COMMUTATORS AND INVARIANT DOMAINS FOR SCHRÖDINGER PROPAGATORS

Min-Jei Huang

We present an operator-theoretic approach to the problem of invariant domains for the Schrödinger evolution equation. The results are applied to the Hamiltonian operators with time-dependent potentials and electric fields.

1. Introduction.

This paper is concerned with the problem of invariant domains for the Schrödinger evolution equation

$$
\begin{equation*}
i \frac{d}{d t} \varphi(t)=H(t) \varphi(t), \quad \varphi(s)=\varphi_{s} \tag{1}
\end{equation*}
$$

where $H(t), t \in \mathbb{R}$, is a family of self-adjoint operators acting on a Hilbert space \mathcal{H}.

It is known that under suitable conditions on $H(t)$ (see e.g. Kato [4], ReedSimon [9] and Yajima [11]), there exists a unique unitary propagator $U(t, s)$ on \mathcal{H}, and a dense subspace \mathcal{D} of \mathcal{H} which is invariant under the propagator so that for each $\varphi_{s} \in \mathcal{D}, \varphi(t)=U(t, s) \varphi_{s}$ is strongly differentiable and satisfies (1).

The problem considered here has been studied by many authors; see FarisLavine [1], Fröhlich [2], Hunziker [3], Kuroda-Morita [5], Ozawa [6, 7], Radin-Simon [8] and Wilcox [10]. Most of them dealt with the time-independent case $H(t) \equiv H$ in which the propagator $U(t, s)=\exp [i(s-t) H]$ is given by the usual one-parameter unitary group. In a recent paper [7], Ozawa investigated the space-time behavior of $U(t, s)$ for the Stark Hamiltonian $H(t)=-\Delta+E \cdot x+V(x, t)$ on $L^{2}\left(\mathbb{R}^{n}, d x\right)$. By using perturbation techniques and space-time estimates for the free propagator $\exp [i t(-\Delta+E \cdot x)]$, Ozawa established several results on the invariance property and smoothing effect for $U(t, s)$ in certain weighted Sobolev spaces. For earlier related rèsults in the case $E=0$, see Kuroda-Morita [5].

We denote the domain of an operator A by $\mathcal{D}(A)$, and if N is positive and self-adjoint, we denote its form domain by $\mathcal{Q}(N)$. Given a positive selfadjoint operator N, we are interested in conditions on $H(t)$ for $\mathcal{Q}(N)$ or
$\mathcal{D}\left(N^{k}\right), k=1,2, \ldots$, to be an invariant subspace of $U(t, s)$ for all $t, s \in \mathbb{R}$. We study this problem in a general operator-theoretic setting in Section 2. Our approach is based on the commutator theorems of Faris and Lavine [1] and Fröhlich [2]. In Section 3, we apply the abstract theorems of Section 2 to Hamiltonians of the form

$$
H(t)=-\Delta+E(t) \cdot x+V(x, t)
$$

with $N=p^{2}+x^{2}$ or $N=p^{2}$, where p is the momentum operator $-i \nabla$. Our results are related to some of those in $[\mathbf{5}, \mathbf{7}]$.

2. Abstract Theorems.

Let $H(t), t \in \mathbb{R}$, be a family of self-adjoint operators acting on a Hilbert space \mathcal{H}. Throughout this section, we will assume that $\bigcap_{t} \mathcal{D}(H(t)) \supseteq \mathcal{D}$ for some dense subspace \mathcal{D} of \mathcal{H}, and that $H(t)$ generates a unitary propagator $U(t, s)$ so that

$$
i \frac{d}{d t} U(t, s) \varphi=H(t) U(t, s) \varphi \text { for all } \varphi \in \mathcal{D}
$$

We denote by $\mathcal{B}(\mathcal{H})$ the space of all bounded linear operators on \mathcal{H} with the usual operator norm $\|\cdot\|$. For a positive self-adjoint operator N on \mathcal{H} and $\epsilon>0$, we define $N_{\epsilon}=N(\epsilon N+1)^{-1}$. Note that $N_{\epsilon} \in \mathcal{B}(\mathcal{H})$ is positive and selfadjoint. Concerning the invariance of the form domain $\mathcal{Q}(N)=\mathcal{D}\left(N^{1 / 2}\right)$, we prove:

Theorem 2.1. Let N be a positive self-adjoint operator so that
(i) $\mathcal{D}(N) \subseteq \bigcap_{t} \mathcal{D}(H(t))$.
(ii) $\pm i[H(t), N] \leq c(t) N$ for some $c \in L_{l o c}^{1}(\mathbb{R})$; that is,

$$
\pm i\{\langle H(t) \varphi, N \varphi\rangle-\langle N \varphi, H(t) \varphi\rangle\} \leq c(t)\langle\varphi, N \varphi\rangle \text { for all } \varphi \in \mathcal{D}(N)
$$

Then $U(t, s)[\mathcal{Q}(N)]=\mathcal{Q}(N)$ for all t, s.
Proof. Fix s and set $\varphi(t)=U(t, s) \varphi$ for $\varphi \in \mathcal{H}$. Then we have for $\varphi \in \mathcal{D}$

$$
\begin{aligned}
(d / d t)\left\langle\varphi(t), N_{\varepsilon} \varphi(t)\right\rangle & =\left\langle\varphi(t), i\left[H(t), N_{\epsilon}\right] \varphi(t)\right\rangle \\
& =\left\langle(\epsilon N+1)^{-1} \varphi(t), i[H(t), N](\epsilon N+1)^{-1} \varphi(t)\right\rangle
\end{aligned}
$$

The hypothesis (ii) now gives that

$$
\begin{aligned}
\left|(d / d t)\left\langle\varphi(t), N_{\epsilon} \varphi(t)\right\rangle\right| & \leq c(t)\left\langle(\epsilon N+1)^{-1} \varphi(t), N(\epsilon N+1)^{-1} \varphi(t)\right\rangle \\
& \leq c(t)\left\langle\varphi(t), N_{\epsilon} \varphi(t)\right\rangle
\end{aligned}
$$

Integrating we obtain

$$
\left\langle\varphi(t), N_{\epsilon} \varphi(t)\right\rangle \leq\left\langle\varphi, N_{\epsilon} \varphi\right\rangle \exp \left|\int_{s}^{t} c(u) d u\right|
$$

Since \mathcal{D} is dense in \mathcal{H} and N_{ϵ} is bounded, this estimate holds for all $\varphi \in \mathcal{H}$. Now let $\varphi \in \mathcal{Q}(N)$. Taking $\epsilon \rightarrow 0$, we find that $\varphi(t) \in \mathcal{Q}(N)$ with

$$
\left\|N^{1 / 2} \varphi(t)\right\|^{2} \leq\left\|N^{1 / 2} \varphi\right\|^{2} \exp \left|\int_{s}^{t} c(u) d u\right|
$$

This shows that $\mathcal{Q}(N)$ is invariant under $U(t, s)$. Since $U(t, s) U(s, t)=I$, we conclude that $U(t, s)[\mathcal{Q}(N)]=\mathcal{Q}(N)$.

Now for any positive integer k, we define (leaving aside the domain questions)

$$
\begin{equation*}
Z^{k}(t)=N^{k-1}[H(t), N] N^{-k} \quad \text { and } \quad Z_{\epsilon}^{k}(t)=N_{\epsilon}^{k-1}\left[H(t), N_{\epsilon}\right] N_{\epsilon}^{-k} \tag{2}
\end{equation*}
$$

In our applications, these operators are defined on certain dense subspaces and extend to bounded operators on \mathcal{H}. We also define

$$
(\operatorname{ad} N) H(t)=[N, H(t)] \quad \text { and } \quad(\operatorname{ad} N)^{k} H(t)=\left[N,(\operatorname{ad} N)^{k-1} H(t)\right]
$$

As a preparation for our next theorem and further applications, we prove the following:

Lemma 2.2.

