, \quad z \in \Delta^{n} \tag{1.1}
\end{equation*}
$$

In case $n=1$, L. Carleson [C] solved the Corona problem and proved that there exist $g_{j} \in \mathcal{H}^{\infty}(\Delta)$ such that

$$
\sum_{j=1}^{m} f_{j}(z) g_{j}(z) \equiv 1, \quad\left\|g_{j}\right\|_{\mathcal{H}^{\infty}(\Delta)} \leq C(m, \delta)
$$

The question of whether the Corona problem can be solved in several complex variables has attracted much attention (for example, see [Am], [An], [AC], [Ch], [FS1, 2], [HS], [KL], [Li], [Lin], [S], and [V1, V2], etc.). On a strongly pseudoconvex domain, there have been attempts to generalize the method of Hörmander $[\mathrm{H}]$ and of Wolff $[\mathrm{KO}]$ to higher dimensions. This entails solving a problem of the form $\bar{\partial} u=\mu$, with μ a Carleson measure. One seeks a bounded solution u. Such a bounded solution does not always exist when the dimension exceeds 1 (see [V1]). However it should be noted that the result of $[\mathrm{V} 1]$ does not imply that the Corona problem fails in several variables-only that the $\bar{\partial}$ technique with that particular definition of Carleson measure fails.

The point of the present paper is to obtain favorable results for Lipschitz solutions of the Corona problem with the corona data being Lipschitz using iteration of one variable techniques. We shall construct a Λ_{α} solution of the Corona problem in one variable that allows us to treat a vector-valued problem, thus allowing induction on the number of variables. We carry out this plan by constructing an explicit formula for an $\Lambda_{\alpha}\left(\Delta^{n}\right)$ solution of the Corona problem with Corona data $f_{j} \in \Lambda_{\alpha}\left(\Delta^{n}\right)$.

We now give a formal statement of our theorem. The construction of our solution will be given in Section 2. The proof of the theorem is completed in Section 3.

Theorem 1.1. Let $f_{1}, \ldots, f_{m} \in \Lambda_{\alpha}\left(\Delta^{n}\right)(0<\alpha<\infty)$ satisfy inequality (1.1) and

$$
\begin{equation*}
\sum_{j=1}^{m}\left\|f_{j}\right\|_{\Lambda_{\alpha}\left(\Delta^{n}\right)} \leq 1 \tag{1.2}
\end{equation*}
$$

Then there are functions $g_{1}, \ldots, g_{m} \in \Lambda_{\alpha}\left(\Delta^{n}\right)$ such that

$$
\begin{equation*}
\sum_{j=1}^{m} f_{j}(z) g_{j}(z) \equiv 1, \quad \text { and } \quad \sum_{j=1}^{m}\left\|g_{j}\right\|_{\Lambda_{\alpha}\left(\Delta^{n}\right)} \leq C(n, m) \alpha^{1-2 n} \delta^{-3 n} \tag{1.3}
\end{equation*}
$$

The last estimate, in terms of $\alpha^{1-2 n}$ and a negative power of δ, gives an indication of how the problem blows up as $\alpha \rightarrow 0^{+}$.

We refer the reader to [KR2] for careful definitions and discussion of the Lipschitz spaces Λ_{α}.

The first author thanks Peter W. Jones for a helpful communication.

2. Construction of the Solution.

In this section we shall construct an explicit solution of the Corona problem in Δ^{n} without yet proving any regularity properties. Let $f_{1}, \ldots, f_{m} \in$ $\mathcal{H}^{\infty}\left(\Delta^{n}\right)$ satisfy (1.1). Without loss of generality, we may use a normal families argument and reduce the proof of Theorem 1.1 to the case of $f_{j} \in$ $\mathcal{H}^{\infty}\left(\overline{\Delta^{n}}\right)$. We define

$$
\phi_{j}(z)=\bar{f}_{j}(z)\left[\sum_{k=1}^{m}\left|f_{k}(z)\right|^{2}\right]^{-1}, \quad j=1, \ldots, m
$$

For $\lambda, \eta \in \Delta$, we let

$$
\begin{equation*}
K[g](\lambda)=\int_{\Delta} K(\lambda, \eta) g(\eta) d A(\eta) \tag{2.1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
K(\lambda, \eta)=\frac{1}{2 \pi i} \frac{1-|\eta|^{2}}{(1-\bar{\eta} \lambda)(\eta-\lambda)}, \quad d A(\eta)=d \eta \wedge d \bar{\eta} \tag{2.1.2}
\end{equation*}
$$

Notice that K is essentially the Poisson-Szegö kernel for the disc. It is known that $\bar{\partial}_{\lambda} K[g]=g$ in the sense of distributions. In fact

$$
\frac{1-|\eta|^{2}}{(1-\bar{\eta} \lambda)(\eta-\lambda)}=\frac{1}{\eta-\lambda}-\frac{\bar{\eta}}{1-\lambda \bar{\eta}}
$$

The first kernel on the right is well known (see [KR1]) to be a solution operator for $\bar{\partial}$, up to a constant factor; and the second one is holomorphic in $\lambda \in \Delta$. By standard arguments (integration by parts), one can show that this integral operator K maps $C^{\infty}(\bar{\Delta})$ to $C^{\infty}(\bar{\Delta})$.

For convenience, when $1 \leq j \leq n$ and $g \in L^{2}\left(\Delta^{n}\right)$, we let

$$
\begin{equation*}
K_{j}[g]\left(z_{j}\right)=K\left[g\left(z_{1}, \cdots, z_{j-1}, \cdot, z_{j+1}, \cdots, z_{n}\right)\right]\left(z_{j}\right) \tag{2.2}
\end{equation*}
$$

The integral acts only on the variable z_{j}. We set

$$
\begin{equation*}
u_{j k}^{1}(z)=K_{1}\left[\phi_{k} \bar{\partial}_{1} \phi_{j}\right]\left(z_{1}\right) \tag{2.3}
\end{equation*}
$$

$j, k=1, \ldots, n$, where

$$
\bar{\partial}_{j} g \equiv \frac{\partial g}{\partial \bar{z}_{j}}, \quad g \in C^{1}\left(\Delta^{n}\right)
$$

Also set

$$
\begin{equation*}
g_{j}^{0}=\phi_{j}, \quad g_{j}^{1}=\phi_{j}-\sum_{k=1}^{m} f_{k}\left(u_{j k}^{1}-u_{k j}^{1}\right) \in C^{\infty}\left(\overline{\Delta^{n}}\right) \tag{2.4}
\end{equation*}
$$

It is obvious that $\bar{\partial}_{i} g_{j}^{1}\left(\cdot, z^{\prime}\right), \quad g_{j}^{1}\left(\cdot, z^{\prime}\right) \in \mathcal{H}(\Delta)$ for each fixed $z^{\prime} \in \Delta^{n-1}$ and $1 \leq i \leq n$.

