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ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO
SOBOLEV INNER PRODUCT ON THE UNIT CIRCLE

XIN Li AND FRANCISCO MARCELLAN

We study polynomials orthogonal with respect to an indef-
inite Sobolev inner product on the unit circle. We establish
the existence of such polynomials of large degree. Algebraic
properties and asymptotic behavior of such polynomials are
obtained.

0. Introduction.

The study of orthogonal polynomial with respect to standard inner product,
i.e.

(1) (/,</>= / f(z)gW)dμ(z)
Jr

where Γ is a curve in the complex plane and μ is a positive definite Borel
measure supported on Γ, constitutes an important subject of research in
several areas such as approximation theory, numerical analysis as well as in
other applied fields (signal processing, linear systems, ets.).

Recently, many people have been interested in the analysis of orthogonal
polynomials with respect to some nonstandard inner products. One of the
most important examples is related with Sobolev inner products.

In particular, much attention is now been paid to the case

(2) (f,g) = ί f{x)g(x)dμo(x) + f f(x)gί(x)dμ1(x),
Ji Jj

where μ0 and μι are positive definite Borel measures supported on / and
J, subsets of the real line, respectively (see [10] for a survey of the subject
matter). But very few results are known when the support of the measures
is not contained in the real line.

A study of Borel measures supported on the unit circle has been initiated
in [3], where the case when the inner product is given by

if, 9) = /
J\z\=l
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where μ is a Borel measure on \z\ = 1 and \a\ = 1, is investigated and some
questions such as representation formulas and relative asymptotics for the
new sequence of orthogonal polynomial with respect to the standard one
are provided. A comparison with the usual applications of the standard
orthogonal polynomials, problems such as the location of zeroes, quadrature
formulas, relation with continued fractions, and rational approximation to
some integral transforms of measures need further studies.

Our present work can be focussed from two different points of view:
First, we perturb a standard inner product as in (1) on the unit circle

using the first derivatives in several points off the circle instead of using
higher order derivatives at only one point as in the direction pointed out in
some recent research when the support of measure is contained in the real
line (cf. [1, 8, 11]).

Secondly, we drop the requirement of positivity and Hermitian character
of the inner product and establish the existence of orthogonal polynomials of
large degree. When the measure μ belongs to a wide class N (the analogue
of Nevai's class, see the definition in §3), we obtain the relative asymptotics
of the two families of orthogonal polynomials associated to the measure μ
and the nonstandard inner product, respectively. These extend the results
in [3].

The organization of the paper is as follows: §1 is devoted to some defini-
tions and basic facts; §2 collects some algebraic properties: §3 contains the
statement of our main results on relative asymptotics whose proofs are then
given in §4.

1. Notations.

Let dμ be a positive measure on the unit circle \z\ — 1 with an infinite set of
support. Let zu z2,. ., zm be m fixed points in the complex plane C. Addi-
tional assumptions on the location of {zi} will be made later. Throughout
this paper, Z denotes the vector (z l7 z2, - , zm). We will use Vn to denote
the set of polynomials of degree at most n with complex coefficients.

Let φn(z) be the n-th orthonormal polynomial associated with dμ, i.e.,
φn(z) — κnz

n H G ? n with κn > 0 and

φn(z)zkdμ = — , k = 0,1,. . . ,n.

It is convenient to apply the following convention: For any function F(z) of a
single variable z, we write F (Z) for the vector (F (zλ), F (z2),..., F (zm)).
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So we have, for example,

...,f(zm)) and

K(z,Z) = (K(z,Zl) ,K(z,z2),... ,K(z,zm)),

if f(z) is diίferentiable and K(z, w) is a function of two variables z and w.
Define an indefinite inner product as follows

(3) (f,g):= Jfgdμ + f'(Z)Ag'(zf,

where vH denotes the conjugate transpose of a vector v, and A is a m x m
complex matrix. Throughout this paper, matrices will always be denoted by
bold-face letters.

