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ON NORMS OF TRIGONOMETRIC POLYNOMIALS ON
5/7(2)

A. DOOLEY AND S. K. GUPTA

A conjecture about the L4-norms of trigonometric poly-
nomials on SU(2) is discussed and some partial results are
proved.

1. Introduction.

If G is a compact abelian group, an elementary argument shows that MP(G) =
Mq(G) where MP(G) denotes the space of Lp-multipliers on G and p and q
are conjugate indices. Oberlin [7] found a nonabelian totally disconnected
compact group G for which MP(G) φ Mq(G). Herz [4] conjectured that
inequality holds for all those infinite nonabelian compact groups G whose
degrees of the irreducible representations are unbounded. However, for com-
pact connected groups, the situation is still unresolved, even for SU(2).

The present paper arose from an attempt to study the Herz conjecture
for 5C/(2). In his unpublished M.Sc. thesis [8], S. Roberts formulated a
conjecture for S'C/(2)which, if proved, would settle the Herz conjecture for all
compact connected groups, we believe that Robert's conjecture is interesting
in its own right as it makes a rather delicate statement connecting the Lp-
norms of noncentral trigonometric polynomials with the growth of the Clesh-
Gordon coefficients.

We have pursued this interesting conjecture and make some partial progress
towards settling it. Our results open the way to a detailed study of some
new aspects of Lp analysis on compact Lie groups.

In Section 2, we establish our notation. We state the conjecture in Section
3 and proove some partial results (Theorem 3.2). In Section 4, we show the
relevance of the conjecture to Herz's conjecture.

2. Notation and remarks.

2.1. Irreducible representations of SU(2). We summarise some nota-
tion and definitions from [6] concerning the irreducible representation of
SU(2).
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Let n be a rational number of the form &/2, where k £ N and Hn be the
space of homogeneous polynomials on C2 of degree 2n; i.e. of functions of
the form

(2.1) f(*i,z2)=

Let (/, g) be the inner product on Hn given by the formula

Let U(Hn) denote the set of unitary operators on Hn with respect to the
inner product (2.2). The mapping Tn : SU{2) -> U(Hn) given by

(2.3) (Tn (°p β\ /J {zx, z2) = f(aZl - βz2, βzλ + άz2)

is an irreducible representation of 5ί7(2)and in fact the set {Tn : n —
0,1/2,...} forms a complete set of inequivalent irreducible representations
of SU(2).

To each operator Tn(x), x G S£/(2), there corresponds a unitary matrix
(relative to the natural orthonormal basis of Hn) whose elements will be
denoted by t^k{—n < j,k < n). These matrix elements are continuous
functions on SU(2). We shall be estimating their norms as convolution
operators on Lp.

There are many results on the Lp multiplier norms of central trigonometric
polynomials - see for example [2], or the more recent optimal results of
Sogge on Riesz kernels on arbitrary compact manifolds (c.f. also [9], [10]).
However, the ί^'s considered here are non-central.

A word about the geometric significance of the matrix coefficients t^k is
in order. By the Peter-Weyl theorem, L2(G) decomposes as a direct sum
of the irreducible representations of G, each one occuring with multiplicity
equal to its dimension. These isotypic components represent the eigenspaces
of the Laplace-Beltrami operator, and convolution by (2rc + l )χ n , where χn

is the characcter of the nth irreducible representation, is the projection onto
this space.

For each j {—n < j < n), the functions {t™k : — n < k < n} span one of
the above copies of the representation space of degree 2n + 1. Convolution
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on the left by (2n+l)t^j is a projection of L2(G) onto this copy. Convolution
by the function (2π + i)t"k are the natural isometries between the various
copies of the nth irreducible representation inside the isotypic component.
2.2. Expressions of products of functions t"kι The tensor product of
any two nontrivial irreducible unitary representations of 5C/(2)is always re-
ducible. If one decomposes such a tensor product into its irreducible com-
ponents, then the coefficients which appear in the decomposition are known
as the Clebsch-Gordan coefficients.

In the case of 5C/(2)the Clebsch-Gordan coefficients C(n1, n2, n3,jι,J2,J3)
make their appearance in this way in the formula

ni+n2

(2-4) *&,«&,= Σ C (n l ln2 >m,j1 >*1,*1 + .71)
m=|m-n2|

• C(nu n 2, m, j 2 , k2i k2 + 32)t™+klj:ι+k2.

