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SMALL EIGENVALUE VARIATION AND REAL RANK ZERO

OLA BRATTELI AND GEORGE A. ELLIOTT

A necessary and sufficient condition, in terms of asymp-
totic properties of the sequence, is given for the inductive
limit of a sequence of finite direct sums of matrix algebras
over commutative C*-algebras to have real rank zero (i.e., for
each self-adjoint element to be approximible by one with finite
spectrum).

1. Introduction.

In this paper we will consider C*-algebra inductive limits A = limAn where

the C*-algebras An have the form

(1.1) A* = 0 C(Ωnti, M,.) ,
i=i

with each Ωn><7 a compact metrizable space (possibly empty, but let us assume
that at least Ωn?Γn is non-empty), rn finite and M^ the C*-algebra of j x j
complex matrices.

(We could just as well consider non-compact spaces, but the resulting
increased generality in Theorem 1.1, below, would be illusory — one could
reduce easily to the compact case.)

The spectrum Ωn of An is the disjoint union of the spaces Ωn?J, j =
1, , rn. If Λ is a clopen (closed and open) subset of Ωn, let An(A) denote
the corresponding sub-C*-algebra of An, i.e.,

If Λi is a clopen subset of Ωm, let Φ(m,Λi)(n,Λ) — ̂ ΛiΛ denote the homp-^
morphism An(Λ) -> Am(Λχ) obtained from Φ m ? n by cutting down by the
unit of Am(Aι) in Am and restricting to An(A). Let /P(Ωn) denote the set
of partitions of Ωn into clopen sets which are refinements of the partition

{Ωn,i, Ωn>2, ,ΩnΓτι} .
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For any compact metrizable space Ω, let dimΩ denote the covering di-
mension of Ω; see [Eng]. We will assume throughout that dimΩn < H-oo
for each n. (Our results also hold without this restriction, but in a vacuous
way.)

In [BBEK] and [BDR] it was proved that A has real rank zero, i.e., that
any self-adjoint element in A can be approximated by self-adjoint elements
with finite spectrum, in several situations. For instance, this was proved in
[BBEK] under the conditions that A be simple and unital, each Ω,nj be the
union of a finite number of connected clopen subsets, dim Ωn < 2 for all n,
and the projections of A separate the tracial states of A. By using techniques
from [DNNP], the condition that dimΩn < 2 in this result was replaced in
[BDR] by the much weaker condition that A have slow dimension growth,
i.e., that

fdimΩ n J \lim max < > = 0 .
n-+oo j I J )

Since simplicity together with the presence of a unit implies that

lim min {j | Ωn 3\ φ 0} = +oo ,
n—» oo '

this condition is automatically fulfilled if the dimensions of the Ωn are uni-
formly bounded.

Another condition on the sequence Ax —> A2 —> considered in [BBEK]
was small eigenvalue variation. Although this is a condition which is some-
what complicated to state compared to the conditions in the preceding para-
graph, it is much easier to check in concrete examples of inductive limits,
unless one knows for some extraneous reason that the inductive limit has, for
example, a unique trace. It is also a condition which is convenient to work
with in connection with the classification of inductive limits. (See [E110],
[Su], [EG], and [BEEK].)

In [BBEK] it was assumed that the spaces Ωn were finite unions of con-
nected clopen sets, and hence we have to cast the definition of small eigen-
value variation in a slightly different form from that of [BBEK]. In the case
that the Ωn are finite unions of connected clopen sets our present definition
reduces to the previous one.

If x = x* G An and P G 7^(Ωn) then by the eigenvalue list of x (relative to
P) we will mean the collection of functions λm on each of the spaces Λ G P ,
with λm(ω) the rath lowest eigenvalue of x(ω), counted with multiplicity*
Here m = 1,2, , j if Λ C ΩΠfJ .

By the eigenvalue variation of x, denoted by EV(rr), we will mean the
quantity

inf max max sup |λm(α;) — λm(α/)| ,
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where all allowed values of m are considered, namely, m = 1,2, ••• , j if
A C Ω n j . In the case that Ωn is a finite union of connected clopen sets,
this infimum is attained at the corresponding partition of Ωn (i.e., the finest
partition), and we recover the definition of [BBEK].