We say a polynomial φn(z) G Vn is (left-) orthonormal with respect to the
indefinite inner product ( , •) if

and

Cf. [2]. If A is a Hermitian positive-definite matrix, then the existence
and uniqueness of such polynomials is always guaranteed. In general, we
can see that if such a polynomial exists then deg φn = n, and in this case
we will always assume the leading coefficient of ψn is positive and denoted
by 7n. Even with these conventions, the uniqueness of ψn is still unknown;
nevertheless, under the assumption that A is non-singular, we will show that
such polynomials exist for n sufficiently large. In the sequel, we will use φn

to denote one of such polynomials. The theory is a natural extention of the
results for the real line (cf. [8]).

2. Algebraic Properties.

We list some useful relations between {φn{z)} and {ψn(z)}' Let

n - l

Then Kn is the reproducing kernel in Vn-\ '• for / 6 Vn-i

f(ζ)Kn(z,ζ)dμ(ζ) = f(z).
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Put
n-l

K£j) (z,ζ) = Σφf{z)φψ (ζ), i,j = 0 , 1 , 2 , .
k=0

Then for / € Vn-U

Note also that K^ (z,ζ) = κti'i] (ζ,z)..

Formula 1. If ψn exists, then

φn(z) = % n ( z ) - ψn (Z) AK<? » (z, Zf ,

where vι denotes the transpose of a vector v.

Proof. Note that

SO

(4) / Un (0 - —Ψn (θ) Kn (z, 0 dμ (0 = φn(z) - ^φn(z),

by the reproducing property of Kn. Now using the orthogonality of φn, we
can write

n (c)" £ ψ n ( c ) ) K n {z' °dμ (c) = / Φn (c) Kn {z' °dμ (0'
Further, on using the orthogonality of φn with respect to th inner product
( , ) defined above, we can rewrite the right side of the above equation as
follows:

(φn,Kn(z, •)) - φ'n (Z) AK<? » (z, ZΫ = -φ'n (Z) AK?>» (z, ZΫ .

This together with (4), establishes Formula 1. G

Consequently, we have the following.

Formula 2. Iΐψn exists, then

« π

Proof. This formula follows from differentiating Formula 1 with respect to z
on both sides. D
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Formula 3. If φn exists, then

Proof. Consider different ways to calculate

J φn{z)φn(z)dμ{z).

Writing ψn(z) = ( 7 n / Ό ψn(z) + lower degree terms, and using the orthog-
onality of φn, we have

φn{z)φn{z)dμ{z) = -A

On the other hand, writing φn(z) = (κ>n/Ίn)Ψn{z) + lower degree terms,
and using the orthogonality of ψn, we have

= {φn, Ψn) ~ φ'n (Z) Aψ'n (Zf

( φ n , φ n ) φ
Ίn

which implies Formula 3. D

Formula 4. Let wm(z) :— Πj=i (1 ~ ^jz)> then there exist two polynomials
p(z) E V2m and q(z) G V2m-i, uniquely determined by ψn, such that

Proof. From [6], we have

Vn+2m = ψnV2m + ΨnV2m-l + Z2mVn-2m-l.

So, there exist p G V2m, q G V2rn-\ and r G P n _ 2 m -i such that

^ ( ^ ) i W = Ψn(z)p(z) + ^(^ϊgW + z2mr(z).

It remains to show r = 0. Multiplying z2rnr(z) and integrating with respect
to dμ gives us

j ψn(z)(w^(z))2 r{z)dμ = J φn(z)p*(z)r(z)dμ

φ*n{z)zq(z)r{z)dμ + j \r{z)\2 dμ,
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where we have used the fact that hl(z) = zkh(z) for \z\ = 1. Now, by
2

the orthogonality of φn and ψn it then follows that / \r(z)\ dμ — 0, which
implies r = 0. D

Remark. 1. We emphasize that the two polynomials p(z) and q(z) in
Formula 4 depend on wm(z) and ψniz), although the dependence is not
given explicitly in the notation.