While the Clebsch-Gordan coefficients are, in general, very complicated [8],
there are simple formulas for them in certain situations. Two such cases are
given below, they will be of interest in Section 3.

1/2

(2.6)

C(n n

(m

(m + j)\(m - j)\(n - m)\

if n > m > \j\ and 0 otherwise

(2.7) C(n,n,2m+l, j , j ,2 j) = 0.

We denote by Cf™ the Clebsch-Gordan coefficient C(n, n, 2m, i, k, i + k)
where n will considered be fixed throughout the argument.

In Section 4, we use the following convolution identity ([5], 27.20)

By An « JBn, n > 1 we mean that there exist positive constants α,/3 such
that

n < A, < aBn, Vn > 1.

The same symbol C may denote two different constants in two different lines.
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3. The conjecture.

In this section we state the conjecture and prove some partial results.

Conjecture. Denote by z_^ G <C2n+1 the vector with components {z\n^
Let

llyM-n (n).n II

A - — sup " Σ * ' = - n ' °'"4

Then An —>• 0 as n —> oo.

Remark 3.1. For the motivation of the conjecture, see Section 4.
We will prove the following theorem which is a weaker version of the

conjecture:

Theorem 3.2.
(A) Let z^ e C2n+1 and z$n) > 0, Vi = -n,...,n. Define Fn(z^) =

{i\ z\n) φ 0}. Suppose that £ t t
n _ n = 1.

( n ) , n I! ~
Γ | |

(B) i e ί {pn}^°=i be a sequence of natural numbers such that pn > 2 Vn.

]
+n (n),n II

2^i=-n^ goP k logn
sup -̂  — ψ < C—ΓΓΓ.

To prove Theorem 3.2, we first obtain an expression for ΠCitΓ-n Zitfi\ m

terms of Clebsch-Gordan coefficients. Let z G C 2 n + 1 .
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Set

+n

» = — n

/ +n +n

— n<i,k<n

\k = -n

2n

-n<i,k<n \m=0

Using (2.6)-(2.7), we get

2 ,_^

-n<i,k<n m=|j|

n +2m /

= Σ c]τ Σ Σ
m=|j| r=-2m I J+/J=Γ

2m +2m

Since < {y/2n+ 1 ί?,.

we get

/

is an orthonormal set in L2 (5t/(2)),

Σ «*̂ c?-2m

In particular,

(3.3) |¥>SU)I4 =

V >/ II V ^ n V—/ II4

n //^2m\2 +2m

frizz — n r— — 2τn

\cinS ψ
(An + 1) ^

-

I +2n

Σ ,

— n<i,k<n

Σ •
i+k=r

—n<i,k<n

Σ
— n <», k < n

v -y / ~ * 2 n

n X/4

i n 1 / 4

C 2 " = 1.
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Next we prove two Lemmas.

L e m m a 3.5. There exist constants C\,G2 > 0 satisfying: (n > 2)

(») 7§
(iii) Let 0 < \j\ < n - 1. Then

§Tτ < ICSol <

(iv) £eί | j | + 1 < m < n - 1. Then

α 2 m

- ^33

Cιy/m

(m

(v) Let 1 < j < n - 1. Then

C2j
1/4

U3 3

(vi) Letl<j<n-1. Then

C2

00

Proof. The easy proof using the following inequality

n\
(n/e)nn1/2

< e for n = 1,2,3,...

is left to the reader.

D

L e m m a 3.6. Let n > 2 be a natural number and —n < i < n. Then there

exists a positive constant C such that

n n • 1/4

1 nt / lθ£Γ n\
^ 3 ^ ϊ̂/8 Un J4 ^ C \~^~)

Also for every e, 0 < e < 1, ίΛere βa:^^ α C 6 > 0 5t/cft that for 0 < | i | < nc,

we have

(3.8)
logn

1/4

1 |fe«4 _
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Proof. Using (3.3)-(3.4), we get

(3.9) | ί J J 4 =

2 "I 1/4
/s~*iOnΎ\ 2 I

2m

•<)'

Am + 1

1/4

as Cf™ = Cj5 μt.| and Cj5μf | = 0 for m < | i | and

\i\\i\
(3-10)

