PACIFIC JOURNAL OF MATHEMATICS Vol. 175, No. 1, 1996

COMMUTATORS AND INVARIANT DOMAINS FOR SCHRÖDINGER PROPAGATORS

Min-Jei Huang

We present an operator-theoretic approach to the problem of invariant domains for the Schrödinger evolution equation. The results are applied to the Hamiltonian operators with time-dependent potentials and electric fields.

1. Introduction.

This paper is concerned with the problem of invariant domains for the Schrödinger evolution equation

(1)
$$i\frac{d}{dt}\varphi(t) = H(t)\varphi(t), \quad \varphi(s) = \varphi_s$$

where H(t), $t \in \mathbb{R}$, is a family of self-adjoint operators acting on a Hilbert space \mathcal{H} .

It is known that under suitable conditions on H(t) (see e.g. Kato [4], Reed-Simon [9] and Yajima [11]), there exists a unique unitary propagator U(t,s)on \mathcal{H} , and a dense subspace \mathcal{D} of \mathcal{H} which is invariant under the propagator so that for each $\varphi_s \in \mathcal{D}$, $\varphi(t) = U(t,s)\varphi_s$ is strongly differentiable and satisfies (1).

The problem considered here has been studied by many authors; see Faris-Lavine [1], Fröhlich [2], Hunziker [3], Kuroda-Morita [5], Ozawa [6, 7], Radin-Simon [8] and Wilcox [10]. Most of them dealt with the time-independent case $H(t) \equiv H$ in which the propagator $U(t, s) = \exp[i(s - t)H]$ is given by the usual one-parameter unitary group. In a recent paper [7], Ozawa investigated the space-time behavior of U(t, s) for the Stark Hamiltonian $H(t) = -\Delta + E \cdot x + V(x, t)$ on $L^2(\mathbb{R}^n, dx)$. By using perturbation techniques and space-time estimates for the free propagator $\exp[it(-\Delta + E \cdot x)]$, Ozawa established several results on the invariance property and smoothing effect for U(t, s) in certain weighted Sobolev spaces. For earlier related results in the case E = 0, see Kuroda-Morita [5].

We denote the domain of an operator A by $\mathcal{D}(A)$, and if N is positive and self-adjoint, we denote its form domain by $\mathcal{Q}(N)$. Given a positive selfadjoint operator N, we are interested in conditions on H(t) for $\mathcal{Q}(N)$ or $\mathcal{D}(N^k)$, $k = 1, 2, \ldots$, to be an invariant subspace of U(t, s) for all $t, s \in \mathbb{R}$. We study this problem in a general operator-theoretic setting in Section 2. Our approach is based on the commutator theorems of Faris and Lavine [1] and Fröhlich [2]. In Section 3, we apply the abstract theorems of Section 2 to Hamiltonians of the form

$$H(t) = -\Delta + E(t) \cdot x + V(x,t)$$

with $N = p^2 + x^2$ or $N = p^2$, where p is the momentum operator $-i\nabla$. Our results are related to some of those in [5, 7].

2. Abstract Theorems.

Let $H(t), t \in \mathbb{R}$, be a family of self-adjoint operators acting on a Hilbert space \mathcal{H} . Throughout this section, we will assume that $\bigcap_t \mathcal{D}(H(t)) \supseteq \mathcal{D}$ for some dense subspace \mathcal{D} of \mathcal{H} , and that H(t) generates a unitary propagator U(t,s) so that

$$irac{d}{dt}U(t,s)arphi=H(t)U(t,s)arphi ext{ for all }arphi\in\mathcal{D}.$$

We denote by $\mathcal{B}(\mathcal{H})$ the space of all bounded linear operators on \mathcal{H} with the usual operator norm $\|\cdot\|$. For a positive self-adjoint operator N on \mathcal{H} and $\epsilon > 0$, we define $N_{\epsilon} = N(\epsilon N + 1)^{-1}$. Note that $N_{\epsilon} \in \mathcal{B}(\mathcal{H})$ is positive and self-adjoint. Concerning the invariance of the form domain $\mathcal{Q}(N) = \mathcal{D}(N^{1/2})$, we prove:

Theorem 2.1. Let N be a positive self-adjoint operator so that

(i) D(N) ⊆ ∩_t D(H(t)).
(ii) ±i [H(t), N] ≤ c(t)N for some c ∈ L¹_{loc}(ℝ); that is, ±i {⟨H(t)φ, Nφ⟩ - ⟨Nφ, H(t)φ⟩} ≤ c(t) ⟨φ, Nφ⟩ for all φ ∈ D(N). Then U(t, s) [Q(N)] = Q(N) for all t, s.