Suppose that $g_{j}^{k} \in C^{\infty}\left(\overline{\Delta^{n}}\right)$ is already defined so that g_{j}^{k} and $\bar{\partial}_{i} g_{j}^{k}$ are holomorphic in z_{1}, \ldots, z_{k} for all $1 \leq i \leq n$. Inductively, we set

$$
\begin{equation*}
g_{j}^{k+1}(z)=g_{j}^{k}(z)-\sum_{\ell=1}^{m} f_{\ell}(z)\left(u_{j \ell}^{k+1}(z)-u_{\ell j}^{k+1}(z)\right) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{j \ell}^{k+1}(z)=K_{k+1}\left[g_{\ell}^{k}\left(z^{k+1}\right) \bar{\partial}_{k+1} g_{j}^{k}\right]\left(z_{k+1}\right) \tag{2.6}
\end{equation*}
$$

Then our definitions imply that $g_{j}^{k+1}(z) \in C^{\infty}\left(\overline{\Delta^{n}}\right)$. Moreover, since the inductive hypothesis implies that $g_{j}^{k}(z)$ and $g_{\ell}^{k} \cdot \bar{\partial}_{k+1} g_{j}^{k}$ are holomorphic in z_{1}, \cdots, z_{k} then

$$
\bar{\partial}_{i}\left(u_{j \ell}^{k+1}\right)=0, \quad \text { and } \quad \bar{\partial}_{\imath} g_{j}^{k}=0, \quad i=1, \cdots, k .
$$

Therefore

$$
\bar{\partial}_{i} g_{j}^{k+1}=0, \quad i=1, \cdots, k+1 .
$$

This implies that g_{j}^{k+1} (also $\bar{\partial}_{i} g_{j}^{k+1}$) are holomorphic in z_{1}, \ldots, z_{k+1} for all $1 \leq i \leq n$. Finally, notice that

$$
\sum_{j=1}^{m} f_{j} g_{j}^{k+1} \equiv 1
$$

for all $k=0, \ldots, n-1$. Therefore the functions $g_{1}^{n}, \ldots, g_{m}^{n}$ form a solution to the Corona problem with data f_{1}, \ldots, f_{m}. In order to prove Theorem 1.1, it suffices now to prove the following result:

Theorem 2.1. Let $f_{j}, \cdots, f_{m} \in \Lambda_{\alpha}\left(\Delta^{n}\right)$ satisfy (1.1) and (1.2). Then

$$
\begin{equation*}
\left\|g_{j}^{n}\right\|_{\Lambda_{\alpha}\left(\Delta^{n}\right)} \leq C(n, m) \alpha^{1-2 n} \delta^{-3 n} \tag{2.7}
\end{equation*}
$$

for all $0<\alpha<\infty$. Notice that the same solution set $\left\{g_{j}^{n}\right\}$ suffices for all α.
We shall consider the proof of Theorem 2.1 in the next section.

3. The Proof of Theorem 2.1.

In this section, we shall complete the proof of Theorem 2.1. Let us start with the following well-known simple lemma.

Lemma 3.1. Let $g \in C^{k}\left(\Delta^{n}\right), \alpha>0$. Suppose that $[\alpha]+1 \leq k$, and

$$
\left|D^{k} g(z)\right| \leq C \operatorname{dist}\left(z, \partial \Delta^{n}\right)^{\alpha-k} .
$$

Then $g \in \Lambda_{\alpha}\left(\Delta^{n}\right)$. Moreover,

$$
\|g\|_{\Lambda_{\alpha}\left(\Delta^{n}\right)} \leq C n \alpha^{-1} .
$$

Here D^{k} denotes any derivatives of g of order k, and $[\alpha]+1$ denotes the least integer which is greater than α.

The proof of the above lemma and of more general results can be found in [KR2].

Corollary 3.2. Let $0<\alpha<\infty$, and let $f \in \mathcal{H}\left(\Delta^{n}\right)$. Then $f \in \Lambda_{\alpha}\left(\Delta^{n}\right)$ if and only if

$$
\left|\partial_{j} \partial^{\beta} f(z)\right| \leq C\left(1-\left|z_{j}\right|^{2}\right)^{\alpha-1},
$$

for all $|\beta|=\beta_{1}+\cdots \beta_{n} \leq[\alpha], j=1, \ldots, n$.
For simplicity, we shall prove Theorem 2.1 only for the case $0<\alpha<1$ and $n=2$. For the case $\alpha \geq 1$ and $n>2$, the proof may be done similarly, but it is much more tedious. For this special purpose, we shall prove the following lemma:

Lemma 3.3. Let $0<\alpha<1$ and let $f, g \in C^{\infty}\left(\Delta^{n}\right)$ satisfy

$$
\begin{equation*}
\left|D_{j} g(z)\right|+\left|D_{j} f(z)\right| \leq C_{1}\left(1-\left|z_{j}\right|^{2}\right)^{\alpha-1}, j=1,2, \cdots, n \tag{3.1}
\end{equation*}
$$

Then

$$
\left|D_{j} K_{j}\left[f \bar{\partial}_{j} g\right](z)\right| \leq C C_{1} \alpha^{-2}\left(1-\left|z_{j}\right|^{2}\right)^{\alpha-1} .
$$

If we also assume that

$$
\begin{equation*}
\left|D_{k} P_{j}[g](z)\right| \leq C_{1}\left(1-\left|z_{k}\right|^{2}\right)^{\alpha-1}, \quad k \neq j, \tag{3.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|D_{k} K_{j}\left[f \bar{\partial}_{j} g\right](z)\right| \leq C C_{1} \alpha^{-2}\left(1-\left|z_{k}\right|^{2}\right)^{\alpha-1} \tag{3.4}
\end{equation*}
$$

where $D_{k}=\partial_{k}$ or $\bar{\partial}_{k}, k=1, \cdots, n$, and P_{j} denotes the Bergman projection from $L^{2}(\Delta)$ onto the Bergman space $A^{2}(\Delta)$ when we restrict attention to functions of z_{j}.