Let us say that A has small eigenvalue variation if

lim EV(Φm n(x)) = 0 for all x = x* G An and all n .
m—yoo '

It is clear that if A has real rank zero, then A has small eigenvalue vari-
ation. Conversely, it was proved in [BBEK] that if dimΩ n j < 2 for all
n and j , and A has small eigenvalue variation, then A has real rank zero.
The proof is a simple consequence of the fact (see [CE]) that if Ω is a com-
pact metrizable space of dimension at most two, then any function from Ω
into the self-adjoint matrices in Mn can be approximated by a function into
the self-adjoint matrices with nondegenerate spectrum at each point. This
fails if dimΩ > 3, but, as was first pointed out in [DNNP], the difficulty
presented by higher dimensionality can be overcome by use of the Michael
selection theorem. We shall use this theorem in a way which is slightly dif-
ferent from the way it was used in [DNNP] (and in [BDR]), namely, to
construct approximate eigenprojections in C(Ω,Mn).

Using this technique, we have obtained a necessary and sufficient condition
for real rank zero.

We shall say that A — lim^4n has very small eigenvalue variation if each
algebra An contains a set Dn of self-adjoint elements such that the union of
the images of the sets Dn in A is dense in the set of self-adjoint elements
of A (although Dn is not assumed to be dense in the self-adjoint elements
of An), and such that, for any self-adjoint element x of Dn and any ε > 0,
there exist m > n and P G V(βm) such that the image h of x in any of the
direct summands C(Λ,M&) of Am with Λ G P has eigenvalue variation at
most ε and, in addition, if [a, b] is any interval of length at least ε inside the
spectrum, Sp(/ι), of h then Sp(h(ω)) Π [α,6] contains at least dimΛ points
(counted with multiplicity) for each ω G Λ.

A simple argument shows that, in this definition, we may equivalently
replace dimΛ by δdimΛ where δ is any fixed positive number. (Break up
the interval of length ε into smaller intervals.)

The reason for introducing this apparently somewhat unwieldy condition
is that not only does it readily follow from the known sufficient conditions^
for real rank zero, but in fact it is also necessary. It also turns out to be
sufficient:

Theorem 1.1. Adopt the general assumptions above on A = limΛn.

The following properties are equivalent.
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1. A has very small eigenvalue variation.

2. A has real rank zero.

Before stating a number of corollaries of this result, let us remark that the
proof of 2 => 1 is surprisingly simple — in fact, trivial: If A has real rank
zero, then Dn may just be taken to be the set of self-adjoint elements in An

with finite spectrum.

We will defer the proof of 1 => 2 to Section 4.
Let us consider various corollaries of Theorem 1.1.

Corollary 1.2. Adopt the general assumptions above on A — \im.An.

The following properties are equivalent.

1. Each An contains a set Dn of self-adjoint elements such that the union of
the images of the sets Dn in A is dense in the set of self-adjoint elements of
A, and such that for any n and any self-adjoint element x G Dnj

lim inf max {dim(Λ) EV(ΦΛ Ω (α))} = 0 .

2. A has real rank zero.

Proof The implication 2 => 1 is trivial just as in Theorem 1.1. To prove
1 => 2, we have only to prove that the present condition 1 implies the
condition 1 of Theorem 1.1, with the D n ' s in the definition of very small
eigenvalue variation being the present Z)n's. So, let x = x* £ Dn and ε > 0
be given, and use the present condition 1 to choose m such that

d i m ( Ω m > i ) E V ( Φ m i i f n ( a ; ) ) < |

for j = 1, , r m . Fix j , and put Ω = Ωm > j, h = Φmtjtn(x). If dimΩ = 0,
then h can be approximated arbitrarily closely by a self-adjoint element with
finite spectrum, and there is nothing to prove. If dim(Ω) > 1, then

i.e., after passing to a possibly finer partition, each eigenvalue in the eigen-
value list of h(ω) varies by at most ε/3dimΩ as ω varies over Ω. As
Sp(/i) = (J Sp(h(ω)) (without closure since Ω is compact), it follows that, in

order that an interval [α, b] of length at least ε be contained in the spectrum
of h (i.e., contain no spectral gap), h(ω) must contain at least

£ - 2 > 3dimΩ - 2 > dimΩ
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eigenvalues inside [α, b] for each ω. This shows that A has very small eigen-
value variation.