Proof. Fix s and set $\varphi(t) = U(t,s)\varphi$ for $\varphi \in \mathcal{H}$. Then we have for $\varphi \in \mathcal{D}$

$$\begin{aligned} (d/dt) \langle \varphi(t), N_{\varepsilon} \varphi(t) \rangle &= \langle \varphi(t), i \left[H(t), N_{\epsilon} \right] \varphi(t) \rangle \\ &= \langle (\epsilon N + 1)^{-1} \varphi(t), i \left[H(t), N \right] (\epsilon N + 1)^{-1} \varphi(t) \rangle \,. \end{aligned}$$

The hypothesis (ii) now gives that

$$egin{aligned} &|(d/dt)\left\langle arphi(t),N_{\epsilon}arphi(t)
ight
angle |&\leq c(t)\left\langle (\epsilon N+1)^{-1}arphi(t),N(\epsilon N+1)^{-1}arphi(t)
ight
angle \ &\leq c(t)\left\langle arphi(t),N_{\epsilon}arphi(t)
ight
angle . \end{aligned}$$

Integrating we obtain

$$\langle arphi(t), N_\epsilon arphi(t)
angle \leq \langle arphi, N_\epsilon arphi
angle \ \exp igg| \int_s^t c(u) du igg|.$$

Since \mathcal{D} is dense in \mathcal{H} and N_{ϵ} is bounded, this estimate holds for all $\varphi \in \mathcal{H}$. Now let $\varphi \in \mathcal{Q}(N)$. Taking $\epsilon \to 0$, we find that $\varphi(t) \in \mathcal{Q}(N)$ with

$$\|N^{1/2}arphi(t)\|^2 \leq \|N^{1/2}arphi\|^2 \; \exp \left|\int_s^t c(u)du
ight|$$

This shows that $\mathcal{Q}(N)$ is invariant under U(t,s). Since U(t,s)U(s,t) = I, we conclude that $U(t,s)[\mathcal{Q}(N)] = \mathcal{Q}(N)$.

Now for any positive integer k, we define (leaving aside the domain questions)

(2)
$$Z^{k}(t) = N^{k-1}[H(t), N] N^{-k}$$
 and $Z^{k}_{\epsilon}(t) = N^{k-1}_{\epsilon}[H(t), N_{\epsilon}] N^{-k}_{\epsilon}$.

In our applications, these operators are defined on certain dense subspaces and extend to bounded operators on \mathcal{H} . We also define

$$(\operatorname{ad} N)H(t) = [N, H(t)] \quad \text{and} \quad (\operatorname{ad} N)^{k}H(t) = [N, (\operatorname{ad} N)^{k-1}H(t)].$$

As a preparation for our next theorem and further applications, we prove the following:

Lemma 2.2.

(a) $Z_{\epsilon}^{k}(t) = (\epsilon N+1)^{-k} \sum_{j=0}^{k-1} {\binom{k-1}{j}} (\epsilon N)^{j} Z^{k-j}(t)$. In particular, if $Z^{1}(t), \dots, Z^{k}(t) \in \mathcal{B}(\mathcal{H})$, then $Z_{\epsilon}^{k}(t) \in \mathcal{B}(\mathcal{H})$ and $\|Z_{\epsilon}^{k}(t)\| \leq \sum_{j=0}^{k-1} {\binom{k-1}{j}} \|Z^{k-j}(t)\|$. (b) $\left\{ (\operatorname{ad} N)^{k} H(t) \right\} N^{-k} = \sum_{j=0}^{k-1} (-1)^{j+1} {\binom{k-1}{j}} Z^{k-j}(t)$.