Proof. By symmetry, it suffices to treat the cases $j=1$ and $k=1$, or 2 . Let us prove (3.2) first. Since $\bar{\partial}_{1} K_{1}\left[f \bar{\partial}_{1} g\right]=f \bar{\partial}_{1} g$, it suffices to prove (3.2) for $D^{1}=\partial_{1}$. For this case, without loss of generality, we may assume that f, g are function only of z_{1}, in other words, we assume $n=1$. First of all,

$$
\begin{aligned}
\partial_{1} K_{1}\left[f \bar{\partial}_{1} g\right](z)= & \frac{1}{2 \pi i} \partial_{1} \int_{\Delta} \frac{\left(1-|\eta|^{2}\right) f(\eta) \bar{\partial}_{1} g(\eta)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} d \eta \wedge d \bar{\eta} \\
= & \frac{1}{2 \pi i} \partial_{1} \int_{\Delta} \frac{\left(1-|\eta|^{2}\right)\left(f(\eta)-f\left(z_{1}\right)\right) \bar{\partial}_{1} g(\eta)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} d \eta \wedge d \bar{\eta} \\
& +\frac{1}{2 \pi i} \partial_{1}\left[f\left(z_{1}\right) \int_{\Delta} \frac{\left(1-|\eta|^{2}\right) \bar{\partial}_{1} g(\eta)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} d \eta \wedge d \bar{\eta}\right] \\
= & I_{1}(z)+I_{2}(z) .
\end{aligned}
$$

Now

$$
\begin{align*}
-\partial_{\bar{\eta}} \frac{1-|\eta|^{2}}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} & =\frac{\eta}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)}-\frac{z_{1}\left(1-|\eta|^{2}\right)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)^{2}} \\
& =\frac{1}{\left(1-z_{1} \bar{\eta}\right)^{2}} \tag{3.5}
\end{align*}
$$

Integrating by parts, we then have

$$
I_{2}(z)=\partial_{1}[f(z) g(z)]+\partial_{1}\left[f(z) \frac{1}{2 \pi i} \int_{\Delta} \frac{g(\eta)}{\left(1-z_{1} \bar{\eta}\right)^{2}} d \eta \wedge d \bar{\eta}\right]
$$

It is easy to see that $\left|I_{2}(z)\right| \leq C\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}$ since the assumption (3.1) and

$$
\begin{aligned}
\left|\partial_{1}\left[\frac{1}{2 \pi i} \int_{\Delta} \frac{g(\eta)}{\left(1-z_{1} \bar{\eta}\right)^{2}} d \eta \wedge d \bar{\eta}\right]\right| & =\left|\frac{1}{2 \pi i} \int_{\Delta} \frac{2 \bar{\eta} g(\eta)}{\left(1-z_{1} \bar{\eta}\right)^{3}} d \eta \wedge d \bar{\eta}\right| \\
& \leq\left|g(z)+\frac{1}{2 \pi i} \int_{\Delta} \frac{\bar{\eta}\left(g(\eta)-g\left(z_{1}\right)\right)}{\left(1-z_{1} \bar{\eta}\right)^{3}} d \eta \wedge d \bar{\eta}\right| \\
& \left.\leq\left|\|g(z)\|_{\infty}+\int_{\Delta} C_{1} \alpha^{-1} \frac{\left|z_{1}-\eta\right|^{\alpha}}{\left|1-z_{1} \bar{\eta}\right|^{3}}\right| d A(\eta) \right\rvert\, \\
& \leq C C_{1} \alpha^{-1}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
\end{aligned}
$$

Now we consider $I_{1}(z)$. It is clear that

$$
\begin{aligned}
2 \pi i I_{1}(z)= & \partial_{1} \int_{\Delta} \frac{\left(1-|\eta|^{2}\right)\left(f(\eta)-f\left(z_{1}\right)\right) \bar{\partial}_{1} g(\eta)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} d \eta \wedge d \bar{\eta} \\
= & -\partial_{1} f(z) \int_{\Delta} \frac{\left(1-|\eta|^{2}\right) \bar{\partial}_{1} g(\eta)}{\left(1-z_{1} \bar{\eta}\right)\left(\eta-z_{1}\right)} d \eta \wedge d \bar{\eta} \\
& +\int_{\Delta} \frac{\left(1-|\eta|^{2}\right)\left(f(\eta)-f\left(z_{1}\right)\right) \bar{\partial}_{1} g(\eta)}{\left(1-z_{1} \bar{\eta}\right)\left(\eta-z_{1}\right)^{2}} d \eta \wedge d \bar{\eta} \\
& +\int_{\Delta} \frac{\left(1-|\eta|^{2}\right) \bar{\eta}\left(f(\eta)-f\left(z_{1}\right)\right) \bar{\partial}_{1} g(\eta)}{\left(1-z_{1} \bar{\eta}\right)^{2}\left(\eta-z_{1}\right)} d \eta \wedge d \bar{\eta} \\
= & I_{11}(z)+I_{12}(z)+I_{13}(z)
\end{aligned}
$$

Since

$$
\left(1-|\eta|^{2}\right)\left|\bar{\partial}_{1} g\right| \leq C\left(1-|\eta|^{2}\right)^{\alpha}
$$

we see that by assumption (3.1) and simple calculation

$$
\left|I_{11}(z)\right| \leq C \alpha^{-1}\left|\partial_{1} f(z)\right| \leq C \alpha^{-1}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

By assumption (3.1), we have

$$
\left|f(\eta)-f\left(z_{1}\right)\right| \leq C C_{1} \alpha^{-1}\left|\eta-z_{1}\right|^{\alpha}
$$

we have

$$
\begin{aligned}
& \left|\int_{\Delta} \frac{\left(1-|\eta|^{2}\right)\left(f(\eta)-f\left(z_{1}\right)\right) \bar{\partial}_{1} g(\eta)}{\left(1-z_{1} \bar{\eta}\right)\left(\eta-z_{1}\right)^{2}} d \eta \wedge d \bar{\eta}\right| \\
& \quad \leq C C_{1} \alpha^{-1} \int_{\Delta}\left|\bar{\partial}_{1} g(\eta)\right|\left|\eta-z_{1}\right|^{-2+\alpha}|d A(\eta)| \\
& \quad \leq C C_{1}^{2} \alpha^{-1} \int_{\Delta}\left(1-|\eta|^{2}\right)^{-1+\alpha}\left|1-z_{1} \bar{\eta}\right|^{-2+\alpha}|d A(\eta)| \\
& \quad \leq C C_{1}^{2} \alpha^{-2}\left(1-\left|z_{1}\right|^{2}\right)^{2 \alpha-1}
\end{aligned}
$$

Therefore

$$
\left|I_{12}(z)\right| \leq C \alpha^{-2}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

Similarly, we have $\left|I_{13}(z)\right| \leq C \alpha^{-2}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}$. Hence $\left|I_{1}(z)\right| \leq C \alpha^{-2}(1-$ $\left.\left|z_{1}\right|^{2}\right)^{\alpha-1}$. Therefore, combining the above estimates, the proof of (3.2) is complete.