From (3.9)-(3.10) we see that |t j,. | 4 = !*»_,.|4 and | ί ^ | 4 = | ^ _ , ||4.
Therefore we assume that 0 < i < n. We divide the rest of the proof in

four steps:
Step 1. i = 0

(4n

"4 Lm=0

1/4

1 (4n+l) Γ

^n ' ^ j (n + m)(n— m)(4m+ 1) Λ/W »

1/4

I 1/4

[
[n

[ i + i ϊ = i i Ί l / 4

In n m _
1/4

I 1/4

U/ '
5tep 2. i = n

1 II tn II1 IronlU _
|| fn ||

' 4 n + l (C0

2S)2

-y/ϊϊ (4ra

n1/4*

5ίep 3. 1 < i < n - 1
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1 11 +n II
1*0,14

? 1 / 8 llfn II
\\ιni\\A

Un +
1 n

Σ
4n ( C 0

2 ' 0 ) 2

(4i+l)(C?Γ)2

(Cft)'

1

(n + i)i/2(n - t ) 1 / 2

1

n\/n —

Hence An < - S , .

0 0

(say)

, l/2

» ~ *)1 / 2

(4n

nl/2

{An

ΓΓl — l -\- j

n-1

n - 1

m=i+l

Now we further divide Step 3 into three cases:
a) i = n — 1. Then

<
C

" ~ «3/2 ' ,3/2 ' = 0.

Therefore *,„ f"1!̂
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b) 1 < i < %. Then

n~1

i
m — iJ (n — i)

2C n-*-l-i-i -.

Σ
3 = 1 •>

A C

(n - i)

~ * -
^ 8C(logn)
^ ra3/2

Therefore <c(^) 1 / 4 .
c) f < i < n-2.Then

C n - 1

mtί+1 (n ~ T

C ^

~~ * m=i+ln*l2\Jn - i _frί 1 I (n - m)

C Γ n - l n - l

Lm=i+1

Clogn

Therefore -A_MiL- <inereiore n l / 8 , ^ j v.

4. Let 0 < e < 1 and 0 < i < ne. In this case,

n~1
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Therefore

n - l

(»-0(1
n ~ 1

n3/2
J

logn

V^1! > log(n-ί)

Hence ^ S -Ce ( ^
Now by Step 1 and Step 3 we have

Therefore Ce ( ^ ) 1 / 4 < ̂ | ^ | - < C ^ D

Proo/ of Theorem 3.2.
(A) Let 2 ( n ) be as in the hypothesis of Theorem 3.2(A). Consider

+n

/ .

->2n\2

'it )

1/4

1/4

as C?£ > 0, Vi, *r
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Now

n 1 / 8 |y^+» J»)*n II -

<
n l / 8

1/4

1/4
(n)M3/4

1/4

,(logn)J/V (logn)
1/4'

(by Lemma 3.6).
This completes the proof of part (A).

(B) Consider

ί = 0

Σ 4"}

+2n

E

ϊ = 0

1/4

as

n ) | 4 l l f n Hi
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Hence

1 \\Σi=O Zj ί θ p k | 4

npl

<

»
1/4

1/4

?3/4

y(n)
II "Pή

(by Holder's inequality),

,logn

This completes the proof of the Theorem.

D

Remark 3.11. The following inequality can be proved by using the ideas

of the proof of Theorem 3.2(B):

< c / l o g ^ λ
V w /

1/4

for — n < p, q < n.

4.

Let G be a compact group and let Γ be the dual object of G, the set of
equivalence classes of irreducible unitary representations of G. For each
σ e Γ, select a representation Uσ G σ, let /fσ be the Hubert space on which
Uσ acts, and let dσ be the dimension of Hσ. Let B(Hσ) denote the space of
linear operators on Hσ and C(Γ) denote the space ΓLeΓ B{Hσ).
Definition. Fix p £ [1, oo], Letm be an element of C(Γ), so that for eâ ch
σ, m(σ) G β(i^α). The function m is a (left) multiplier of 2/(= LP(G)) if
for each / G ί p , the series

Σ^trfmίσJ/ίσJt^ίx)]
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is the Fourier series of some function Lmf G Lp. The collection of all such
m is denoted by MP(G) or simply Mp.

For each m G Mp, the map / —> Lmf defines a bounded linear operator
on IP, an operator which commutes with left translations by the elements
of G. we regard Mp as a Banach space under the operator norm.