Proof. Part (a) is obvious for k = 1. The general case follows by induction on k:

$$\begin{aligned} Z_{\epsilon}^{k+1}(t) &= N_{\epsilon} Z_{\epsilon}^{k}(t) N_{\epsilon}^{-1} \\ &= N_{\epsilon} (\epsilon N + 1)^{-k} \sum_{j=0}^{k-1} {\binom{k-1}{j}} (\epsilon N)^{j} Z^{k-j}(t) N_{\epsilon}^{-1} \\ &= (\epsilon N + 1)^{-k-1} \sum_{j=0}^{k-1} {\binom{k-1}{j}} (\epsilon N)^{j} N Z^{k-j}(t) N^{-1} (1 + \epsilon N) \\ &= (\epsilon N + 1)^{-k-1} \sum_{j=0}^{k-1} {\binom{k-1}{j}} \left\{ (\epsilon N)^{j} Z^{k+1-j}(t) + (\epsilon N)^{j+1} Z^{k-j}(t) \right\} \\ &= (\epsilon N + 1)^{-k-1} \sum_{j=0}^{k} {\binom{k}{j}} (\epsilon N)^{j} Z^{k+1-j}(t) \end{aligned}$$

where we have used the identity $\binom{k-1}{j} + \binom{k-1}{j-1} = \binom{k}{j}$. The last statement of part (a) follows from the fact that $\|(\epsilon N+1)^{-k}(\epsilon N)^j\| \le 1$ for $0 \le j \le k-1$. Part (b) can also be proven by an induction argument.

Theorem 2.3. Let N be a positive self-adjoint operator, and define $Z^{j}(t)$ as in (2). Suppose that $Z^{j}(t) \in \mathcal{B}(\mathcal{H})$ with $||Z^{j}(\cdot)|| \in L^{1}_{loc}(\mathbb{R})$ for each j = 1, 2, ..., k. Then $U(t, s) [\mathcal{D}(N^{k})] = \mathcal{D}(N^{k})$ for all t, s.

Proof. As in the proof of Theorem 2.1, set $\varphi(t) = U(t, s)\varphi$ for $\varphi \in \mathcal{H}$. Then we have for $\varphi \in \mathcal{D}$

$$\begin{aligned} \left(d/dt \right) \left\langle N_{\epsilon}^{k} \varphi(t), N_{\epsilon}^{k} \varphi(t) \right\rangle &= \left\langle \varphi(t), i \left[H(t), N_{\epsilon}^{2k} \right] \varphi(t) \right\rangle \\ &= i \sum_{j=0}^{2k-1} \left\langle \varphi(t), N_{\epsilon}^{j} \left[H(t), N_{\epsilon} \right] N_{\epsilon}^{2k-j-1} \varphi(t) \right\rangle \\ &= 2 \operatorname{Im} \sum_{j=0}^{k-1} \left\langle N_{\epsilon}^{k-j-1} \left[H(t), N_{\epsilon} \right] N_{\epsilon}^{j} \varphi(t), N_{\epsilon}^{k} \varphi(t) \right\rangle \end{aligned}$$

where we have used

$$[A, B^{2k}] = \sum_{j=0}^{2k-1} B^j [A, B] B^{2k-j-1}.$$

Since $Z^{j}(t)$ is bounded and $||Z^{j}(\cdot)|| \in L^{1}_{loc}(\mathbb{R})$ for $1 \leq j \leq k$, Lemma 2.2 (a) implies that $Z^{j}_{\epsilon}(t)$ is bounded for $1 \leq j \leq k$ and that $2\sum_{j=1}^{k} ||Z^{j}_{\epsilon}(t)|| \leq$ const. $\sum_{j=1}^{k} ||Z^{j}(t)|| \equiv f_{k}(t)$, where $f_{k} \in L^{1}_{loc}(\mathbb{R})$ and is independent of ϵ . It follows that

$$\begin{split} \left| (d/dt) \|N_{\epsilon}^{k} \varphi(t)\|^{2} \right| &\leq 2 \sum_{j=0}^{k-1} \|N_{\epsilon}^{k-j-1} \left[H(t), N_{\epsilon}\right] N_{\epsilon}^{j} \varphi(t) \|\|N_{\epsilon}^{k} \varphi(t)\| \\ &\leq 2 \sum_{j=0}^{k-1} \|Z_{\epsilon}^{k-j}(t)\| \|N_{\epsilon}^{k} \varphi(t)\|^{2} \\ &\leq f_{k}(t) \|N_{\epsilon}^{k} \varphi(t)\|^{2}. \end{split}$$

Integrating we obtain

$$\|N_{\epsilon}^{k}\varphi(t)\| \leq \|N_{\epsilon}^{k}\varphi\| \exp\left|\frac{1}{2}\int_{s}^{t}f_{k}(u)du\right|.$$

We can now pass to the same argument as in the proof of Theorem 2.1 to conclude that $U(t,s) [\mathcal{D}(N^k)] = \mathcal{D}(N^k)$.