Corollary 1.3. Adopt the general assumptions above on A — lim^4n7 but

assume also that d imΩ m j is bounded uniformly in m and j .

The following properties are equivalent.

1. A has small eigenvalue variation.

2. A has real rank zero.

Proof. The implication 1 =Φ- 2 follows immediately from Corollary 1.2 (with
Dn = As

n

Ά), and the implication 2 =» 1 is trivial (cf. [BBEK]).

In the case that A is simple and unital, a stronger form of this result was
proved in [BDR] — with bounded dimension replaced by slow dimension
growth (as defined above). (Actually, in place of the condition 1 the result
of [BDR] had the condition that traces should be separated by projections,
but in [BBEK] this was shown to be equivalent to the present condition
1 — assuming that A is simple and unital, but with no restriction on the
dimensions.)

Using Theorem 1.1, we can establish a similar strengthening of Corollary
1.3 in the general case (i.e., A not necessarily either simple or unital).

This requires an extension of the definition of slow dimension growth to
the general case. Let us say that A has slow dimension growth (with respect
to the sequence A\ -» A2 —> ) if, whenever A is replaced by eAe where e
is a projection in Ak for some fc, the condition

still holds.

f d i m Ω n . Ί
lim max \ - ^ > = 0

π->oo J [ J

Corollary 1.4. Adopt the general assumptions above on A — lim^4n. As-

sume also that A has slow dimension growth {see above).

The following properties are equivalent.

1. A has small eigenvalue variation.

2. A has real rank zero.

Proof. 2 => 1 is trivial (cf. [BBEK]).
In order to prove 1 =>• 2, we state a lemma which is proved in [Stev]. (In^

the case that A is simple the lemma was proved in [Elll].)

L e m m a 1.5. Adopt the general assumptions above on A — lim^4n. Suppose

that every closed two-sided ideal of A is generated (as an ideal) by its pro-

jections. If n EN, ε > 0 and x — x* G An are given, then there exist Λ > 0
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and m0 E N, and P E V(Ωmo), such that for each k E Z and each A E P,
if h denotes the image of x in the direct summand of Amo with spectrum A,
then either the spectrum of h is disjoint from the interval [kε, (k + l)ε], or
at least the fraction δ of the non-zero eigenvalues of h(ω) are contained in
[(k - l)ε, (k + 2)ε] for each ω E A.

Let us use this lemma to show that if A has small eigenvalue variation then
A in fact has very small eigenvalue variation, with respect to the sequence
of subsets Dn — A^*".

First, we must show that if A has small eigenvalue variation, then the
hypothesis of Lemma 1.5 holds. (This is vacuous in the simple case.) Let
/ be a closed two-sided ideal of A, and denote by In the pre-image of I in
An. Let x be a positive element of /n, and let us show that for every ε > 0
there exists m > n such that the image of x in Am is within ε of a direct
summand of Am contained in Im.

Choose m > n such that the eigenvalue variation of the image of x in Am

is strictly less than ε. Then there exists a partition P E V(Ωm) such that,
for each A £ P, each eigenvalue of x in the direct summand of Am with
spectrum Λ has variation (as a function) at most ε. Hence, either the image
of x in this direct summand is invertible — so that the direct summand
belongs to Im — or it has norm at most ε, as desired.

Let x be a self-adjoint element of An, and let ε > 0 be given. Let δ > 0
and ra0 G N be as given by Lemma 1.5. Using small eigenvalue variation,
replacing ra0 by a larger number we may suppose that for any m > m0 the
image of x in Am has eigenvalue variation at most ε.