Next we prove that (3.4) holds for $D^{1}=\partial_{2}$. Notice that

$$
\partial_{2} K_{1}\left[f \bar{\partial}_{1} g\right]=K_{1}\left[\partial_{2}\left(f \bar{\partial}_{1} g\right)\right]=K_{1}\left[\partial_{2} f \bar{\partial}_{1} g\right]+K_{1}\left[f \bar{\partial}_{1} \partial_{2} g\right]
$$

and

$$
K_{1}\left[f \bar{\partial}_{1} \partial_{2} g\right]=\frac{1}{2 \pi i} \int_{\Delta} \frac{f \partial_{2} g}{\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)+f(z) \partial_{2} g(z)-K_{1}\left[\bar{\partial}_{1} f \partial_{2} g\right]
$$

We shall estimate all these terms. First

$$
\begin{aligned}
\left|K_{1}\left[\bar{\partial}_{1} f \partial_{2} g\right](z)\right| & \\
& \leq C\left(1-\left|z_{2}\right|^{2}\right)^{\alpha-1} \int_{\Delta} \frac{C\left(1-|\eta|^{2}\right)^{-1+\alpha}}{\left|\eta-z_{1}\right|} d A(\eta) \\
& \leq C \alpha^{-1}\left(1-\left|z_{2}\right|^{2}\right)^{-1+\alpha}
\end{aligned}
$$

Similarly

$$
\left|K_{1}\left[\bar{\partial}_{1} g \partial_{2} f\right](z)\right| \leq C\left(1-\left|z_{2}\right|^{2}\right)^{\alpha-1}
$$

It is easy to see that

$$
|f(z)|\left|\partial_{2} g(z)\right| \leq C C_{1}\left(1-\left|z_{2}\right|^{2}\right)^{\alpha-1}
$$

Moreover, we have

$$
\begin{aligned}
& \left|\frac{1}{2 \pi i} \int_{\Delta} \frac{f\left(\eta, z^{\prime}\right) \partial_{2} g}{\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)\right| \\
& \quad=\left|\frac{1}{2 \pi i} \int_{\Delta} \frac{\left(f\left(\eta, z^{\prime}\right)-f(z)\right) \partial_{2} g\left(\eta, z^{\prime}\right)}{\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)+f(z) \partial_{2} P_{1}[g]\right| \\
& \quad \leq \int_{\Delta} C_{1}\left|1-z_{1} \bar{\eta}\right|^{\alpha-2}\left|\partial_{2} g\right||d A(\eta)|+C_{1}\left(1-\left|z_{2}\right|^{2}\right)^{\alpha-1} \\
& \quad \leq C \alpha^{-1} C_{1}\left(1-\left|z_{2}\right|^{2}\right)^{\alpha-1}
\end{aligned}
$$

Therefore (3.4) holds for $D_{k}=\partial_{2}$. Similarly, we have (3.4) holds for $D_{k}=\bar{\partial}_{2}$. Therefore, the proof of Lemma 3.3 is complete.

Combining Lemmas 3.1 and 3.3, to complete the proof of Theorem 2.1, it suffices to prove the following lemma:

Lemma 3.4. If $f_{j} \in \Lambda_{\alpha}\left(\Delta^{n}\right)$ satisfies (1.1) and (1.2). Then

$$
\left|D_{i} P_{j}\left[g_{\ell}^{k}\right](z)\right| \leq C C_{1}\left(1-\left|z_{i}\right|^{2}\right)^{\alpha-1}
$$

for all $i, j=1, \cdots, n, i \neq j 0 \leq k \leq n-1$, and $1 \leq \ell \leq m$.
For convenience, we shall prove Lemma 3.4 for $n=2$. [The case $n>2$ is similar, but more tedious.] To achieve this special goal, we first prove:

Lemma 3.5. Suppose that $f_{j} \in \Lambda_{\alpha}\left(\Delta^{n}\right)$ satisfies (1.1) and (1.2). Then Lemma 3.4 holds when $k=0$, i.e. when $g_{j}^{0}=\phi_{j}$.

Proof. By symmetry, it suffices to prove Lemma 3.5 with $j=1$ and $i=2$. Moreover, we need only consider the case $D_{2}=\bar{\partial}_{2}$ since $D_{2}=\partial_{2}$ is similar. With the notation $|f(z)|^{2}=\sum_{k=1}^{m}\left|f_{k}(z)\right|^{2}$, we have

$$
\begin{aligned}
\mid D_{2} P_{1} & {\left[\phi_{j}\right](z) \mid } \\
& \leq\left|\frac{1}{2 \pi} \int_{\Delta} \frac{\bar{\partial}_{2} \phi_{j}\left(\eta, z^{\prime}\right)}{\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)\right| \\
\leq & \left|\frac{1}{2 \pi} \int_{\Delta} \frac{\bar{\partial}_{2} \bar{f}_{j}\left|f\left(\eta, z^{\prime}\right)\right|^{2}-\bar{f}_{j}\left(\eta, z^{\prime}\right) \sum_{k=1}^{m} f_{k}\left(\eta, z^{\prime}\right) \bar{\partial}_{2} \bar{f}_{k}\left(\eta, z^{\prime}\right)}{\left|f\left(\eta, z^{\prime}\right)\right|^{4}\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)\right| \\
\leq & \left|\frac{1}{2 \pi} \int_{\Delta} \frac{\bar{\partial}_{2} \bar{f}_{j}}{\left|f\left(\eta, z^{\prime}\right)\right|^{2}\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)\right| \\
& +\left|\frac{1}{2 \pi} \int_{\Delta} \frac{\bar{f}_{j}\left(\eta, z^{\prime}\right) \sum_{k=1}^{m} f_{k}\left(\eta, z^{\prime}\right) \bar{\partial}_{2} \bar{f}_{k}\left(\eta, z^{\prime}\right)}{\left|f\left(\eta, z^{\prime}\right)\right|^{4}\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)\right| \\
= & \frac{1}{2 \pi}\left|J_{1}(z)+J_{2}(z)\right| .
\end{aligned}
$$

Now we let

$$
h(z)=1 /|f(z)|^{2}, \quad h_{j k}(z)=\bar{f}_{j}(z) f_{k}(z) /|f(z)|^{4}
$$

Then

$$
\begin{aligned}
\left|J_{1}(z)\right| & \leq\left|\int_{\Delta} \frac{\left(h\left(\eta, z^{\prime}\right)-h(z)\right) \bar{\partial}_{2} \bar{f}_{j}}{\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)\right|+\left|2 \pi i h(z) \bar{\partial}_{2} \bar{f}_{j}\left(0, z^{\prime}\right)\right| \\
& \leq C(m, n) \alpha^{-1} \delta^{-3} C_{1}\left(1-\left|z_{2}\right|^{2}\right)^{\alpha-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|J_{2}(z)\right| & =\left|\sum_{k=1}^{m} \int_{\Delta} \frac{\left(h_{j k}\left(\eta, z^{\prime}\right)-h_{j k}(z)\right) \bar{\partial}_{2} \bar{f}_{k}}{\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)+2 \pi h_{j k}(z) \bar{\partial}_{2} \bar{f}_{k}\left(0, z^{\prime}\right)\right| \\
& \leq C(m, n) \delta^{-3} \alpha^{-1} C_{1}\left(1-\left|z_{2}\right|^{2}\right)^{\alpha-1}
\end{aligned}
$$