(a) $Z_{\epsilon}^{k}(t)=(\epsilon N+1)^{-k} \sum_{j=0}^{k-1}\binom{k-1}{j}(\epsilon N)^{j} Z^{k-j}(t)$. In particular, if $Z^{1}(t), \ldots$, $Z^{k}(t) \in \mathcal{B}(\mathcal{H})$, then $Z_{\epsilon}^{k}(t) \in \mathcal{B}(\mathcal{H})$ and $\left\|Z_{\epsilon}^{k}(t)\right\| \leq \sum_{j=0}^{k-1}\binom{k-1}{j}\left\|Z^{k-j}(t)\right\|$.
(b) $\left\{(\operatorname{ad} N)^{k} H(t)\right\} N^{-k}=\sum_{j=0}^{k-1}(-1)^{j+1}\binom{k-1}{j} Z^{k-j}(t)$.

Proof. Part (a) is obvious for $k=1$. The general case follows by induction on k :

$$
\begin{aligned}
Z_{\epsilon}^{k+1}(t) & =N_{\epsilon} Z_{\epsilon}^{k}(t) N_{\epsilon}^{-1} \\
& =N_{\epsilon}(\epsilon N+1)^{-k} \sum_{j=0}^{k-1}\binom{k-1}{j}(\epsilon N)^{j} Z^{k-j}(t) N_{\epsilon}^{-1} \\
& =(\epsilon N+1)^{-k-1} \sum_{j=0}^{k-1}\binom{k-1}{j}(\epsilon N)^{j} N Z^{k-j}(t) N^{-1}(1+\epsilon N) \\
& =(\epsilon N+1)^{-k-1} \sum_{j=0}^{k-1}\binom{k-1}{j}\left\{(\epsilon N)^{j} Z^{k+1-j}(t)+(\epsilon N)^{j+1} Z^{k-j}(t)\right\} \\
& =(\epsilon N+1)^{-k-1} \sum_{j=0}^{k}\binom{k}{j}(\epsilon N)^{j} Z^{k+1-j}(t)
\end{aligned}
$$

where we have used the identity $\binom{k-1}{j}+\binom{k-1}{j-1}=\binom{k}{j}$. The last statement of part (a) follows from the fact that $\left\|(\epsilon N+1)^{-k}(\epsilon N)^{j}\right\| \leq 1$ for $0 \leq j \leq k-1$.

Part (b) can also be proven by an induction argument.
Theorem 2.3. Let N be a positive self-adjoint operator, and define $Z^{j}(t)$ as in (2). Suppose that $Z^{j}(t) \in \mathcal{B}(\mathcal{H})$ with $\left\|Z^{j}(\cdot)\right\| \in L_{\text {loc }}^{1}(\mathbb{R})$ for each $j=$ $1,2, \ldots, k$. Then $U(t, s)\left[\mathcal{D}\left(N^{k}\right)\right]=\mathcal{D}\left(N^{k}\right)$ for all t, s.

Proof. As in the proof of Theorem 2.1, set $\varphi(t)=U(t, s) \varphi$ for $\varphi \in \mathcal{H}$. Then we have for $\varphi \in \mathcal{D}$

$$
\begin{aligned}
(d / d t)\left\langle N_{\epsilon}^{k} \varphi(t), N_{\epsilon}^{k} \varphi(t)\right\rangle & =\left\langle\varphi(t), i\left[H(t), N_{\epsilon}^{2 k}\right] \varphi(t)\right\rangle \\
& =i \sum_{j=0}^{2 k-1}\left\langle\varphi(t), N_{\epsilon}^{j}\left[H(t), N_{\epsilon}\right] N_{\epsilon}^{2 k-j-1} \varphi(t)\right\rangle \\
& =2 \operatorname{Im} \sum_{j=0}^{k-1}\left\langle N_{\epsilon}^{k-j-1}\left[H(t), N_{\epsilon}\right] N_{\epsilon}^{j} \varphi(t), N_{\epsilon}^{k} \varphi(t)\right\rangle
\end{aligned}
$$