Let Po G 'P(Ωmo) be as given by Lemma 1.5. Using slow dimension growth,
choose m>m0 such that, for every Λ E Po, after replacing A by e(A)Ae(A)
where e(Λ) E Amo is the unit of the direct summand of Amo with spectrum
Λ, we have

dimΩ m jmax : — - < δ .
i J

(Of course, we still keep the original A\ we use this form of expression only
for convenience.)

Now choose P E 'P(Ωm) such that for every A e Po, the image of the pro-
jection e(Λ) E Amo in Am has central support a union of central projections
corresponding to clopen sets in the partition P.

By the choice of ra0 and Po> for each k E Z and each Λ E Po, with h0 the
image of x in e(Λ)Amo, either the spectrum of h0 is disjoint from the interval
[feε, (k + l)ε] or at least the fraction δ of the non-zero eigenvalues of ho(ω)
are contained in [(k — l)ε, (k + 2)ε] for each u E Λ .

Fix k E Z. Denote by e E Amo the sum of the projections e(Λ) with
A e Po such that the interval [A ε, {k + l)ε] is not disjoint from the spectrum



SMALL EIGENVALUE VARIATION AND REAL RANK ZERO 53

of the image of x in e(Λ)^4mo. Then the interval [A ε, (k + l)ε\ is disjoint from
the spectrum of the image of x in (1 — e) Amo (1 — e) and at least the fraction
δ of the non-zero eigenvalues of ho{ω) are contained in [(k — l)ε, (k + 2)ε]
for each ω in the spectrum of eAmoe, where hQ denotes the image of x in
eAmoe. It follows that this is also true with m in place of ra0. (The condition
that the fraction of non-zero eigenvalues of ho(ω) be at least δ for all ω in
the spectrum of eAmoe (or eAme) is just the condition that all normalized
traces evaluated on certain continuous functions of h0 be at least δ, and
every normalized trace of eAme restrict to a normalized trace of eAmoe; cf.
[Elll], [Stev].)

By the choice of m, the actual number of these non-zero eigenvalues for
ω in the spectrum of eAme and also in Ωm>J is at least

δj > dimΩm 5 J .

This shows that, for every Λx E P, for every k E Z, either the interval
[A ε, (A; + l)ε] is disjoint from the spectrum of the image h of x in the direct
summand of Am with spectrum Λi, or else at least dimΛi eigenvalues of
h(ω) are contained in [(A; — l)ε, (A; -f 2)ε] for every ω E Ax. (With j such that
Ω m j 2 Λi, one has d i m Ω m j > dimΛi.)

Hence, for any Λi E P, if [α, 6] is any interval of length 4ε inside the
spectrum of h (necessarily containing some interval [(A; — l)ε, (A; + 2)ε]),
Sp(/ι(α;)) Π [α,6] contains at least dimΛi points (counting multiplicity).

This shows that A has very small eigenvalue variation. Hence by Theorem
1.1, A has real rank zero.

2. Connectedness of frame spaces.

Let Vjfc(Cn) denote the Stiefel manifold of A -orthogonal frames in C n and

Gfc(Cn) the Grassmannian of A -dimensional subspaces of C71. Consider the

canonical map

which to each frame associates the linear span of the vectors in it.

Let Cp C O1 denote the p-dimensional supspace of C^ spanned by the
p first coordinate vectors, and let C n " p C C71 denote the subspace spanned
by the n — p last coordinate vectors. Assume that p < k < n. There is an
inclusion

given by ip(V) =€P ®V. Set

lmip}
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Thus, B is the space of /j-frames whose associated subspace contains C \
Let 7Γi denote the zth homotopy group.

Lemma 2.1. π^B) — 1 for

i < 2 min(k — p,n — k) .

Proof. The standard frame in Cp, combined with a (k — p)-frame in Cn~p,
gives a λ -frame in 5 . Thus, the natural fibration

- p ) -+ V,

maps in a natural way into the fibration

where the map B —> Gi_p(Cn~p) consists in taking the orthogonal comple-
ment of Cp in τr(F) for F € B.

