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TWISTED ALEXANDER POLYNOMIAL AND
REIDEMEISTER TORSION

TERUAKI KITANO

This paper will show that the twisted Alexander polynomial
of a knot is the Reidemeister torsion of its knot exterior. As
an application we obtain a proof that the twisted Alexander
polynomial of a knot for an SO(n)-representation is symmet-
ric.

Introduction.

In 1992, Wada [4] defined the twisted Alexander polynomial for finitely
presentable groups. Let Γ be a finitely presentable group. We suppose that
the abelianization Γ/[Γ, Γ] is a free abelian group Tr — ( t l 5 . . . , tr\tttj = tjti)
of rank r. Then we will assign a Laurent polynomial Δr ) P (t i , . . . , tr) with a
unique factorization domain i?-coefficients to each linear representation p :
Γ -> GL(n\ R). We call it the twisted Alexander polynomial of Γ associated
to p. For simplicity, we suppose that R is the real number field R and the
image of p is included in SL(n] R).

Because we are mainly interested in the case of the group of a knot,
hereafter we suppose that Γ is a knot group. Let K C S3 be a knot and E
its exterior of K. We denote the canonical abelianization of Γ by

a : Γ -> T = (t)

and the twisted Alexander polynomial Δr,p(<) for Γ = πxE by Aκ,p(t). It
is a generalization of the Alexander polynomial Aχ(t) of K in the following
sense. The Alexander polynomial Aκ(t) of K is written as

where 1 : Γ —» R — {0} is the 1-dimensional trivial representation of Γ.
On the other hand, Milnor [2] proved the following theorem about the

connection between the Alexander polynomial and the Reidemeister torsion
in 1962. We consider the abelianization
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as a representation of Γ over R(£) where R(ί) is the rational function field
over R. Then Milnor's theorem is the following.

Theorem (Milnor). The Alexander polynomial Aχ(t) of K is the Reide-
meister torsion τa(E) of E for a; that is,

Aκ(t) = (t-l)τaE.

The Reidemeister torsion is a classical invariant for finite cell complexes
using a representation of the fundamental group. In this paper we consider
the following problem.

Problem. Can we consider the twisted Alexander polynomial of K as a
Reidemeister torsion of its exterior E of K.

To state the main theorem, we define the tensor representation

p®a : Γ -» GL(n;R(t))

by
(p (g> OL){X) — p(x)θί{x)

for v £ E Γ. Then our main theorem is the following.

Theorem A. The twisted Alexander polynomial AκiP(t) associated to p is
the Reidemeister torsion τp®aE for p® a that is,

Aκ,P{t) —

As an application of this interpretation, we obtain the symmetry of the
twisted Alexander polynomial in the following sense.

Theorem B. If p is equivalent to an SO(n)-representation, then

AKp(t) = AKJΓ1)

up to a factor etmn where e G {±1} and m E Z.

Remark. If p is not equivalent to an 5Ό(n)-representation, then it is an
open problem to determine whether AκyP(t) is always symmetric or not.

Now we describe the contents of this paper briefly. In Section 1 we review
the theory of the twisted Alexander polynomial. We restrict the definition to
the case of the group of a knot. In Section 2 we recall the necessary definition
and results on the Reidemeister torsion for unimodular-representations. In
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Section 3 we give a proof of Theorem A. In Section 4 as an application of
Theorem A, we proof the symmetry of the twisted Alexander polynomial in
our context.

The author would like to express his gratitude to Professor Shigeyuki
Morita for his encouragement and much useful suggestions. He also would
like to thank Professor Masaaki Wada for pointing out this topics and useful
discussions.

1. Twisted Alexander polynomial.

Let us describe the definition of the twisted Alexander polynomial of a
knot. See Wada [4] for details.

Let K C S3 be a knot and Γ the knot group Έ\E. Let Fk = (x 1 ? . . . , xk)
denote a free group of rank k and T = (t) an infinite cyclic group. The
group ring of T over Z (resp. R) is the Laurent polynomial ring Z ^ 1 ]
(resp. Rf^1]). We choose and fix a Wirtinger presentation

P ( Γ ) = (xu...,xk I r1,...,rk_1)

of Γ and
Φ : Fk -* Γ

the associated surjective homomorphism of the free group Fk to the knot
group Γ. This φ induces a ring homomorphism

φ : Z[Fk] -> Z[Γ].

The canonical abelianization

is given by
a(xλ) = ••• = a(xk) = t.