2. Formula 4 can be used to produce reccurence relation and determinantal
representation for φn. The following integral representation is just one of
various other possibilities.

Formula 5. If \ZJ\ > 1, j = 1,2,..., m, then

and

Proo/. Using Formula 4, on substituting z by l /^ , we have

and

Now, Formula 5 follows from an application of the Hermite formula of inter-
polation (see, for example, [4, p. 68]). D

3. Relative Asymptotics.

We now assume the matrix A in (3) is non-singular. Denote the leading
coefficient of φn by κn > 0 as before. We need some assumptions on the
measure dμ. If

we say that the measure dμ belongs to class N and write dμ G N. This is
analogous to the Nevai's class of measures supported on the real line R, (cf.
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[11]). A well known result of Rakhmanov (cf. [14]) says that any measure
dμ with μ' > 0 a.e. on \z\ = 1 belongs to class N.

We now state our main results on relative asymptotics, their proofs are
presented in the next section.

Theorem 1. // the points zλ . . . ,zm (ZJ Φ zk for j φ k) all lie outside the
unit circle, the matrix A in (3) is non-singular, and dμ G N, then there exists
a positive integer n0 such that for each n > n 0 the orthonormal polynomials
with respect to the indefinite inner product ( , ), Φn-> exists.

Recall that j n > 0 denotes the leading coefficient of φn and KΨmΨn)] — l

Theorem 2. Under the same assumptions as in Theorem I, there hold

(7) lim ^ = J

and

«/. (~\
(8) lim

n—ϊoo

where λ = \B(0)\/B{0) and B{z) = w^(z)/wm{z). {Recall that wm(z) =
ΠjLi (1 ~ z]z) •) The convergence in (8) is uniform on every compact subset
in \z\ > 1.

Corollary 3. Let p := min {\z3•] | j — 1, 2, . . . , m} . Then under the same
assumption as in Theorem 1 we have

/or et>erί/ e G (0,1) αnc? j — 1, 2 , . . . , ττι.

Corollary 4. Lei p(z) 6e defined as in Formula 4. Under the same as-

sumption as in Theorem 1, we have

n ^ ) = Xwm(z)w*m(z) = Xw2

m(z)B(z),

uniformly on every compact subset in the complex plane C.

4. Proofs of the Relative Asymptotics.

We first establish some auxiliary lemmas.
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Lemma 5. For points Z\,..., zm (ZJ φ zk for j φ k) outside the unit circle,
the matrix

-1- m — I ., ]

\*j**-l/iιfc=1

is non-singular.

Proof. This result is known and follows from Cauchy's result that

(see, for example, [13, Problem 3 p. 92]. See also [7, Lemma 4]. D

Lemma 6. For points zx,..., zm (ZJ φ zk for j φ k) outside the unit circle,
let B(z) = w^n(z)/wm(z), then there exists a unique set of non-zero complex
numbers r\,..., r m such that

5(0) έί

Proof. See [7, Lemma 5]. D

Lemma 7. // dμ is a positive finite measure on the unit circle with infinitely
many points in the support, then for every compact subset K in \z\ > 1 there
exists two positive constants d = d (K) and e = e (K) independent of n such
that

d<
nφn(z)

< e

for all z e K.

Proof. Denote c := min{|z|; z £ K) and C := max{|^|; z G K} . Then 1 <
c < C. To obtain the lower bound, write

if 0
nφn{z) n ^ \z -

where Cj's denote the zeroes of φn which are all in |z | < 1, cf. [15, Th. 11.4.1.].
Then

nφn(z)
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The proof of the upper bound is easier. D

Remark. Lemma 7 and its proof are parallel to those of Lemma 3 in [5].

Lemma 8. If dμ G N, then

(9) " - % # -
n-»oo φ'n(Z)

uniformly on every compact subset of \z\ > 1. Furthermore,

0,1)

(10) lim ^
n (C) zζ-1'

and

uniformly for (z,ζ) on every compact subset of \z\ > 1 and \ζ\ > 1.