where we have used

$$
\left[A, B^{2 k}\right]=\sum_{j=0}^{2 k-1} B^{j}[A, B] B^{2 k-j-1}
$$

Since $Z^{j}(t)$ is bounded and $\left\|Z^{j}(\cdot)\right\| \in L_{l o c}^{1}(\mathbb{R})$ for $1 \leq j \leq k$, Lemma 2.2 (a) implies that $Z_{\epsilon}^{j}(t)$ is bounded for $1 \leq j \leq k$ and that $2 \sum_{j=1}^{k}\left\|Z_{\epsilon}^{j}(t)\right\| \leq$ const. $\sum_{j=1}^{k}\left\|Z^{j}(t)\right\| \equiv f_{k}(t)$, where $f_{k} \in L_{l o c}^{1}(\mathbb{R})$ and is independent of ϵ. It follows that

$$
\begin{aligned}
\left|(d / d t)\left\|N_{\epsilon}^{k} \varphi(t)\right\|^{2}\right| & \leq 2 \sum_{j=0}^{k-1}\left\|N_{\epsilon}^{k-j-1}\left[H(t), N_{\epsilon}\right] N_{\epsilon}^{j} \varphi(t)\right\|\left\|N_{\epsilon}^{k} \varphi(t)\right\| \\
& \leq 2 \sum_{j=0}^{k-1}\left\|Z_{\epsilon}^{k-j}(t)\right\|\left\|N_{\epsilon}^{k} \varphi(t)\right\|^{2} \\
& \leq f_{k}(t)\left\|N_{\epsilon}^{k} \varphi(t)\right\|^{2} .
\end{aligned}
$$

Integrating we obtain

$$
\left\|N_{\epsilon}^{k} \varphi(t)\right\| \leq\left\|N_{\epsilon}^{k} \varphi\right\| \exp \left|\frac{1}{2} \int_{s}^{t} f_{k}(u) d u\right|
$$

We can now pass to the same argument as in the proof of Theorem 2.1 to conclude that $U(t, s)\left[\mathcal{D}\left(N^{k}\right)\right]=\mathcal{D}\left(N^{k}\right)$.

3. Applications.

In this section we want to give some applications of the results of Section 2 to the Schrödinger equation

$$
\begin{equation*}
i \frac{d}{d t} \varphi(t)=H(t) \varphi(t) ; \quad \varphi(s)=\varphi_{s} \tag{3}
\end{equation*}
$$

where $H(t)$ is the time-dependent Hamiltonian acting on the Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{n}, d x\right)$.

We first consider Hamiltonians of the form

$$
H(t)=-\Delta+E(t) \cdot x+V(x, t)
$$

We will restrict attention to electric fields $E(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$ and potentials $V(x, t): \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ obeying :
(i) $\quad E(t)$ is differentiable.
(ii) $\left|\nabla_{x} V(x, t)\right| \leq f(t)(|x|+1)$ for some continuous function f.
(iii) the mapping $t \mapsto\left(x^{2}+1\right)^{-1} \frac{\partial V}{\partial t}(x, t) \in L^{\infty}\left(\mathbb{R}^{n}, d x\right)$ is continuous.

As for N, we take $N=p^{2}+x^{2}$, where $p=-i \nabla$. Note that the operator $N \geq 1$ and is self-adjoint on $\mathcal{D}(N)=\mathcal{D}\left(p^{2}\right) \cap \mathcal{D}\left(x^{2}\right)$. By Theorem 4 of Faris-Lavine [1], condition (ii) implies that $H(t)$ is essentially self-adjoint on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, the space of C^{∞}-functions on \mathbb{R}^{n} rapidly decreasing at infinity, with domain $\mathcal{D}(H(t)) \supseteq \mathcal{D}(N)$. We remark that by the construction of the form domain, $\mathcal{Q}(N)=\mathcal{D}(|p|) \cap \mathcal{D}(|x|)$. Also, one can prove that $\mathcal{D}\left(N^{k}\right)=$ $\mathcal{D}\left(p^{2 k}\right) \cap \mathcal{D}\left(x^{2 k}\right)$ by integration by parts.