3. Applications.

In this section we want to give some applications of the results of Section 2 to the Schrödinger equation

(3)
$$i\frac{d}{dt}\varphi(t) = H(t)\varphi(t), \quad \varphi(s) = \varphi_s$$

where H(t) is the time-dependent Hamiltonian acting on the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^n, dx).$

We first consider Hamiltonians of the form

$$H(t) = -\Delta + E(t) \cdot x + V(x, t).$$

We will restrict attention to electric fields $E(t) : \mathbb{R} \to \mathbb{R}^n$ and potentials $V(x,t): \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ obeying :

- $\begin{cases} (\mathrm{i}) & E(t) \text{ is differentiable.} \\ (\mathrm{ii}) & |\nabla_x V(x,t)| \leq f(t)(|x|+1) \text{ for some continuous function } f. \\ (\mathrm{iii}) & \text{the mapping } t \mapsto (x^2+1)^{-1} \frac{\partial V}{\partial t}(x,t) \in L^{\infty}(\mathbb{R}^n, dx) \text{ is continuous.} \end{cases}$

As for N, we take $N = p^2 + x^2$, where $p = -i\nabla$. Note that the operator $N \geq 1$ and is self-adjoint on $\mathcal{D}(N) = \mathcal{D}(p^2) \cap \mathcal{D}(x^2)$. By Theorem 4 of Faris-Lavine [1], condition (ii) implies that H(t) is essentially self-adjoint on $\mathcal{S}(\mathbb{R}^n)$, the space of C^{∞} -functions on \mathbb{R}^n rapidly decreasing at infinity, with domain $\mathcal{D}(H(t)) \supseteq \mathcal{D}(N)$. We remark that by the construction of the form domain, $\mathcal{Q}(N) = \mathcal{D}(|p|) \cap \mathcal{D}(|x|)$. Also, one can prove that $\mathcal{D}(N^k) =$ $\mathcal{D}(p^{2k}) \cap \mathcal{D}(x^{2k})$ by integration by parts.

Given two Banach spaces \mathcal{X} and \mathcal{Y} , we denote by $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ the space of all bounded linear operators with domain \mathcal{X} and range in \mathcal{Y} . For a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$, where each α_i is a nonnegative integer, and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, we put $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and $\nabla^{\alpha} = (\frac{\partial}{\partial x_1})^{\alpha} = (\frac{\partial}{\partial x_1})^{\alpha_1} \cdots (\frac{\partial}{\partial x_n})^{\alpha_n}$. Let $B_{\infty}^m(\mathbb{R}^n)$ be the space of all *m*times continuously differentiable functions φ on \mathbb{R}^n with bounded derivatives $\left(\frac{\partial}{\partial x}\right)^{\alpha}\varphi$ for $0 < |\alpha| \le m$. Our result is:

Theorem 3.1. Let $H(t) = -\Delta + E(t) \cdot x + V(x,t)$, where E(t) and V(x,t)obey conditions (i)-(iii) above, and let $N = p^2 + x^2$. Then there exists a unique unitary propagator $U(t,s), t,s \in \mathbb{R}$, so that:

(a) for each $\varphi_s \in \mathcal{D}(N)$, $\varphi(t) = U(t,s)\varphi_s$ is strongly differentiable and satisfies (3).

(b) U(t,s) leaves Q(N) and D(N) invariant.

MIN-JEI HUANG

If, in addition, $V(\cdot,t) \in B^{2k}_{\infty}(\mathbb{R}^n)$ with $\|(\frac{\partial}{\partial x})^{\alpha}V(x,\cdot)\|_{\infty} \in L^1_{loc}(\mathbb{R})$ for $0 < |\alpha| \leq 2k$, then U(t,s) leaves $\mathcal{D}(N^k)$ invariant.