Proof. If dμ G N, then by [12, 14]

(12) lim ^ # = z
nyoo φn(Z)

uniformly on every compact subset of \z\ > 1. As in [5, Lemma 4], note
that

^ΰτ-^)l^rJ(z)

Now (12) implies

ψn

uniformly on every compact subset of \z\ > 1. On the other hand, by Lemma

7,

(14) lim
rwoo

uniformly on every compact subset of \z\ > 1. Thus, on taking the limit as
n tends to oo on both sides of (13), we obtain
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uniformly on every compact subset of |̂ r| > 1. This proves (9).
In order to prove (11), we need the following limit relations:

(15) lim ̂ 4 = 0,
n>oo φn{Z)

and

(16) lim

uniformly on every compact subset oi\z\ > 1. Relation (15) is established
in the proof of Theorem 4 in [12], while relation (16) folows from (14), (15)
and the identity

ΨnX
—
ψn)

#.(*) φ'Λ*)\φn) v ' Ψn{z)'

Now, using the Christoffel-Darboux formula (cf. [15, Th. 11.4.2.]) and by
straightforward calculations, we have

l-zζ
_ \ 2

(1-.C)

Mri ( 0 - Ψn(z)ψn' (C)~ , <Pn{z)<& (C) ~ Ψn{z)φn (Q (Λ , _ ^
—2 ς + —3 (l + zζ)
ζ) ( l ζ )

(l-zζ) (l-zζ)

=: h + h + h + li-

lt is easy to verify that

h _ 1 (ψn

and

) ψ'(z) \φ' (ζ) ) 'O'n{z)ψ n (C) (l _ zζY \ψn(z) \ψn (0) J ψ'n(z) Wn (0

as n —> oo, by (14), (15) and (16). Also, on writing

h _ z φ*n'(z)fφ*n(ζ)φn(O\ fψn(ζ)

ψ'Λz)Ψ'n(ζ) (ι-zζ)2 WΛz) W O 0 . ( 0 7 \ψ'n(0
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we get, by (14), (15) and (16)

φ'Λz)φ'n ( 0

as n -> oc. Similarly, we can obtain

o,

'n (0
o,

as n —> oo.

Note that all above limit processes are uniform for compact subsets in

\z\ > 1 and |C| > 1. So (11) holds.
The proof of (10) is similar to that of (11), so we omit it. D

Proof of Theorem 1. We first claim that there exists a positive integer no

such that

(17)

where

det 1 -I- φ 0, n > n0,

κ\

Assume the validity of this claim for the moment. Define

φn(z) := Ψn(z) - ψ'n (Z) (i + AKW) ~* A^0-1' (Z, Z)\n> n0.

It then follows that

Thus, for k < n,

(̂ n, Ψk) = j φn(z)^{z)dμ + φ'n (Z) Aφ[ (Z)H

= J ψn(z)Mz)dμ - ψ'n (Z) (i + AK^)"1 A

+ φ'n(Z) (/ + AK^)'1 Aψ'k{Z)H

=0.

(z,
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Similarly,

(18) (φn, φn) = J φn{z)ΪΛz)dμ + φ'n (Z) Aψ'n {Z)H

=1 + ψ'n (Z) (i + AK^)'1 Aφ'n (Zf .

Now, from the matrix identities

f/mxm Ψ'n (Z)*\ (A'1 + K™ ~ψ'n {Z)H\
^ 0 l x m 1 ) \ φ n{Z) 1 )

_ (A-1+K^+ψ'n(Zfφ'n(Z)Olxm\

{
and

/A- + K^ -φ'n (Zf\ (lmxm ( A 1 + K^Y φ'n

ψ'n{Z) l + φ'n (Z) (A"1 + K^) ~l φ'n {Zf) '

we get the following determinant identity

det (A-1 + K^ + ψ'n {Zf φ'n (Z)) =

det (A'1 + K^) (l + ψ'n (Z) (A"1 + iitf'1*)"1 ^ {Zf)

Note also that

so there holds

This together with (18), gives us

det (A-1 + Kϋ
{ Φ Ψ } =

Therefore, a (left-) orthonormal polynomial φn exists and equals

\Φn,Φn)
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where ηn is a number of modulus 1 such that the above polynomial has a
positive leading coefficient.