The map Gfc_p(C"-p) ->• Gfc_p(Cn-p) is the identity.
In the associated map of long exact sequences

every third vertical map is therefore an isomorphism.
If i < 2{k - p), by Theorem 1.7.4.1 of [Hus] the map ^(U(A; - p)) ->

τrj(U(fc)) is also an isomorphism, and hence by the five lemma the map
πι(Vk^p(Cn'p)) -> Έi(B) is an isomorphism. By Theorem 1.7.5.1 of [Hus],
the group πi(Vk^p(Cri-p)) is trivial if i < 2((n-p) - (k-p)) = 2(n - fc). It
follows that πτ(B) is trivial for i < 2min(A: — p,n — k).

3. The selection theorem.

If Ω is a compact Hausdorff space, and F is a map from Ω into the space of
self-adjoint elements of Mn, we shall say that F is upper semicontinuous if
for every vector ( E C the real-valued function

ω H+ (F(ω)ξ I ξ)

is upper semicontinuous. We shall say that F is lower semicontinuous if
these functions are lower semicontinuous.
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Clearly, F is continuous if and only if F is both upper and lower semicon-
tinuous.

If x = x* E C(Ω,Mn), i.e., x is a continuous function from Ω into the
self-adjoint elements of Mn, and P(] — oo,λ[) and P(] — oc,λ]) denote the
spectral projections of x corresponding to λ E K, then ω •-> Pi] — oo, λ[)(ω)
is lower semicontinuous, as the corresponding characteristic function is lower
semicontinuous, and, similarly, ω H» P(] — OO, λ])(α;) is upper semicontinuous.

Our selection theorem is as follows.

Theorem 3.1. Let Ω be a compact metrizable Hausdorff space of dimension
d, and let P and Q be maps from Ω into the projections of Mn such that P
is lower semicontinuous and Q is upper semicontinuous. Suppose that

P(ω) > Q(ω)

for each ω E Ω, and that, furthermore, there exists a natural number k such
that

dimP(α ) > k +-(d + 1)

for all ω E Ω, and

dimQ(α ) <k-\(d+l)

for all ω E Ω.
It follows that there exists a continuous map ω E Ω v-> i?(ω), from Ω into

the k-dimensional projections of Mn, such that

P(ω) > R{ω) > Q(ω)

for all ω E Ω.

Proof We will partly follow [DNNP] and use Michael's selection theorem,
Theorem 1.2 of [Mi], which states: If Ω is a compact metrizable space of
dimension d, T is a complete metric space, and Y is a map from Ω to the
nonempty closed subsets of T such that

(a) Y is lower semicontinuous, i.e., for each open subset U of T the set
{ω E Ω I Y(ω) Π U Φ 0} is open,

(b) each Y(ω) is (d + l)-connected, i.e., ni(Y(ω)) = 0 for i = 0,1, • ,
d + 1, and

(c) there is an ε > 0 such that for any 0 < r < ε and ω E Ω, the-
intersection of Y(ω) with any closed ball of radius r in T is a contractible
space,

then there is a continuous map p : Ω —> T such that p(ω) E Y{ω) for all
ω E Ω.
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We will apply this selection theorem in the case T = Vk (Cn) = the Stiefel
manifold of A -orthogonal frames in Cn, where k, n are as in the statement of
the theorem, and

Y(ω) = {F G T I Q(ω) < π{F) < P{ω)} .

Let us verify the hypotheses of Michael's selection theorem.
Clearly, each Y(ω) is a nonempty closed subset of T.

Ad (a). If U is an open subset of V*;(Cn), then π(U) is an open subset
of the set of λ -dimensional projections on C1. Since Ω *-+ Q(ω) is upper
semicontinuous and ω ι-» P(ω) is lower semicontinuous, it follows that the
set

{ω G Ω I 3q G π(U), Q(ω) <q< P(ω)}

is open, and is equal to the set

{ω e Ω I Y(ω) ΠU φ&] .

Ad (b). Lemma 2.1 implies that

TTi (Y(ω)) = 0

fori < 2min(k—dimQ(ω),dimP(ω)—k). Sincemin(A;—dimQ(ω),dimP(ω) —
k) > \{d + 1), it follows in particular that πi(Y(ω)) = 0 for 0 < i < d + 1,
and so (b) holds.