Proof. To prove the existence of the propagator, we define for $\varphi \in \mathcal{D} \equiv \mathcal{D}(N)$, $\|\varphi\|_{\mathcal{D}} = \|\varphi\| + \|p^2\varphi\| + \|x^2\varphi\|$. Then $(\mathcal{D}, \|\cdot\|_{\mathcal{D}})$ forms a Banach space which is continuously and densely embedded in \mathcal{H} . From (ii), we have $|V(x,t)| \leq \frac{1}{2}f(t)x^2 + f(t)|x| + |V(0,t)|$. It follows by the continuity of E, V and f that on any compact interval [-T,T], there are constants a and b so that $|E(t)\cdot x + V(x,t)| \leq ax^2 + b$ for all $t \in [-T,T]$. Since

$$\|p^2\varphi\|^2 + \|cx^2\varphi\|^2 \le \|(p^2 + cx^2)\varphi\|^2 + 2cn\|\varphi\|^2 \text{ for } \varphi \in \mathcal{D},$$

we see that if c > a, then $E(t) \cdot x + V(x,t)$ is $(p^2 + cx^2)$ -bounded with relative bound less than one. Thus, by the Kato-Rellich theorem, $H(t) + cx^2$ is self-adjoint on \mathcal{D} for all $t \in [-T,T]$. Now, take $S(t) = H(t) + cx^2 + i$. Then $S(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ is an isomorphism with $S(t)H(t)S(t)^{-1} = H(t) + G(t)$, where $G(t) = 2ci(p \cdot x + x \cdot p)S(t)^{-1} \in \mathcal{B}(\mathcal{H})$. By (i) and (iii), the mapping $t \mapsto S(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ is strongly differentiable. Also, a simple computation gives that

$$\begin{aligned} \|G(t) - G(u)\|_{\mathcal{B}(\mathcal{H})} &\leq \|G(t)\|_{\mathcal{B}(\mathcal{H})} \|H(t) - H(u)\|_{\mathcal{B}(\mathcal{D},\mathcal{H})} \|S(u)^{-1}\|_{\mathcal{B}(\mathcal{H},\mathcal{D})} \\ \|H(t) - H(u)\|_{\mathcal{B}(\mathcal{D},\mathcal{H})} &\leq |E(t) - E(u)| \\ &+ \|(x^2 + 1)^{-1} \left[V(x,t) - V(x,u)\right]\|_{L^{\infty}(\mathbb{R}^n, dx)}. \end{aligned}$$

Thus, by (i) and (iii), the mapping $t \mapsto H(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ and $t \mapsto G(t) \in \mathcal{B}(\mathcal{H})$ are norm continuous. It follows from a classical result of Kato ([4], Theorem I) that there exists a unique unitary propagator U(t, s) leaving \mathcal{D} invariant so that (a) holds.

Next, we show that U(t,s) leaves $\mathcal{Q}(N)$ invariant. We have seen that $\mathcal{D}(H(t)) \supseteq \mathcal{D}(N)$ for all t. So by Theorem 2.1, it suffices to show that $\pm i [H(t), N] \leq c(t)N$ for some locally integrable function c(t). We compute

$$\begin{split} \pm i \left[H(t), \ N \right] \\ &= \pm i \left\{ \left[p^2, x^2 \right] + \left[E(t) \cdot x, p^2 \right] + \left[V(x,t), p^2 \right] \right\} \\ &= \pm \left\{ 2 \left(p \cdot x + x \cdot p \right) - 2E(t) \cdot p - \left(p \cdot \nabla_x V(x,t) + \nabla_x V(x,t) \cdot p \right) \right\} \\ &\leq 2 \left(p^2 + x^2 \right) + p^2 + |E(t)|^2 + p^2 + |\nabla_x V(x,t)|^2 \\ &\leq \left\{ 4 + |E(t)|^2 + 4f(t)^2 \right\} N \end{split}$$

as required, where we have used condition (ii) and the fact that $N \ge 1$.

Finally, we prove the last statement of the theorem. Let

$$\Gamma \equiv L^1_{loc}(\mathbb{R}, dt; \mathcal{B}(\mathcal{H})).$$

By Theorem 2.3, it suffices to show that if $V(\cdot,t) \in B^{2k}_{\infty}(\mathbb{R}^n)$ with $\|\left(\frac{\partial}{\partial x}\right)^{\alpha} V(x,\cdot)\|_{\infty} \in L^1_{loc}(\mathbb{R})$ for $0 < |\alpha| \le 2k$, then

$$Z^{j} = N^{j-1} \left[H(\cdot), N \right] N^{-j} \in \Gamma$$

for $1 \le j \le k$. We prove this inductively. Let $D = p \cdot x + x \cdot p$ be the dilation operator. Since

$$Z^{1}(t) = [H(t), N] N^{-1}$$

= $-2i \left\{ D - E(t) \cdot p - \nabla_{x} V(x, t) \cdot p + \frac{i}{2} \Delta_{x} V(x, t) \right\} N^{-1},$