When G is abelian, an easy argument shows that if - + - = 1, then
Mp = Mq. It is known that for 1 < p < 2, Mp φ Mq (± + ^ = 1) for many
nonabelian groups G (see [1, 2, 3, 4, 6]).

For connected compact non-abelian group G and for 1 < p < 2, it is an
open problem whether Mp = Mq, - + - = 1.

S.G. Roberts has shown in [8] that if the conjecture is true then MP(G) φ
Mq(G) for every connected compact non-abelian group and 1 < p < 2, ^ +
I _ i
q ~~

We give an easy proof that if the conjecture is true then MP(SU{2)) φ
Mq(SU(2)) for 1 < p < 2, £ + i = 1. This proof is essentially due to Roberts
[8], but has never to the best of our knoledge been published. We present it
here for completeness. The result will follow if we show that

r Λ t\ III " O n Hip

(4.1) —y oo as n —> oo

where | | ίo n | I p denotes the norm of ΐ%n as an element in Mp.
To prove (4.1), we use the following norm estimates for t^n and t%n which

are easy to establish (see [8]).

1*0 nip

P n IN _ | U n II ^ ^ | |Un III _ ^

0 n III 1 -Fonlll ~ ^3/4? IFonllb ~ 2ΐl + l'

Now by Riesz convexity theorem, we get

\\\+n III < ^ l l l * n l l l α \\\+n I I I 1 " " "
1*0nip < 1*0nil 11*0nllb

where

2-p
a = .

P

Hence

CiiiαiL <p ^ n(δ/4)-(l/2p)
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Also
IUπ Λ. +n || -j \\fπ ||

i0n * 6nnll» 1 IKOnllnl >

Therefore (4.1) is true if

(4.2) n(5/4)-(i/2P) pnji^ _> 0 as n -> oo.

A routine argument using Riesz convexity theorem shows that (4.2) is true
if

(4.3) n 7 / 8 | t 2 n | 4 - + O a s n - > o o .

Now

\\Un III _ l*0n * /1L
llronllU ~ S U P II i ii

and

(n + 1)

So

( 2 n + 1 ) | l 1 4 < 2 | / « 4 ,

sun " ° " " ^
sup

> llΓnn * /Ik
/ e i

(2n-
sup

1" ZV

Therefore (4.3) is true if the conjecture is true. Hence (4.1) is true if the
conjecture is true.

References

[l] M. Baronti and G. Foresti, An example of assymetry of convolution operators, Rend.
Circ. Mat. Palermo (2), 31 (1982), 342-350.



TRIGONOMETRIC POLYNOMIALS 505

[2] A.H. Dooley, Norms of characters and lacunarity for compact Lie groups, J. Func-
tional Anal., 32 (1979), 254-267.

[3] S. Guilini, A remark on the assymetry of convolution operators, Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 83 (1989), 85-88.

[4] C. Herz, On the assymetry of norms of convolution operators I, J. Functional Anal-
ysis, 23 (1976), 11-22.

[5] C. Herz, Assymetry of norms of convolution operators II , Nilpotent Lie groups,
Symposia Mathematica, 22 (1977), 223-230.

[6] E. Hewitt and K. Ross, Abstract Harmonic Analysis, II, Springer-Verlag 1970.

[7] D.M. Oberlin, Mp(G) φ Mq(G)(p-1 +q~ι = 1), Israel J. Math., 22 (1975), 175-179.

[8] S.G. Roberts, Ap spaces and assymetry of Lp-operator norms for convolution oper-
ators, M.Sc. Thesis, Flinders University of South Australia, 1982.

[9] A. Seeger, Endpoint estimates for multilier transformation on compact manifolds,
Indiana Univ. Math. J., 40 (1991), 471-533.

[10] C D . Sogge, On the convergence of Riesz means on compact manifolds, Ann. Math.,
126 (1987), 439-447.

[11] N.Ja. Vilenkin, Special functions and the theory of group representations, Transla-

tions of Mathematical Monographs, Vol. 22, AMS, 1968.

Received October 24, 1994 and revised November 29, 1995.

THE UNIVERSITY OF SOUTH PACIFIC

SUVA, FIJI

E-mail address: GUPTA_S@usp.ac.fj