Similarly a induces a ring homomorphism of the integral group ring

ά : Z[Γ] -> Z[t±ι}.

Let

p : Γ -> SL(n; R)

be a representation. The corresponding ring homomorphism of the integral
ring Z[Γ] to the matrix algebra Mn(R) is denoted by
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The composition of the ring homomorphism φ and the tensor product ho-
momorphism

p®ά:Z[Γ]-+Mΐl(R[t±1})

will be used so often that we introduce a new symbol

φ = (p ® ά) o φ : Z[Fk] -> M n ί R ^ 1 ] ) .

Let us consider the (k — 1) x k matrix ApΘa whose (i, j)-component is the

nxn matrix Φ(f^ ) G M^Rfί1*11]). This matrix Ap<B>a is called the generalized

Alexander matrix of the presentation P(Γ) associated to the representation

p. By the definition, the classical Alexander matrix A is A1($a where 1 is a

1-dimensional trivial representation of Γ. For 1 < v j < k, let us denote by

Aj

p®a the (k — 1) x (A; - 1) matrix obtained from ApΘa by removing the j-th

column. Now regard Aρ(g)a as a (k — l)n x (k — ί)n matrix with coefficients

in R ^ 1 ] . The following two lemmas are the foundation of our definition of

the twisted Alexander polynomial.

L e m m a 1.1. det Φ ^ - 1) φ 0 for 1 < v j < k.

Proof. Since we fix a Wirtinger presentation P(Γ) as a presentation of Γ, we

have

a{Xj) =tφl

for 1 < v j < k. Then detΦ(xj — 1) = det(tp(xj) — I) is the characteristic
polynomial of p(xj) where / is the unit matrix. This completes the proof of
Lemma 1.1.

L e m m a 1.2. detAρ^adetΦ(xf - 1) = ±detAJ

p'(g)adetΦ(xj - 1) for 1 <
VJ < V < k.

Proof. We may assume that j ~ 1 and j ' = 2 without the loss of generality.

Since any relator r{ = 1 in Z[Γ], it is easy to see that

in Z[Γ]. Then apply the homomorphism Φ to this, we have

Let A2

p(S)a be the matrix obtained from A2

p0a by replacing the first column
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with

Then we have
det A2

pΘa = ± d e t A2

p(S)a det Φ(Xl - 1).

Since

we can reduce the matrix A2

p^a to ^4pΘα where the matrix Ap^a can be
p p p

obtained by multiplying the first column of the matrix A1

p^a by Φ(x2 — 1)

Therefore we have

This completes the proof of this lemma.
By Lemma 1.1 and Lemma 1.2, we can define the twisted Alexander poly-

nomial of K associated to the representation p to be the rational expression

det A\^
Δ ( t )

- 1 ) '

Theorem 1.3 (Wada). The twisted Alexander polynomial Aκ,P(t) is well-

defined up to a factor etmn as an invariant of the oriented knot type of K

where e G {±1}, m G Z and n is a degree of p.

Remark. Two representations p and p' are said to be equivalent if there
is an element g G GL(n; R) such that p'(x) — g p(x) g~ι in SL(n; R) for
vrr G Γ. Then the twisted Alexander polynomials for p and p' are the same

up to a factor etmn where e G {±1} and m G Z .

2. Reidemeister torsion.

Let us describe the definition of the Reidemeister torsion over a field F.
See Johnson [1] and Milnor [2], [3], for details.
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Let V denote an n-dimensional vector space over F. Let b = ( & l 7 . . . ,&n)
n

and c = ( c l 5 . . . , c n ) be two bases for V. Setting Q = Σa,ijbj, we obtain

a nonsingular matrix A = (α^ ) with entries in F. Let [b/c] denote the
determinant of A.

Suppose

is an acyclic chain complex of finite dimensional vector spaces over F. :
We assume that a preferred basis cq for Cq(C*) is given for vg. Choose

any basis bq for Bq(C*) and take a lift of it in Cq+ι{C*), which we denote
b y b g .

Since

is an isomorphism, the basis hq can serve as a basis for Zq{C*). Similarly

the sequence

0 -> Zq(Cm) -> Cq{C*) -> B . - i ί C ) -^ 0

is exact and the vectors (b 9 ,b g _i) is a basis for Cq(C*). It is easily shown

that [ b ^ b ^ i / c j is independent of the choices of b g_i Hence we simply

denote it by [bg,bg_i/cg].

Definition 2.1. The torsion of the chain complex (7* is given by the

alternating product

and we denote it by τ((7*).