the case k = 1 follows easily from the closed graph theorem and the hypotheses on E and V. Now consider the case of general $k \ge 2$. By the induction hypothesis, we have $Z^j \in \Gamma$ for $1 \le j \le k - 1$. So, we need only prove that $Z^k \in \Gamma$. By Lemma 2.2(b), it is sufficient to prove that $\{(ad N)^k H(\cdot)\} N^{-k} \in \Gamma$. We compute on $\mathcal{S}(\mathbb{R}^n)$:

$$(\operatorname{ad} N)^{2} H(t) = 4 \left\{ \begin{array}{l} 2(p^{2} - x^{2}) + E(t) \cdot x + \nabla_{x} V(x,t) \cdot x + \frac{1}{4} \Delta_{x}^{2} V(x,t) \\ -\sum_{j=1}^{n} \left(\nabla_{x} \frac{\partial V}{\partial x_{j}}(x,t) \right) \cdot pp_{j} + i \nabla_{x} \left(\Delta_{x} V(x,t) \right) \cdot p \end{array} \right\}$$

where we have used the following basic identities:

$$\begin{split} [N,D] &= 4i(x^2 - p^2), \ [N,E(t) \cdot p] = 2iE(t) \cdot x, \ [N,E(t) \cdot x] = -2iE(t) \cdot p, \\ [p^2,W(x)] &= -2i\nabla W \cdot p - \Delta W, \ [x^2,\nabla W(x) \cdot p] = 2i\nabla W \cdot x, \\ [p^2,\nabla W(x) \cdot p] &= -2i\sum_{j=1}^n \left(\nabla \frac{\partial W}{\partial x_j}\right) \cdot pp_j - \nabla (\Delta W) \cdot p. \end{split}$$

By repeated application of these formulas, we find that $(\operatorname{ad} N)^k H(t)$ is a linear combination of operators of the form:

$$p^2 - x^2 (ext{or } D), \ E(t) \cdot x \ (ext{or } E(t) \cdot p) \ ext{ and } \ \left[\left(rac{\partial}{\partial x}
ight)^lpha V(x,t)
ight] x^eta p^\gamma$$

where $0 < |\alpha| \le 2k$, $|\beta| \le k/2$ and $|\gamma| \le k$. Since $x^{\beta}p^{\gamma}N^{-k}$ is bounded on \mathcal{H} so long as $|\beta| \le k$ and $|\gamma| \le k$, the hypotheses of E and V now imply that $\{(\operatorname{ad} N)^k H(\cdot)\} N^{-k} \in \Gamma$. This completes the proof. \Box

Corollary 3.2. In Theorem 3.1, if $V(\cdot,t)$ is a C^{∞} -function on \mathbb{R}^n with bounded derivatives and $\|\left(\frac{\partial}{\partial x}\right)^{\alpha}V(x,\cdot)\|_{\infty} \in L^1_{loc}(\mathbb{R})$ for all $\alpha \neq 0$, then U(t,s) leaves $\mathcal{S}(\mathbb{R}^n)$ invariant.

Proof. The corollary follows immediately from the fact that

$$\mathcal{S}(\mathbb{R}^n) = \cap_{k=1}^{\infty} \mathcal{D}(N^k).$$

 \Box

In the remainder of this section, we want to give an application to Hamiltonians of the form

$$H(t) = -\Delta + V(x, t).$$

We will assume potentials $V(x,t) : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ obeying:

- (i) for each $t, V(\cdot, t)$ is Δ -bounded with relative bound less than one.
- (ii) the mapping $t \mapsto \frac{\partial V}{\partial t}(x,t) \in L^{\infty}(\mathbb{R}^n, dx)$ is continuous.

Notice that condition (i) and the Kato-Rellich theorem imply that H(t) is essentially self-adjoint on $\mathcal{S}(\mathbb{R}^n)$ with domain $\mathcal{D}(H(t)) = \mathcal{D}(\Delta)$. Corresponding to Theorem 3.1, we have:

Theorem 3.3. Let $H(t) = -\Delta + V(x,t)$, where V(x,t) obeys conditions (i) and (ii) above. Then there is a unique unitary propagator U(t,s), $t, s \in \mathbb{R}$, leaving $\mathcal{D}(\Delta)$ invariant so that for each $\varphi_s \in \mathcal{D}(\Delta)$, $\varphi(t) = U(t,s)\varphi_s$ is strongly differentiable and satisfies (3). Moreover,

(a) If $|\nabla_x V(x,t)| \leq f(t)$ for some continuous f, then U(t,s) leaves $\mathcal{Q}(-\Delta)$ invariant.