It remains to prove our claim (17). Assume, to the contrary, that there is
an infinite subsequence of positive integers, say £, such that

(19)

Let

det (A" 1 + K*1'1*) = 0, for all n e £.

I l 0

0

0 0 ... -rh

and

\φ'n{z\)φ'n{zrn) φ'n

Then we can write

A'1 Γ m , n ) Λ^1.

Taking the determinant on both sides yields

(20) det ( A ^ A " 1 An + T m , n ) = 0, for all n e £,

according to (19). Now, using (9) in Lemma 8, we have

lim = 0, j = l,2,...,m,

and thus

(21)

while using (11), we get

(22)

lim Λn = 0;

lim!
n—>oo

= T m .

Thus, if we let n G C and n -> oo in (20), we would have detT
contradicting Lemma 5. So, the claim (17) must be true.

0,

D
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Proof of Theorem 2. Let n 0 be defined as in Theorem 1. Assume n > n0

in this proof. Our proof exploits the information obtained in the proof of
Theorem 1. Let z = Zj, j — 1,2,..., m, in Formula 2,

Ψ'(z)<P(z) = ψ

Rearranging the terms in the above equations, and then putting them into

a matrix form, we get

^(1,1,. . . , 1) = φ'n (Z) AK^An + φ'n (Z) Λn,

where Λ n is the same as in the proof of Theorem 1, Rewrite the above

equation further as

(1,1,..., 1) = ̂ ψ'n (Z) [ A A ? T m t n + A n] ,

where T m j T l is as in the proof of Theorem 1. Using (20), (21) and (22), we
obtain

^nUm — φ'n (Z) AΛ;

= lim -Jίφl

n(Z)AA~1 | T m > n + Λ r ι A~ 1 ΛJ | T m ι r

= lim ( 1 , 1 , . . . , 1) | T m , n + ΛnA~1Λ r ιj

where the last equality is according to Lemma 6 when z = 0.

Write A = (α*, α * , . . . , α^) withα^ = ( α l j 5 α 2 j , . . . , α m j ) (j = l , 2 , . . . , m ) ,
then we have

(23) U m ^ V ; ( ^ ) α * . ^ ^ ) = β ( 0 ) r i , , i = 1,2,... ,m.

Now, by Formula 3,

) φ
Ύn J Ύn

thus
/ κ \ 2 m

 κ

Jim (φn, φn)U) = 1 + Bm £ f <7n.

1
5 ( 0 ) -

5(0) J
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Therefore limn_>oo (ψniΨn) = 1 a n d

lim —- =

This completes the proof of (7).
We now prove (8). Prom Formula 1,

Ψn{z) •

Recall that i φ 1 ' (z, Z) = (AΓ̂  1) ( z , ^ ) , . . . . i φ 1 ) (z,zm)). Using A =
( α * , . . . , α^) and expanding the product on the right-hand side in the above
equation, we have

7 .

Letting n -> oo on both sides in the above equation yields

by (7), (23) and (10). It follows from Lemma 6 and the definition of λ that
the right-hand side in the above equation is XB(z). So (8) holds, and the
proof of the theorem is completed. D

Proof of Corollary 3. Prom (23) and (7),

Urn <

where r := ( r i , r 2 , . . . , r m ) . So

where l i m ^ ^ fm = 0 m . Thus

and so lim^oo ptUrφ'n (Z) = 0 m , according to (9). G
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Proof of Corollary 4. Denote

OLnj '•= P ( — ) , and βnJ := p' ί = j ,
\ Zj\ J \ Zj J

for j = 1,2, . . . , m . Choose λn such that p(z) — λ n u ^ ( z ) E ^ m - i Since
d e g ^ = n for n > n 0, by comparing the leading coefficients in Formula 4,
we find that λn = ^ZL.