This completes the proof of Lemma 3.5.
Corollary 3.6. Let $f_{j} \in \Lambda_{\alpha}\left(\Delta^{2}\right)$ satisfy (1.1) and (1.2). Then

$$
\left|D_{i} g_{j}^{1}(z)\right| \leq C(m, n) \alpha^{-2} \delta^{-3}\left(1-\left|z_{i}\right|^{2}\right)^{\alpha-1}
$$

for all $0<\alpha<1,1 \leq i \leq n$ and $1 \leq j \leq m$.
Proof. This follows from Lemmas 3.1, 3.2, 3.3 and 3.5.
To prove Lemma 3.4 for the case $n=2$, we need only to prove:

$$
\begin{equation*}
\left|D_{k} P_{j}\left[g_{\ell}^{1}\right](z)\right| \leq C \alpha^{-3} \delta^{-5}\left(1-\left|z_{k}\right|^{2}\right)^{\alpha-1} \tag{3.6}
\end{equation*}
$$

for all $k=1$ with $j=2$ and $1 \leq \ell \leq m$.
Notice that

$$
\begin{aligned}
& \left|D_{k} P_{2}\left[g_{\ell}^{1}\right](z)\right| \\
& \quad=\left|\frac{1}{2 \pi} D_{k} \int_{\Delta} \frac{g_{\ell}^{1}\left(z_{1}, \eta, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\eta}\right)^{2}} d A(\eta)\right| \\
& \quad=\left|\frac{1}{2 \pi} D_{k} \int_{\Delta} \frac{\phi_{\ell}\left(z_{1}, \eta, z^{\prime \prime}\right)-\sum_{j=1}^{m} f_{j}\left(z_{1}, \eta, z^{\prime \prime}\right)\left(u_{\ell j}^{1}-u_{j \ell}^{1}\right)\left(z_{1}, \eta, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\eta}\right)^{2}} d A(\eta)\right| \\
& \quad \leq\left|D_{k} P_{2}\left[\phi_{\ell}\right](z)-\frac{1}{2 \pi i} D_{k} \int_{\Delta} \frac{\sum_{j=1}^{m} f_{j}\left(z_{1}, \eta, z^{\prime \prime}\right)\left(u_{\ell j}^{1}-u_{j \ell}^{1}\right)\left(z_{1}, \eta, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\eta}\right)^{2}} d A(\eta)\right| .
\end{aligned}
$$

By Lemma 3.5, we have

$$
\left|D_{k} P_{2}\left[\phi_{\ell}\right](z)\right| \leq C \alpha^{-3} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

Thus, combining this with $f_{j} \in \Lambda_{\alpha}\left(\Delta^{n}\right)$, the estimation of $D_{k} P_{2}\left[g_{\ell}^{1}\right]$ can be reduced to prove:

$$
\begin{equation*}
\left|D_{k} P_{2}\left[u_{j \ell}^{1}\right](z)\right| \leq C(n, m) \alpha^{-3} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1} \tag{3.7}
\end{equation*}
$$

for $k=1$. In order to prove (3.7) for $k=1$, we need the following lemma.
Lemma 3.7. Let $f_{j} \in \Lambda_{\alpha}\left(\Delta^{n}\right)$ satisfy (1.1) and (1.2). Then

$$
\begin{equation*}
\left(1-\left|z_{1}\right|^{2}\right)\left|\partial_{1} \phi_{j}\left(z_{1}, z_{2}, z^{\prime \prime}\right)-\partial_{1} \phi_{j}\left(z_{1}, w_{2}, z^{\prime \prime}\right)\right| \leq C \delta^{-3}\left|z_{2}-w_{2}\right|^{\alpha} \tag{3.8}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
&(1-\left.\left|z_{1}\right|^{2}\right)\left|\partial_{1} f_{k}\left(z_{1}, z_{2}, z^{\prime \prime}\right)-\partial_{1} f_{k}\left(z_{1}, w_{2}, z^{\prime \prime}\right)\right| \\
&=\left|\left(1-\left|z_{1}\right|^{2}\right) \partial_{1} \int_{T} \frac{f_{k}\left(\eta, z_{2}, z^{\prime \prime}\right)-f_{k}\left(\eta, w_{2}, z^{\prime \prime}\right)}{1-\bar{\eta} z_{1}} d \sigma(\eta)\right| \\
& \quad \leq C\left|z_{2}-w_{2}\right|^{\alpha}\left(1-\left|z_{1}\right|^{2}\right) \int_{T} \frac{1}{\left|1-z_{1} \eta\right|^{2}} d \sigma(\eta) \\
& \leq C\left|z_{2}-w_{2}\right|^{\alpha} .
\end{aligned}
$$

Now

$$
\partial_{1} \phi_{j}(z)=\bar{f}_{j}(z)\left(\sum_{k=1}^{m}\left|f_{k}(z)\right|^{2}\right)^{-2} \sum_{k=1}^{m} \bar{f}_{k}(z) \partial_{1} f_{k}(z)
$$

Thus

$$
\begin{aligned}
(1- & \left.\left|z_{1}\right|^{2}\right)\left|\partial_{1} \phi_{j}\left(z_{1}, z_{2}, z^{\prime \prime}\right)-\partial_{1} \phi_{j}\left(z_{1}, w_{2}, z^{\prime \prime}\right)\right| \\
& \leq C \delta^{-2} \sum_{k=1}^{m}\left(1-\left|z_{1}\right|^{2}\right)\left|\partial_{1} f\left(z_{1}, z_{2}, z^{\prime \prime}\right)-\partial_{1} f_{k}\left(z_{1}, w_{2}, z^{\prime \prime}\right)\right| \\
& +\left(1-\left|z_{1}\right|^{2}\right) \sum_{k=1}^{m}\left|\partial_{1} f_{k}\right| \mid \sum_{k=1}^{m}\left(\bar{f}_{j} \bar{f}_{k}\left(\sum_{k=1}^{m}\left|f_{k}\right|^{2}\right)^{-2}\right)\left(z_{1}, z_{2}, z^{\prime \prime}\right) \\
& \quad-\left(\bar{f}_{j} \bar{f}_{k}\left(\sum_{k=1}^{m}\left|f_{k}\right|^{2}\right)^{-2}\right)\left(z_{1}, w_{2}, z^{\prime \prime}\right) \mid \\
& \leq C \delta^{-3}|z-w|^{\alpha} .
\end{aligned}
$$

This completes the proof of Lemma 3.7.