Given two Banach spaces \mathcal{X} and \mathcal{Y}, we denote by $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ the space of all bounded linear operators with domain \mathcal{X} and range in \mathcal{Y}. For a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where each α_{j} is a nonnegative integer, and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we put $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $\nabla^{\alpha}=\left(\frac{\partial}{\partial x}\right)^{\alpha}=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}$. Let $B_{\infty}^{m}\left(\mathbb{R}^{n}\right)$ be the space of all m times continuously differentiable functions φ on \mathbb{R}^{n} with bounded derivatives $\left(\frac{\partial}{\partial x}\right)^{\alpha} \varphi$ for $0<|\alpha| \leq m$. Our result is:

Theorem 3.1. Let $H(t)=-\Delta+E(t) \cdot x+V(x, t)$, where $E(t)$ and $V(x, t)$ obey conditions (i)-(iii) above, and let $N=p^{2}+x^{2}$. Then there exists a unique unitary propagator $U(t, s), t, s \in \mathbb{R}$, so that:
(a) for each $\varphi_{s} \in \mathcal{D}(N), \varphi(t)=U(t, s) \varphi_{s}$ is strongly differentiable and satisfies (3).
(b) $U(t, s)$ leaves $\mathcal{Q}(N)$ and $\mathcal{D}(N)$ invariant.

If, in addition, $V(\cdot, t) \in B_{\infty}^{2 k}\left(\mathbb{R}^{n}\right)$ with $\left\|\left(\frac{\partial}{\partial x}\right)^{\alpha} V(x, \cdot)\right\|_{\infty} \in L_{\text {loc }}^{1}(\mathbb{R})$ for $0<|\alpha| \leq 2 k$, then $U(t, s)$ leaves $\mathcal{D}\left(N^{k}\right)$ invariant.

Proof. To prove the existence of the propagator, we define for $\varphi \in \mathcal{D} \equiv$ $\mathcal{D}(N),\|\varphi\|_{\mathcal{D}}=\|\varphi\|+\left\|p^{2} \varphi\right\|+\left\|x^{2} \varphi\right\|$. Then $\left(\mathcal{D},\|\cdot\|_{\mathcal{D}}\right)$ forms a Banach space which is continuously and densely embedded in \mathcal{H}. From (ii), we have $|V(x, t)| \leq \frac{1}{2} f(t) x^{2}+f(t)|x|+|V(0, t)|$. It follows by the continuity of E, V and f that on any compact interval $[-T, T]$, there are constants a and b so that $|E(t) \cdot x+V(x, t)| \leq a x^{2}+b$ for all $t \in[-T, T]$. Since

$$
\left\|p^{2} \varphi\right\|^{2}+\left\|c x^{2} \varphi\right\|^{2} \leq\left\|\left(p^{2}+c x^{2}\right) \varphi\right\|^{2}+2 c n\|\varphi\|^{2} \text { for } \varphi \in \mathcal{D},
$$

we see that if $c>a$, then $E(t) \cdot x+V(x, t)$ is $\left(p^{2}+c x^{2}\right)$-bounded with relative bound less than one. Thus, by the Kato-Rellich theorem, $H(t)+c x^{2}$ is self-adjoint on \mathcal{D} for all $t \in[-T, T]$. Now, take $S(t)=H(t)+c x^{2}+i$. Then $S(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ is an isomorphism with $S(t) H(t) S(t)^{-1}=H(t)+G(t)$, where $G(t)=2 c i(p \cdot x+x \cdot p) S(t)^{-1} \in \mathcal{B}(\mathcal{H})$. By (i) and (iii), the mapping $t \mapsto S(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ is strongly differentiable. Also, a simple computation gives that

$$
\begin{aligned}
& \| G(t)-G(u) H_{\mathcal{B}(\mathcal{H})} \leq\|G(t)\|_{\mathcal{B}(\mathcal{H})}\|H(t)-H(u)\|_{\mathcal{B}(\mathcal{D}, \mathcal{H})}\left\|S(u)^{-1}\right\|_{\mathcal{B}(\mathcal{H}, \mathcal{D})} \\
&\|H(t)-H(u)\|_{\mathcal{B}(\mathcal{D}, \mathcal{H})} \leq|E(t)-E(u)| \\
&+\left\|\left(x^{2}+1\right)^{-1}[V(x, t)-V(x, u)]\right\|_{L^{\infty}\left(\mathbb{R}^{n}, d x\right)} .
\end{aligned}
$$

Thus, by (i) and (iii), the mapping $t \mapsto H(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ and $t \mapsto G(t) \in$ $\mathcal{B}(\mathcal{H})$ are norm continuous. It follows from a classical result of Kato ([4], Theorem I) that there exists a unique unitary propagator $U(t, s)$ leaving \mathcal{D} invariant so that (a) holds.