Recall the formula of the (0,1) polynomial Hermite interpolation (cf.
[9, p. 300]): for a differentiable function /,

(24) H2m-! (zj) = Σ / ( = ) Φ) + Σ / ' ( = ) *iW

is the interpolating polynomial of the degree at most 2m — 1 satisfying

ϊ
κZj) \Zj)' 2 m

for j — 1,2,..., m, where the polynomials Sj(z) and tj(z) are given by

Sj(z) = VjMLjizf, tj(z) = ( * - ! ) L3{z)\

for j = 1,2,..., m. When / is a polynomial of degree < 2m — 1, formula (24)
reproduces /. In particular, for f(z) = p(z) — λnu;^(z),

(25) p(z) ~ XnW

On the other hand, using (5), (6) and (25), we see that

(26) 9{z) = - Σ ^

Substituting (25) and (26) into Formula 4 yields

w2

m(z)φn(z) = λnwl(z)φn(z) + f; \φn(z) - ψ*n{z)^ ( = ) | anJs3(z)

+Σ kw - v w^ (p)l <̂iW - Σ v w fe)' (ψ) ^Φ
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Note that, by the Christoffel-Darboux formula,

n \Zj

So

Taking arbitrary 2m distinct points in \z\ > 1, say £1? ζ25 , C2m? and then
letting 2 = £fc, fc = 1,2,..., 2m, in the above equation, and finally putting
the obtained relations into the matrix form give us

vn = (otn,βn)Vn,

where α n : = ( α n ) 1 , α n > 2 , . . . ,α Λ ,m) ? ^ n : = (βntuβn,2> -">βn,m) ?

and

Sm ( C l ) « m ( C 2 ) ••• Sm (ζ2m)

*1 ( C l ) *1 (C2) ••• M C 2 m )

with

and

(28) ij(z) :=

Note the limit relations (cf. [7, Lemma 1])

(29)

a w (&)' (I)

τi\Z)
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for \z\ > 1, and (cf. [12, (3.10)])

lim —{w) = 0
n—>oo GO*

r n

and consequently

(30) Jim^ -^ ί = j = 0 and Jirn^ ί -^ j (w) = 0,

for H < 1. So, using (29) and (30) in (27) and (28), we have

lim sΛz) = sΛz) and lim iΛz) — tΛz).
n->cx» n—>-oo

Therefore,

lim Vn =
n—ϊoo

with

( C 2 ) -..

Sm (ζl) Sm (C2) - - $m (C2m)

*1 (Cl) *1 (C2) •.. < l ( C 2 m )

*2 ( C l ) * 2 ( C 2 ) .-. ^ ( C 2 m )

, t m ( C l ) * m ( C 2 ) •.. tm(ζ2m)J

It is easy to see that det V ^ 0 since {SJ} and {£7} are linearly independent
and form a basis of T^m-i Also, using Theorem 2, we have lirr^^oo vn = v
with v :=

< (Cl) (ζ2m) <

So, letting n -> oc in (αn,/3n) = v^V'1, we get

(31) lim (an,βn)=υV-\

Now, note that Xwπιw"m - λw2

m/B(ϋ) G P2m-i- Thus, (24) implies

Λ m

w2

m (z) = ΣajSj(z)
) J=1

\wm (z) w*m (z) -
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(Actually, otj = 0, and βj = Xw'm {l/'zj) w*m (l/'zj), j = 1,..., m.) Substitut-
ing z by ζk, k = 1,2,..., 2m, we can obtain

v = ( α i , . . . , α m , ft,...,/?m) V.

This and (31) give

lim (αn,/3n) = (c*i,... ,am,βu ... ,/3m).
n—>oo

Using this limit relation together with (25) and (29) we get

2Mlim p(z) =

This completes the proof of the corollary. D

Acknoledgement. The authors thank the referee for helpful comments
and suggestions.
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