Now we are ready to prove (3.7) for $k=1$. Since g_{j}^{1} is holomorphic in z_{1}, it suffices to prove (3.7) for $D_{1}=\partial_{1}$. Observe that

$$
\begin{aligned}
& \left|D_{1} P_{2}\left[u_{j \ell}^{1}\right](z)\right| \\
& \quad=\left|\partial_{1} P_{2}\left[K_{1}\left[\phi_{\ell} \bar{\partial}_{1} \phi_{j}\right]\right](z)\right| \\
& \quad \leq\left|\partial_{1} P_{2}\left[K_{1}\left[\left(\phi_{\ell}\left(\eta, z^{\prime}\right)-\phi_{\ell}(z)\right) \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right)\right]\right]\right|+\left|\partial_{1} P_{2}\left[\phi_{\ell} K_{1}\left[\bar{\partial}_{1} \phi_{j}\right]\right](z)\right| \\
& \quad=I_{3}(z)+I_{4}(z)
\end{aligned}
$$

We consider $I_{3}(z)$ first. Now

$$
\begin{aligned}
I_{3}(z) & =\left|\partial_{1} P_{2}\left[K_{1}\left[\left(\phi_{\ell}\left(\eta, z^{\prime}\right)-\phi_{\ell}(z)\right) \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right)\right]\right]\right| \\
& =\left|P_{2}\left[\partial_{1} K_{1}\left[\left(\phi_{\ell}\left(\eta, z^{\prime}\right)-\phi_{\ell}(z)\right) \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right)\right]\right]\right| \\
& \leq\left|P_{2}\left[\int_{\Delta} \frac{\left(1-|\eta|^{2}\right)\left(\phi_{\ell}\left(\eta, z^{\prime}\right)-\phi_{\ell}(z)\right) \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right)}{(\eta-z)^{2}\left(1-z_{1} \bar{\eta}\right)}\right](z)\right| \\
& +\left|P_{2}\left[\int_{\Delta} \frac{\left(1-|\eta|^{2}\right) \bar{\eta}\left(\phi_{\ell}\left(\eta, z^{\prime}\right)-\phi_{\ell}(z)\right) \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right)}{(\eta-z)\left(1-z_{1} \bar{\eta}\right)^{2}}\right](z)\right| \\
& +\left|P_{2}\left[\int_{\Delta} \frac{\left(1-|\eta|^{2}\right) \partial_{1}\left(\phi_{\ell}(z)\right) \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right)}{(\eta-z)\left(1-z_{1} \bar{\eta}\right)}\right](z)\right| \\
& =I_{31}(z)+I_{32}(z)+I_{33}(z) .
\end{aligned}
$$

With the notation $B\left(z_{1}, \eta\right)=\left(1-|\eta|^{2}\right)\left(\eta-z_{1}\right)^{-2}\left(1-z_{1} \bar{\eta}\right)^{-1}$ and an application of Lemma 3.7, we have

$$
\begin{aligned}
&\left|I_{31}(z)\right| \\
& \leq\left|\int_{\Delta} B\left(z_{1}, \eta\right) \int_{\Delta} \frac{\left(\phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)\right) \bar{\partial}_{1} \phi_{j}\left(\eta, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right| \\
& \leq \mid \int_{\Delta} B\left(z_{1}, \eta\right) \\
& \left.\int_{\Delta} \frac{\left(\phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)\right)\left[\bar{\partial}_{1} \phi_{j}\left(\eta, \lambda, z^{\prime \prime}\right)-\bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right)\right]}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta) \right\rvert\, \\
&+\left|\int_{\Delta} B\left(z_{1}, \eta\right) \bar{\partial}_{1} \phi_{j}\left(\eta,, z^{\prime \prime}\right) \int_{\Delta} \frac{\left(\phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right| \\
& \leq C \delta^{-4} \int_{\Delta}\left|\eta-z_{1}\right|^{-2+\alpha}\left|1-z_{1} \bar{\eta}\right|^{-1} \int_{\Delta}\left|1-z_{2} \lambda\right|^{-2+\alpha} d A(\lambda) d A(\eta) \\
&+\left|\int_{\Delta} B\left(z_{1}, \eta\right) \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right) \int_{\Delta} \frac{\left(\phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right| \\
& \leq C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}+I_{311} .
\end{aligned}
$$

Notice that:

$$
\begin{aligned}
\int_{\Delta} & \frac{\left(\phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) \\
& =\int_{\Delta} \frac{\left(\phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\phi_{\ell}\left(\eta, z_{2}, z^{\prime \prime}\right)+\phi_{\ell}(z)-\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) \\
& +2 \pi i\left[\phi_{\ell}\left(\eta, z^{\prime}\right)-\phi_{\ell}(z)\right] .
\end{aligned}
$$

By using integration by parts and Lemmas 3.5 and 3.7, we have

$$
\begin{aligned}
&\left|I_{311}(z)\right| \\
& \leq\left|\int_{\Delta} \frac{\bar{\eta} \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime}\right)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} \int_{\Delta} \frac{\left(\phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right| \\
&+\left|\int_{\Delta} \frac{\left(1-|\eta|^{2}\right) \partial_{1} \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime \prime}\right)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} \int_{\Delta} \frac{\left(\phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right| \\
&+\left|\int_{\Delta} \frac{\left(1-|\eta|^{2}\right) \bar{\partial}_{1} \phi_{j}\left(\eta, z^{\prime \prime}\right)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} \int_{\Delta} \frac{\partial_{1} \phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right| \\
& \leq C \delta^{-4} \int_{\Delta} \frac{\left(1-|\eta|^{2}\right)^{\alpha-1}}{\left|1-z_{1} \bar{\eta}\right|^{2}} \int_{\Delta} \frac{\left|\lambda-z_{2}\right|^{\alpha}}{\left|1-z_{2} \bar{\lambda}\right|^{2}} d A(\eta) d A(\lambda) \\
&+C \delta^{-5} \int_{\Delta} \frac{\left(1-|\eta|^{2}\right)^{2 \alpha-1}}{\left|1-z_{1} \bar{\eta}\right|^{2}} \int_{\Delta} \frac{\left|\lambda-z_{2}\right|^{\alpha}}{\left|1-z_{2} \bar{\lambda}\right|^{2}} d A(\lambda) d A(\eta) \\
&+C \delta^{-2} \int_{\Delta} \frac{\left(1-|\eta|^{2}\right)^{\alpha}}{\left|1-z_{1} \bar{\eta}\right|^{2}}\left|\int_{\Delta} \frac{\partial_{1} \phi_{j}\left(\eta, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right| \\
& \leq C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}+C \delta^{-5} \int_{\Delta} \frac{\left(1-|\eta|^{2}\right)^{\alpha}}{\left|1-z_{1} \bar{\eta}\right|^{2}}\left|\partial_{1} P_{2}\left[\phi_{j}\right]\left(\eta, z^{\prime}\right)\right| d A(\eta) \\
& \leq C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}+C \delta^{-5} \int_{\Delta} \frac{\left(1-|\eta|^{2}\right)^{2 \alpha-1}}{\left|1-z_{1} \bar{\eta}\right|^{2}} d A(\eta) \\
& \leq C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1} .
\end{aligned}
$$