Ad (c). The local connectivity of Y{ω) is trivial in our case.
Applying Michael's selection theorem, we obtain a continuous map F :

Ω-> V*(Cn). Set
R(ω) =π(F(ω)) .

Then ω H-> R(ω) is a continuous map from Ω into the self-adjoint A -dimensional
projections in Mn such that

P(ω) > R{ω) > Q{ω)

for all ω G Ω, as desired.

4. Sufficiency of very small eigenvalue variation.

In this section we shall prove the remaining implication 1 => 2 in Theorem
1.1. Suppose that A has very small eigenvalue variation, and let x — x* E A.
We wish to approximate a: by a self-adjoint element with finite spectrum,
and to begin with we may approximate x by an element of some Dn (where
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Dn is as specified just before the statement of Theorem 1.1). Thus, we may
assume that x G Dn. By the definition of very small eigenvalue variation,
for any ε > 0 there is an m > n such that the image h of x in any of the
direct summands C(Ω,MΛ) of Am has eigenvalue variation strictly less than
ε/3, and, in addition, if [α, b] is any interval of length at least ε/3 inside the
spectrum of /ι, then Sp(/ι(α;)) Π [α, 6] contains at least dim(Ω) + 2 points.
(This is provided dimΩ φ 0; in the trivial case dimΩ = 0, h may easily be
approximated by elements of finite spectrum.) We need to approximate h
by an element y with finite spectrum. Choose a G K and j Έ N such that
Sp(/ι) C [α, a + jε], and for each i — 1,2, , j set

p̂ ~ = spectral projection of /ι

corresponding to the interval

] -oo,α + ( i - l)ε] ,

Pf — spectral projection of h

corresponding to the interval

] — oo,α + iε[.

Thus,

PΓ < Pi < ?2 < < K ,

the map ω ι-> i:>

ί~(u;) ^s upper semicontinuous from Ω into the space of
projections in Mfc, and the map ω ι-> Pt(ω) is lower semicontinuous.

Given i G {1,2, ,7}, there are two possibilities.

Case 1. [α + (i - l)ε + ε/3, α + iε - ε/3] £ Sp(/ι).
In this case, choose λ in this interval which is not in Sp(/ι), and consider

the spectral projection Pi of h corresponding to the interval ] — 00, λ]. Then
ω H-» Pi(ω) is continuous, i.e., P{ G C(Ω,Mfc), and

PΓ < Pi < Pt

Case 2. / := [α + (i - l)ε + ε/3 , a + iε - ε/3] C Sp(Λ).
In this case, Sp(h(ω)) Π / contains at least dim(Ω) 4- 2 points for each

ω G Ω. But since each eigenvalue of /ι(α ) varies by strictly less than ε/3 as
ω varies over Ω, it follows that there exists an integer I such that

dimi^-(cc ) <l-\ (dim(Ω) + 1)

and

dim J f (ω) > / + ^(dim(Ω) + 1)



58 OLA BRATTELI AND GEORGE A. ELLIOTT

for each ω G ί l . Prom Theorem 3.1 (the selection theorem), it follows that
there exists a continuous map ω E Ω »-> Pι(ω) from Ω into the /-dimensional
projections in Mk such that

PΓ(ω)<Pi(ω)<Pt(ω)

for all ω eΠ. Then P* e C(Ω,Mfc) and

/ r < Pi <

Now, set

with the conventions Po = 0, P J + 1 = 1. Then y — y* G C(Ω,Mfc) and y has
finite spectrum. Set

z —
i=l

again with the conventions Po

+ = 0, P ^ ! = 1. By spectral theory,

ιι*-/»ιι<f •
But since

Po

+ < -Pi < Pΐ < P* < Pt < • • • < Pΐ < Pj+i »

it follows by using spectral theory in the finite dimensional abelian C*-
algebra generated by Pj, Pf, i — 0, , j + 1, that

We conclude that

I|y-Λ||<e

This ends the proof of Theorem 1.1.
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