Remark. The torsion τ(Cf*) depends only on the bases c 0 , . . . , c m .

Now we apply this torsion invariant of chain complexes to the following
geometric situations. Let X be a finite cell complex and X a universal cov-
ering of X with the fundamental group πλX acting on it from the right-side
as deck transformations. Then the chain complex C*(X; Z) has a structure
of a chain complex of right free Z[τriX]-modules. Let

p: πxX -» SL(n F)

be a representation. We may consider V as a πχX-module by using this

representation p and denote it by Vp. Define the chain complex C*{X\VP)

by C*(X; Z) ®z[πiX] VP and choose a preferred basis

{σi ® ei,σi ® e 2 , . . . , σ i ® e n , . . . , σ Λ ® e i , . . . , σ A ® en}
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of Cq(X] Vp) where {βi, e 2 , . . . , en} is a basis of V and σ i , . . . , σkq are g-cells

giving the preferred basis of Cq(X; Z).

Now we consider the following situation. That is C*(X;VP) is acyclic,

namely all homology groups vanish : £Γ*(X; Vp) = 0. In this case we call p

an acyclic representation.

Definition 2.2. Let p : Έ\X —>> SX(n F) be an acyclic representation.
Then the Reidemeister torsion of X with V^-coefficients is defined by the
torsion of the chain complex C*{X\ Vp). We denote it by τ(X; Vp) or simply

Remark.
1. It is well known that the Reidemeister torsion is invariant under sub-

division of the cell decomposition up to a factor e G {±1} Hence the
Reidemeister torsion is a piecewise linear invariant. See Milnor [2], [3].

2. In general let p : Γ —> GL(n; F) be an acyclic representation. Then the

Reidemeister torsion is well-defined up to a factor d E ίm(det op) c

F-0.

3. Proof of Theorem A.

In this section, let F be the rational function field R(t) and V the n-
dimensional vector space over R(t). We recall a Wirtinger presentation
.P(Γ) of the knot group Γ of K is given by as follows

P(Γ) = (xux2,...,xk I r i , r 2 j . . . , r M )

where r{ is the crossing relation for each i.

Let W be a 2-dimensional complex constructed from one 0-cell p, k 1-
cells # 1 , . . . , xk and (A; — 1) 2-cells D l 5 . . . , Z}*-i with attaching maps given
by r l 5 . . . ,rfc_i. It is well-known that the exterior E of K collapses to the
2-dimensional complex W. If an acyclic representation

p : Γ -* SX(n; R)

is fixed, we have the following by the simple homotopy invariance of the
Reidemeister torsion

up to a factor etmn where e G {±1} and m G Z. In this case, we show that

detΦ(a?i - I)"
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By easy computation, this chain complex C*(W; Vp^a) is as follows;

where

$ =

Here we briefly denote by V ^ the 2-times direct sum of VP®Q.

Proposition 3.1. All homology groups vanish : H*{W\Vp®a) — 0 if and
only if detAp(S>a φ 0. In this case, we have

- 1)'

Proof. It is obvious that H0(W; Vp®a) is trivial because detΦ(#i — 1) φ 0 and

hence the boundary map d\ is surjective. For a canonical basis {e 1 ? . . . , e n }

of V, we choose lifts

e1 = t(Φ(xι-l)-1eι,0,...,0),

e n = ί ( Φ ( x 1 - l ) - 1 e n , O , . . . , O )

in Vn. Define the kn x kn matrix M whose first (kn — ή) columns are tAp®oc

and last n columns are έ i , . . . , en. The matrix M takes the form

*

\AP®a

It is obvious that detM φ 0 if and only if detA1

p(^a φ 0. If all homology

groups vanish : H*(W] Vp®a) — 0, then

= kn — n.



TWISTED ALEXANDER POLYNOMIAL 439

Hence we have

In this case the Reidemeister torsion is given by

τ(W;VpΘa)=detM

- 1)'

It is clear that the contrary is also true. Namely if detA* 0 α φ 0, then
H^iW] Vp0a) is trivial. This completes the proof.

By the above propositions, we have the proof of Theorem A.

4. Symmetry of the twisted Alexander polynomial.

Hereafter we suppose that p is conjugate to an SΌ(n)-representation of
Γ. For simplicity, we may suppose that p is an SΌ(n)-representation. We
fix a structure of the simplicial complex in the exterior E of K and assume
that each simplex of E has a dual cell. For a ^-simplex of E we can define
not only the dual (3 — g)-cell in E, but also the dual (2 — g)-cell in the
boundary dE. Taking the cells of both types, we obtain a dual complex E'
with subcomplex dE'. We denote the universal covering complex ofEbyE
and the one of E' by E'. Let (c', c) denote the algebraic intersection number
of d G C3_q(E',dEf;Z) and c G Cq(E;Z). Next lemma is well-known fact
(see Milnor [2]).