Since the estimation of $I_{32}(z)$ is similar to and easier than that of $I_{31}(z)$, we therefore have

$$
I_{31}(z)+I_{32}(z) \leq C \alpha^{-2} \delta^{-5}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

Now we consider $I_{33}(z)$. By Lemmas 3.5 and 3.7 again, we have

$$
\begin{aligned}
I_{33}(z) & \leq\left|\int_{\Delta} \frac{\left(1-|\eta|^{2}\right)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} \int_{\Delta} \frac{\partial_{1} \phi_{\ell} \bar{\partial}_{1} \phi_{j}\left(\eta, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right| \\
& \leq \left\lvert\, \int_{\Delta} \frac{\left(1-|\eta|^{2}\right)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)}\right. \\
& \left.\int_{\Delta} \frac{\left(\partial_{1} \phi_{\ell}\left(\eta, \lambda, z^{\prime \prime}\right)-\partial_{1} \phi_{\ell}\left(\eta, z_{2}, z^{\prime \prime}\right)\right) \bar{\partial}_{1} \phi_{j}\left(\eta, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta) \right\rvert\, \\
+ & \left|\int_{\Delta} \frac{\left(1-|\eta|^{2}\right)}{\left(\eta-z_{1}\right)\left(1-z_{1} \bar{\eta}\right)} \partial_{1} \phi_{\ell}\left(\eta, z^{\prime}\right) \int_{\Delta} \frac{\bar{\partial}_{1} \phi_{j}\left(\eta, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda) d A(\eta)\right|
\end{aligned}
$$

$$
\begin{aligned}
\leq & C \alpha^{-1} \delta^{-4} \int_{\Delta} \frac{1}{\left|1-z_{1} \bar{\eta}\right|^{2}}\left(1-|\eta|^{2}\right)^{\alpha-1} d A(\eta) \\
& +C \delta^{-4} \int_{\Delta} \frac{1-|\eta|^{2}}{\left|1-z_{1} \bar{\eta}\right|^{2}}\left(1-|\eta|^{2}\right)^{2 \alpha-2} d A(\eta) \\
\leq & C \delta^{-4} \alpha^{-2}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
\end{aligned}
$$

Therefore

$$
\left|I_{3}(z)\right| \leq C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

Now we estimate $I_{4}(z)$. Observe that

$$
\begin{aligned}
I_{4}(z) & =\left|\partial_{1} P_{2}\left[\phi_{\ell} K_{1}\left[\bar{\partial}_{1} \phi_{j}\right]\right]\right| \\
& \leq\left|\partial_{1} \int_{\Delta} \frac{\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right) K_{1}\left[\bar{\partial}_{1} \phi_{j}\right]\left(z_{1}, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda)\right| \\
& \leq\left|\int_{\Delta} \frac{\partial_{1} \phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right) K_{1}\left[\bar{\partial}_{1} \phi_{j}\right]\left(z_{1}, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda)\right| \\
& +\left|\int_{\Delta} \frac{\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right) \partial_{1} K_{1}\left[\bar{\partial}_{1} \phi_{j}\right]\left(z_{1}, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda)\right| \\
& =I_{41}(z)+I_{42}(z) .
\end{aligned}
$$

By Lemmas 3.3 and 3.5, we have

$$
\left|\partial_{1} K_{1}\left[\bar{\partial}_{1} \phi_{k}\right]\right| \leq C \alpha^{-1} \delta^{-3}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

Thus

$$
\begin{aligned}
I_{42}(z) & \leq \int_{\Delta} \frac{\left|\phi_{\ell}\left(z_{1}, \lambda, z^{\prime \prime}\right)-\phi_{\ell}(z)\right|\left|\partial_{1} K_{1}\left[\bar{\partial}_{1} \phi_{k}\right]\left(z_{1}, \lambda, z^{\prime \prime}\right)\right|}{\left|1-z_{2} \bar{\lambda}\right|^{2}}|d A(\lambda)| \\
& +\left|\phi_{\ell}(z) \int_{\Delta} \frac{\partial_{1} K_{1}\left[\bar{\partial}_{1} \phi_{k}\right]\left(z_{1}, \lambda, z^{\prime \prime}\right)}{\left(1-z_{2} \bar{\lambda}\right)^{2}} d A(\lambda)\right| \\
& \leq C \delta^{-5} \alpha^{-1}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1} \int_{\Delta} \frac{\left|\lambda-z_{2}\right|^{\alpha}}{\left|1-z_{2} \bar{\lambda}\right|^{2}}|d A(\lambda)|+I_{421}(z) \\
& \leq C \delta^{-5} \alpha^{-2}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}+I_{421}(z) .
\end{aligned}
$$

Since

$$
\begin{aligned}
I_{421}(z) & \leq\left|\partial_{1} P_{2}\left[K_{1}\left[\bar{\partial}_{1} \phi_{k}\right]\right]\right| \\
& =\left|\partial_{1} K_{1}\left[P_{2}\left[\bar{\partial}_{1} \phi_{k}\right]\right]\right| \\
& =\left|\partial_{1} K_{1}\left[\bar{\partial}_{1} P_{2}\left[\phi_{k}\right]\right]\right| .
\end{aligned}
$$

By Lemma 3.5, we have

$$
\left|\bar{\partial}_{1} P_{2}\left[\phi_{k}\right](z)\right| \leq C \alpha^{-1}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

Moreover, we have

$$
\begin{aligned}
\left|D_{2} P_{2}\left[\phi_{k}\right](z)\right| & \leq\left|\phi_{k}\right|+\left|\int_{\Delta} \frac{\phi_{k}\left(z_{1}, \xi, z^{\prime \prime}\right)-\phi(z)}{\left(1-z_{2} \bar{\xi}\right)^{3}} d A(\xi)\right| \\
& \leq C \delta^{-1}+C \delta^{-2} \int_{\Delta} \frac{\left|\xi-z_{2}\right|}{\left|1-z_{2} \bar{\xi}\right|^{3}}|d A(\xi)| \\
& \leq C \delta^{-2} \alpha^{-1}\left(1-\left|z_{2}\right|^{2}\right)^{-1+\alpha}
\end{aligned}
$$