(b) If $V(\cdot,t) \in B^{2k}_{\infty}(\mathbb{R}^n)$ with $\|(\frac{\partial}{\partial x})^{\alpha}V(x,\cdot)\|_{\infty} \in L^1_{loc}(\mathbb{R})$ for $0 < |\alpha| \le 2k$, then U(t,s) leaves $\mathcal{D}(\Delta^k)$ invariant.

Proof. The proof of the existence statement closely parallels the proof given in Theorem 3.1 except that we choose $\mathcal{D} = \mathcal{D}(\Delta)$, S(t) = H(t) + i and define $\|\varphi\|_{\mathcal{D}} = \|\varphi\| + \|p^2\varphi\|$ so that $S(t)H(t)S(t)^{-1} = H(t)$. Then one proves that the mapping $t \mapsto S(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ is strongly differentiable and that the mapping $t \mapsto H(t) \in \mathcal{B}(\mathcal{D}, \mathcal{H})$ is norm continuous as before. To prove (a) and (b), we take $N = -\Delta + 1$. In case (a), since

$$\begin{aligned} \pm i\left[H(t),N\right] &= \mp \left\{p\cdot \nabla_x V(x,t) + \nabla_x V(x,t) \cdot p\right\} \\ &\leq p^2 + |\nabla_x V(x,t)|^2 \leq \left\{1+f(t)^2\right\}N, \end{aligned}$$

Theorem 2.1 implies that U(t,s) leaves $\mathcal{Q}(N) = \mathcal{Q}(-\Delta)$ invariant. In case (b), the computations similar to those used in Theorem 3.1 show that $(\operatorname{ad} N)^k H(t)$ is a linear combination of operators of the form: $\left[\left(\frac{\partial}{\partial x}\right)^{\alpha} V(x,t)\right] p^{\gamma}$, where $0 < |\alpha| \leq 2k$ and $|\gamma| \leq k$. Thus by hypothesis, we have

$$\left\{ \left(\operatorname{ad} N \right)^{k} H(\cdot) \right\} N^{-k} \in L^{1}_{loc}(\mathbb{R}, dt; \mathcal{B}(\mathcal{H})).$$

Again, following the proof of Theorem 3.1, we conclude that U(t,s) leaves $\mathcal{D}(N^k) = \mathcal{D}(\Delta^k)$ invariant.

Acknowledgments. The author wishes to thank the referee for useful comments.

References

- [1] W.G. Faris and R.B. Lavine, Commutators and self-adjointness of Hamiltonian operators, Comm. Math. Phys., 35 (1974), 39-48.
- J. Fröhlich, Application of commutator theorems to the integration of representations of Lie algebras and commutation relations, Comm. Math. Phys., 54 (1977), 135-150.
- W. Hunziker, On the space-time behavior of Schrödinger wavefunctions, J. Math. Phys., 7 (1966), 300-304.
- [4] T. Kato, Linear evolution equations of hyperbolic type I,II, J. Fac. Sci. Univ. of Tokyo, Sec. IA, 17 (1970), 241-258; J. Math. Soc. Japan, 25 (1973), 648-666.
- [5] S.T. Kuroda and H. Morita, An estimate for solutions of Schrödinger equations with time-dependent potentials and associated scattering theory, J. Fac. Sci. Univ. of Tokyo, Sec. IA, 24 (1977), 459-475.
- [6] T. Ozawa, Invariant subspaces for the Schrödinger evolution group, Ann. Inst. Henri Poincaré, Sec. A, 54 (1991), 43-57.
- [7] _____, Space-time behavior of propagators for Schrödinger evolution equations with Stark effect, J. Funct. Anal., 97 (1991), 264-292.
- C. Radin and B. Simon, Invariant domains for the time-dependent Schrödinger equation, J. Diff. Eq., 29 (1978), 289-296.
- [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
- [10] C.H. Wilcox, Uniform asymptotic estimates for wave packets in the quantum theory of scattering, J. Math. Phys., 6 (1965), 611-620.
- K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), 415-426.

Received December 20, 1993 and revised April 19, 1994.

NATIONAL TSING HUA UNIVERSITY HSINCHU, TAIWAN 30043 REPUBLIC OF CHINA