Lemma 4.1. The left Z[T]-module C3-q(Ef,dE(] Z) is canonically isomor-

phic to the dual of Cq(E, Z) and the dual pairing

is given by

for V G Cn-q(E',d~E'', Z) and v c G Cq{E\ Z).

Now let us apply this duality to the torsion invariant. Let V*^a denote

the dual vector space of VJ,®Q. A structure of left Z[Γ]-module in V*^a is

given by

(x - u*)(υ) = IA*(*(P ® «)(^)~ 1 ' v)

for v x G Γ,vu* G V^0α, and vi> G Vp®a. Then we denote this dual represen-
tation space by V*^a and define the dual pairing

C3-g(JS', dE1- V* ) x Cq(E; Vp®a) -> R
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by
(c; ®^*,c(g> υ) — u*([c',c]v)

for V ® u* G C 3 _ g (^d£ ' ;V7 Θ J and v c ® v G CJJE; F p Θ α ). Hence it is
straightforward that C3-q(Er,dEf;V*Qa) is isomorphic to the dual of
Cq(E] Vp®a).

Lemma 4.2. Let C* 6e an acyclic chain complex with preferred basis {Q}
and C* the dual complex with preferred basis {c*}. Then we have

τ(C.) = r(Cη

up to a factor e G {±1}

This lemma is also well-known. By this lemma and the invariance of the
Reidemeister torsion for the subdivision of the cell complex, we have

We define a representation

by
a(x) — a(x)

For the tensor representation p ® α, because p is an 50(n)-representation,
the dual representation

(p®a)* :Γ-+GL(n;R(ί))

is given by

(p®aY{x)=tp(x)-ιa{x)~1

= p{x)ά(x)

= (p® ά)(x)

for v x E Γ. Therefore the representation space V*(S>a is equivalent to Vp(S)a
Hence from the above observation, we have

τ(E;Vp0a)=τ(E,dE;Vp^).

Similarly it is easy to show that

The following lemma is also well-known to the experts. See Milnor [6].
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Lemma 4.3. Let 0 -> C* -> C* -> C" -» 0 be an exact sequence of n-
dimensional chain complexes with preferred bases {<^},{Ci}, and {c"} such
that [c'i, c'llCi] = 1 for any i. Suppose any two of the complexes are acyclic.
Then the third one is also acyclic and the Reidemeister torsion of the three
complexes are all well-defined. Moreover the next formula holds.

Apply the above lemma to the short exact sequence :

0 -)• C.{dE; Vp®a) -+ C(E; Vp®a) -*• Ct(E, ΘE; Vp®a) -»• 0,

we have

τ(E; tW,) = τ(dE;Vp®a)τ(E,dE;Vp®a).

Then we compute the Reidemeister torsion of dE first.

Proposition 4.4. Let p : πι(dE) -> SL(n;R) be a representation. Then
the Reidemeister torsion is given by

up to a factor etmn where e G {±1} and m E Z.

Proof. Let sc,y be generators of πλ{dE) such that rz; = a;χ in ΈXE and y is the

canonical longitude. We assume that a cell structure of dE are given by :

(0) one 0-cell 6,

(1) two 1-cells x and y,

(2) one 2-cell w,

with the attaching map given by dw = xyx~λy~ι. To compute the local
homology of dE, we compute boundary operators of this chain complex.

0 —>w®V-%>x®V®y®V-^p®V —^0

where

d2 = f-φ(y - 1) Φ(χ - 1))

_ (Φ(x - 1)\



442 TERUAKI KITANO

It is obvious that this chain complex is acyclic because detΦ(α; — 1) ψ 0.
Then the Reidemeister torsion τ{βE\ Vp<$a) is defined as a rational function
over R. By the definition of the Reidemeister torsion,

τ(dE;Vpφa) = [bx/c^tbx.bo/dlt

By straightforward computation, we have

τ(dE;VpΘa) = I.

This completes the proof.
Hence combine the above lemmas,

By the definition of the twisted Alexander polynomial and Theorem A, it is
obvious that

τ(E;Vp0a) = AKJΓ1).

Therefore we have
Aκ>p(t) = A^it-1).

This completes the proof of Theorem B.
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