Next, we show that $U(t, s)$ leaves $\mathcal{Q}(N)$ invariant. We have seen that $\mathcal{D}(H(t)) \supseteq \mathcal{D}(N)$ for all t. So by Theorem 2.1, it suffices to show that $\pm i[H(t), N] \leq c(t) N$ for some locally integrable function $c(t)$. We compute

$$
\begin{aligned}
\pm i[H(t), & N] \\
& = \pm i\left\{\left[p^{2}, x^{2}\right]+\left[E(t) \cdot x, p^{2}\right]+\left[V(x, t), p^{2}\right]\right\} \\
& = \pm\left\{2(p \cdot x+x \cdot p)-2 E(t) \cdot p-\left(p \cdot \nabla_{x} V(x, t)+\nabla_{x} V(x, t) \cdot p\right)\right\} \\
& \leq 2\left(p^{2}+x^{2}\right)+p^{2}+|E(t)|^{2}+p^{2}+\left|\nabla_{x} V(x, t)\right|^{2} \\
& \leq\left\{4+|E(t)|^{2}+4 f(t)^{2}\right\} N
\end{aligned}
$$

as required, where we have used condition (ii) and the fact that $N \geq 1$.
Finally, we prove the last statement of the theorem. Let

$$
\Gamma \equiv L_{\text {loc }}^{1}(\mathbb{R}, d t ; \mathcal{B}(\mathcal{H})) .
$$

By Theorem 2.3, it suffices to show that if $V(\cdot, t) \in B_{\infty}^{2 k}\left(\mathbb{R}^{n}\right)$ with $\left\|\left(\frac{\partial}{\partial x}\right)^{\alpha} V(x, \cdot)\right\|_{\infty} \in L_{l o c}^{1}(\mathbb{R})$ for $0<|\alpha| \leq 2 k$, then

$$
Z^{j}=N^{j-1}[H(\cdot), N] N^{-j} \in \Gamma
$$

for $1 \leq j \leq k$. We prove this inductively. Let $D=p \cdot x+x \cdot p$ be the dilation operator. Since

$$
\begin{aligned}
Z^{1}(t) & =[H(t), N] N^{-1} \\
& =-2 i\left\{D-E(t) \cdot p-\nabla_{x} V(x, t) \cdot p+\frac{i}{2} \Delta_{x} V(x, t)\right\} N^{-1}
\end{aligned}
$$

the case $k=1$ follows easily from the closed graph theorem and the hypotheses on E and V. Now consider the case of general $k \geq 2$. By the induction hypothesis, we have $Z^{j} \in \Gamma$ for $1 \leq j \leq k-1$. So, we need only prove that $Z^{k} \in \Gamma$. By Lemma $2.2(\mathrm{~b})$, it is sufficient to prove that $\left\{(\operatorname{ad} N)^{k} H(\cdot)\right\} N^{-k} \in \Gamma$. We compute on $\mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
(\operatorname{ad} N)^{2} H(t)=4\left\{\begin{array}{c}
2\left(p^{2}-x^{2}\right)+E(t) \cdot x+\nabla_{x} V(x, t) \cdot x+\frac{1}{4} \Delta_{x}^{2} V(x, t) \\
-\sum_{j=1}^{n}\left(\nabla_{x} \frac{\partial V}{\partial x_{j}}(x, t)\right) \cdot p p_{j}+i \nabla_{x}\left(\Delta_{x} V(x, t)\right) \cdot p
\end{array}\right\}
$$

where we have used the following basic identities:

$$
\begin{gathered}
{[N, D]=4 i\left(x^{2}-p^{2}\right), \quad[N, E(t) \cdot p]=2 i E(t) \cdot x,[N, E(t) \cdot x]=-2 i E(t) \cdot p} \\
{\left[p^{2}, W(x)\right]=-2 i \nabla W \cdot p-\Delta W, \quad\left[x^{2}, \nabla W(x) \cdot p\right]=2 i \nabla W \cdot x} \\
{\left[p^{2}, \nabla W(x) \cdot p\right]=-2 i \sum_{j=1}^{n}\left(\nabla \frac{\partial W}{\partial x_{j}}\right) \cdot p p_{j}-\nabla(\Delta W) \cdot p}
\end{gathered}
$$

By repeated application of these formulas, we find that $(\operatorname{ad} N)^{k} H(t)$ is a linear combination of operators of the form:

$$
p^{2}-x^{2}(\text { or } D), E(t) \cdot x(\text { or } E(t) \cdot p) \text { and }\left[\left(\frac{\partial}{\partial x}\right)^{\alpha} V(x, t)\right] x^{\beta} p^{\gamma}
$$

where $0<|\alpha| \leq 2 k,|\beta| \leq k / 2$ and $|\gamma| \leq k$. Since $x^{\beta} p^{\gamma} N^{-k}$ is bounded on \mathcal{H} so long as $|\beta| \leq k$ and $|\gamma| \leq k$, the hypotheses of E and V now imply that $\left\{(\operatorname{ad} N)^{k} H(\cdot)\right\} N^{-k} \in \Gamma$. This completes the proof.

Corollary 3.2. In Theorem 3.1, if $V(\cdot, t)$ is a C^{∞}-function on \mathbb{R}^{n} with bounded derivatives and $\left\|\left(\frac{\partial}{\partial x}\right)^{\alpha} V(x, \cdot)\right\|_{\infty} \in L_{\text {loc }}^{1}(\mathbb{R})$ for all $\alpha \neq 0$, then $U(t, s)$ leaves $\mathcal{S}\left(\mathbb{R}^{n}\right)$ invariant.

Proof. The corollary follows immediately from the fact that

$$
\mathcal{S}\left(\mathbb{R}^{n}\right)=\cap_{k=1}^{\infty} \mathcal{D}\left(N^{k}\right)
$$

In the remainder of this section, we want to give an application to Hamiltonians of the form

$$
H(t)=-\Delta+V(x, t)
$$

We will assume potentials $V(x, t): \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ obeying:
$\left\{\begin{array}{l}\text { (i) for each } t, V(\cdot, t) \text { is } \Delta \text {-bounded with relative bound less than one. } \\ \text { (ii) the mapping } t \mapsto \frac{\partial V}{\partial t}(x, t) \in L^{\infty}\left(\mathbb{R}^{n}, d x\right) \text { is continuous. }\end{array}\right.$
Notice that condition (i) and the Kato-Rellich theorem imply that $H(t)$ is essentially self-adjoint on $\mathcal{S}\left(\mathbb{R}^{n}\right)$ with domain $\mathcal{D}(H(t))=\mathcal{D}(\Delta)$. Corresponding to Theorem 3.1, we have:

Theorem 3.3. Let $H(t)=-\Delta+V(x, t)$, where $V(x, t)$ obeys conditions (i) and (ii) above. Then there is a unique unitary propagator $U(t, s), t, s \in \mathbb{R}$, leaving $\mathcal{D}(\Delta)$ invariant so that for each $\varphi_{s} \in \mathcal{D}(\Delta), \varphi(t)=U(t, s) \varphi_{s}$ is strongly differentiable and satisfies (3). Moreover,
(a) If $\left|\nabla_{x} V(x, t)\right| \leq f(t)$ for some continuous f, then $U(t, s)$ leaves $\mathcal{Q}(-\Delta)$ invariant.
(b) If $V(\cdot, t) \in B_{\infty}^{2 k}\left(\mathbb{R}^{n}\right)$ with $\left\|\left(\frac{\partial}{\partial x}\right)^{\alpha} V(x, \cdot)\right\|_{\infty} \in L_{l o c}^{1}(\mathbb{R})$ for $0<|\alpha| \leq 2 k$, then $U(t, s)$ leaves $\mathcal{D}\left(\Delta^{k}\right)$ invariant.