Thus (3.1) is satisfied for $f=1$ and $g=P_{2}\left[\phi_{k}\right]$. Now we apply Lemma 3.3, we have

$$
I_{421} \leq\left|\partial_{1} K_{1}\left[\bar{\partial}_{1} P_{2}\left[\phi_{k}\right]\right]\right| \leq C \alpha^{-2} \delta^{-2}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

Therefore, we have

$$
I_{42}(z) \leq C \alpha^{-2} \delta^{-5}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
$$

Next we estimate $I_{41}(z)$. By Lemma 3.5, we have

$$
\begin{aligned}
I_{41}(z) \leq & \left|P_{2}\left[\partial_{1} \phi_{\ell} \phi_{j}\right]\right|+C\left|P_{2}\left[\partial_{1} \phi_{j} \int_{\Delta}\left[\frac{2 \phi_{k}\left(\eta, z^{\prime}\right)}{\left(1-z_{1} \bar{\eta}\right)}+\frac{\phi_{k}\left(\eta, z^{\prime}\right)}{\left(1-z_{1} \bar{\eta}\right)^{2}}\right] d A(\eta)\right]\right| \\
\leq & C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}+C\left|P_{2}\left[\partial_{1} \phi_{j} \int_{\Delta} \frac{\phi_{k}\left(\eta, z^{\prime}\right)}{\left(1-z_{1} \bar{\eta}\right)^{2}} d A(\eta)\right]\right| \\
\leq & C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}+C\left|P_{2}\left[\partial_{1} \phi_{j} P_{1}\left[\phi_{k}\right]\right]\right| \\
\leq & C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}+C\left|P_{1}\left[\phi_{k}\right](z) P_{2}\left[\partial_{1} \phi_{j}\right]\right| \\
& +C\left|P_{2}\left[\partial_{1} \phi_{j}\left(P_{1}\left[\phi_{k}\right]\right)-P_{1}\left[\phi_{k}\right]\left(z_{1}, z_{2}, z^{\prime \prime}\right)\right]\right| \\
\leq & C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1} \\
& +C \alpha^{-1} \delta^{-2}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1} \\
& \times \int_{\Delta} \frac{\left|P_{1}\left[\phi_{k}\right]\left(z_{1}, \lambda, z^{\prime \prime}\right)-P_{1}\left[\phi_{k}\right]\left(z_{1}, z_{2}, z^{\prime \prime}\right)\right|}{\left|1-z_{2} \bar{\lambda}\right|^{2}}|d A(\lambda)| \\
\leq & C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}
\end{aligned}
$$

Therefore, $I_{4}(z) \leq C \alpha^{-2} \delta^{-4}\left(1-\left|z_{1}\right|^{2}\right)^{\alpha-1}$. Combining all of these estimates, the proof of (3.7) for the case $k=1$ is complete. Therefore, the proof of Lemma 3.4 for the case $n=2$ is complete.

As a consequence of Lemmas 3.1, 3.2, 3.3, 3.6 and (3.7), we have that the proof of Theorem 2.1 for the case $n=2$ and $0<\alpha<1$ is complete. The other cases can be done similarly, but the details are tedious.

We note in closing that the solution to the Corona problem presented in this paper is essentially linear in nature. It is well known that solutions to the original \mathcal{H}^{∞} Corona problem are perforce non-linear in nature.

References

[Am] E. Amar, On the corona problem, J. of Geometric Analysis, 4 (1991), 291-305.
[An] M. Anderson, The \mathcal{H}^{2} corona problem and $\bar{\partial}_{b}$ in weakly pseudoconvex domains, Tran. A.M.S., to appear.
[AC] M. Anderson and H. Carlsson, \mathcal{H}^{p}-estimates of holomorphic division formulas, preprint.
[C] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math., 76 (1962), 547-559.
[Ch] S-Y. A. Chang, Two remarks of \mathcal{H}^{1} and BMO on the bidisc, Conference on harmonic analysis in honor of A. Zygmund, Vol II, 373-393.
[FS1] J. Fornaess and N. Sibony, Counterexamples to the Corona and $\bar{\partial}$ Problems, Proceedings of a Special Year at the Mittag-Leffler Institute, Princeton Lecture Notes, Princeton University Press, 1993.
[FS2] , Smooth pseudoconvex domain for which the Corona and L^{p} estimates for $\bar{\partial}$ fail, preprint.
[FES] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math., 129 (1972), 137-193.
[G] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[H] L. Hörmander, Estimates for (Pluri-)subharmonic functions, Math. Scand., 20 (1967), 65-78.
[HS] M. Hakim and N. Sibony, Spectre de $A(\bar{\Omega})$ pour les domaines faiblement pseudoconvexes, J. Functional Analysis, 37 (1980), 127-135.
[J] P. Jones, L^{∞} estimates for $\bar{\partial}$ problems in a half-plane, Acta Math., 150 (1983), 137-152.
[Ko] P. Koosis, Lectures on H^{p} Spaces, Cambridge Univ. Press, Cambridge, UK, 1980.
[KR1] S.G. Krantz, Function Theory of Several Complex Variables, 2nd. Ed., Wadsworth, 1992.
[KR2] , Lipschitz spaces, smoothness of functions, and approximation theory, Expositiones Math., 3 (1983), 193-260.
[KL] S.G. Krantz and S-Y. Li, Some remarks on the Corona problem on strongly pseudoconvex Domains in \mathbb{C}^{n}, Illinois J. of Math., 39 (1995), 323-349.
[Li] S-Y. Li, Corona Problem of Several Complex Variables, Contemporary Mathematics, 137 (1992), 307-328.
[Lin] K.C. Lin, \mathcal{H}^{p} solutions for the corona problem on the polydisc in \mathbb{C}^{n}, Bull A.M.S., 110 (1986), 69-84.
[Rud] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
[S] N. Sibony, Problem de la Courone pour des domaines pseudoconvexes á bord lisse, Annals of Math., 126 (1987), 675-682.
[V1] N.Th. Varopoulos, BMO functions and the $\bar{\partial}$ - equation, Pacific J. of Math., 71 (1977), 221-272.
[V2] , Probabilistic approach to some problems in complex analysis, Bull. S. C. Math. Paris, 105 (1981), 181-224.

Received February 1, 1994 and revised August 30, 1994. The first author was supported in part by a grant from the National Science Foundation.

Washington University
St. Louis, MO 63130
E-mail address: sk@math.wustl.edu
songying@math.wustl.edu