Proof. The proof of the existence statement closely parallels the proof given in Theorem 3.1 except that we choose $\mathcal{D}=\mathcal{D}(\Delta), \quad S(t)=H(t)+i$ and define $\|\varphi\|_{\mathcal{D}}=\|\varphi\|+\left\|p^{2} \varphi\right\|$ so that $S(t) H(t) S(t)^{-1}=H(t)$. Then one proves that the mapping $t \mapsto S(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ is strongly differentiable and that the mapping $t \mapsto H(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ is norm continuous as before. To prove (a) and (b), we take $N=-\Delta+1$. In case (a), since

$$
\begin{aligned}
\pm i[H(t), N] & =\mp\left\{p \cdot \nabla_{x} V(x, t)+\nabla_{x} V(x, t) \cdot p\right\} \\
& \leq p^{2}+\left|\nabla_{x} V(x, t)\right|^{2} \leq\left\{1+f(t)^{2}\right\} N
\end{aligned}
$$

Theorem 2.1 implies that $U(t, s)$ leaves $\mathcal{Q}(N)=\mathcal{Q}(-\Delta)$ invariant. In case (b), the computations similar to those used in Theorem 3.1 show that $(\operatorname{ad} N)^{k} H(t)$ is a linear combination of operators of the form: $\left[\left(\frac{\partial}{\partial x}\right)^{\alpha} V(x, t)\right] p^{\gamma}$, where $0<|\alpha| \leq 2 k$ and $|\gamma| \leq k$. Thus by hypothesis, we have

$$
\left\{(\operatorname{ad} N)^{k} H(\cdot)\right\} N^{-k} \in L_{l o c}^{1}(\mathbb{R}, d t ; \mathcal{B}(\mathcal{H}))
$$

Again, following the proof of Theorem 3.1, we conclude that $U(t, s)$ leaves $\mathcal{D}\left(N^{k}\right)=\mathcal{D}\left(\Delta^{k}\right)$ invariant.

Acknowledgments. The author wishes to thank the referee for useful comments.

References

[1] W.G. Faris and R.B. Lavine, Commutators and self-adjointness of Hamiltonian operators, Comm. Math. Phys., 35 (1974), 39-48.
[2] J. Fröhlich, Application of commutator theorems to the integration of representations of Lie algebras and commutation relations, Comm. Math. Phys., 54 (1977), 135150.
[3] W. Hunziker, On the space-time behavior of Schrödinger wavefunctions, J. Math. Phys., 7 (1966), 300-304.
[4] T. Kato, Linear evolution equations of hyperbolic type I,II, J. Fac. Sci. Univ. of Tokyo, Sec. IA, 17 (1970), 241-258; J. Math. Soc. Japan, 25 (1973), 648-666.
[5] S.T. Kuroda and H. Morita, An estimate for solutions of Schrödinger equations with time-dependent potentials and associated scattering theory, J. Fac. Sci. Univ. of Tokyo, Sec. IA, 24 (1977), 459-475.
[6] T. Ozawa, Invariant subspaces for the Schrödinger evolution group, Ann. Inst. Henri Poincaré, Sec. A, 54 (1991), 43-57.
[7] , Space-time behavior of propagators for Schrödinger evolution equations with Stark effect, J. Funct. Anal., 97 (1991), 264-292.
[8] C. Radin and B. Simon, Invariant domains for the time-dependent Schrödinger equation, J. Diff. Eq., 29 (1978), 289-296.
[9] M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
[10] C.H. Wilcox, Uniform asymptotic estimates for wave packets in the quantum theory of scattering, J. Math. Phys., 6 (1965), 611-620.
[11] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), 415-426.

Received December 20, 1993 and revised April 19, 1994.
National Tsing Hua University
Hsinchu, Taiwan 30043
Republic of China

