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L p BOUNDS FOR HYPERSINGULAR INTEGRAL
OPERATORS ALONG CURVES

SHARAD CHANDARANA

It is known that the Hubert transform along curves:
oo

Ήrf(x) =pvj f(x - T(t)) j (x e R" )
— OO

is bounded on IP , 1 < p < oo, where T(t) is an appropriate
curve in Rn. In particular, ||Wr/||p < C||/||p ? 1 < p < oo , where
Γ(t) = (t, \t\ksgnt), k > 2, is a curve in R2.
It is easy to see that the hypersingular integral operator

Tf(χ) = P

- 1

in which the singularity at the origin is worse than that in the
Hubert transform, is not bounded on L2(R2). To counter-
balance this worsened singularity, we introduce an additional
oscillation e"27™'*' and study the operator

1

T β > / j / ( x , y ) = pv f f(x - t , y - 7 ( 0 ) e " 2 1 " " " 1 " ' - r ^ { a , β > 0 )
- 1

along the curve T(t) = (^,7(ί)), where *y(t) = \t\k or
y(t) = \t\k sgnt, k > 2, in R2 and show that

(i) ||Tα)/3/||2<A>,/?||/||2 if and only if /?>3α;
(ϋ) \\Tatβf\\P < Ba,β\\f\\p whenever β > 3α, and

*<*(β + D 0(/?+D + (/?-3α)
h 1.

1. Introduction.

In recent years, several mathematicians have studied the Hubert transform
along curves:

00

( € R » )Tίrf(x) =pvJf(x-Γ(t))j

389
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where T(t) is an appropriate curve in R n . Fabes and Riviere were led to
the study of ΉΓ in their attempt to generalize the Method of Rotation of
Calderon and Zygmund; for details see [Fa, Ri] and [Wa2].

Nagel, Riviere, Stein and Wainger, and several other mathematicians have
studied the ZAboundedness of ΉΓ for a variety of curves Γ. A detailed
survey of these results can be found in [St, Wa]; also see [Wai]. Nagel,
Riviere and Wainger proved in [NRW1] that %τ is a bounded operator on
Lp , 1 < p < oo, when Γ(ί) = ( |ί |α i sgnί, , \t\an sgnt) , each ak > 0,
is a curve in R n . In particular, ||Ήr/||j> < CII/HP? 1 < P < oo , where
Γ(ί) = (£, lί^sgnί) , k > 2, is a curve in R 2 . For more general curves see
[Na, Wa], [NVWW], and [Wa3].

The kernel, K{x) — —^ , of the Hubert transform,

uf{x)=ι- / > < * - » > - . <-'
7Γ J

— CO
y

owing to its order of magnitude, is not integrable either at 0 or oo . It does,
however, compensate for this deficiency by cancellation due to oscillation;
this oscillatory property being reflected in the fact that its Fourier transform,
K(x) = i sgn x , is bounded.

It is tempting to explore a situation where the order of magnitude of the
singularity of K at the origin is greater than that of l^l"1 , say of the order of
|£ |~ 1 - Q ί , a > 0 . It is reasonable to expect that some additional oscillation is
required to compensate for this worsened singularity. This translates to the
requirement that the Fourier transform of K , in addition to being bounded,
have some decay at infinity; that is, |A'(#)| < C ( l + l^l)"'0 for some β > 0 .
For further discussion see Theorem 5 of [St].

Integral operators with strong singularities of the type described above,
were studied by Hirschman in one dimension [Hi], Wainger in ^-dimensions
[Wa], Stein [St], Fefferman [Fe], and Fefferman and Stein [Fe, St].

It is not hard to see that the hyper singular integral operator

1

Tf(x) =pυjf(x-Γ(t))^- ( α > 0 )

along Γ(ί) = (ί,7(ί)) , where ~/(t) = \t\k or y(t) = \t\h sgnί, k > 2, is not
bounded on L 2 ( R 2 ) . The L2-boundedness of this operator is equivalent to
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the uniform boundedness, in R2 , of the multiplier

1

m(x,y) = pυ I
- 1

e-2τri[xt+yΊ(t)] dt

It is easy to see that |m( | , 0)| = oo for a > 1 for 0 < a < 1 and x > 0,

|m(α:,0)| = 2
1

/sir = 2(2τrx)α
sin. OO

as x —> oo .

One can ask if the worsened singularity at the origin can be counterbal-
anced by an oscillation. This leads us to the operator

%,βf(x,y) = pvj f(x -t,y- τ ( ί ) ) e~^
- 1

t\t\«
(a, β > 0)

along the curve Γ(ί) = (ί,τ(ί)) » 7(0 = 1*1* O Γ 7(0 = 1*1* sgnί, A; > 2, in
R 2 .

Zielinski, in his thesis [Zi], studied the Z/2-boundedness of Ta,β along the
parabola j(t) = (t,t2) , and proved that ||7^/3/||2 < C\\f\\2 <=> β > 3a.

1.1. Statement of the Main Result. We state the main result of this
paper as:

T h e o r e m 1. Suppose that j(t) = \t\k or j(t) = \t\k sgnt, k > 2 , and

T*,βf(x, y)=pυj f(x -t,y- a, β > 0).

Then

(i) l lWIh < Aβf^||/||2 ifandonlyifβ>3a;
(ii) \\Tatβf\\p < Batβ\\f\\p whenever β > 3a, and

3a(β + l)

3a(β+l)

(β-3a)

l)

Here Aa^ also depends on k, and Baβ also depends on p.
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1.2. Outline of Proof. In Section 2, we define an appropriate one param-
eter family of dilations {δt}t>0, and a corresponding distance function p ,
whose homogeneity with respect to δt is essential in proving the L2 and
Lp -boundedness of Ta,β

In Section 3, we prove that Ta,β is a bounded operator on L2 if and
only if β > 3a. This is achieved by applying van der Corput's Lemma
and its corollary to judiciously subdivided intervals, and the asymptotics of
oscillatory integrals.

The L^-boundedness, as stated in the second assertion of Theorem 1, is
proven in Section 4. This is accomplished by showing that a certain analytic
family, {77}, of truncated operators is bounded on L2 for an appropriate
$tz > 0 and it is bounded on Lp , 1 < p < oc , for an appropriate $tz < 0
and that the bound in each case grows at most as fast as a polynomial in
\z\ . The result then follows by analytic interpolation.

2. Dilations and Homogeneity.

We define a one parameter group of dilations {δt}t>o , δt : R 2 —> R 2 , by
δt = diΆg[tι+β, tk+β], with A = diag[l+/?, k+β] and a = trace A = 2/3+fc+l,
and a corresponding distance function p defined by: p — p (x,y) = t such
that

W A)'= '
if (x,y) φ (0,0), and />(0,0) = 0. Then p is homogeneous with respect
to δt: p(δtx) = tp(x),t > 0,x £ R 2 ; p(x) is continuous and is in
C°°(R2 - 0) p(x + y) < C[ρ(x) + p(y)], for some C > 0 and R 2 can
be coordinatized by the polar-like coordinates p = p(x) and u = δ~ι x ,
with dx = p 0 " 1 c?/) (Λw, w) dς = ?0"1 dpdψ , where cίς is the linear measure
on S 1. For proofs of these assertions and additional properties of δt and p
see [St, Wa].

3. L2-Boundedness.

The proof of sufficiency in the first assertion of Theorem 1 is accomplished
as an easy consequence of Theorem 2, which we prove next. Our point of
departure is the observation that

(%^f){x, y) = maβ(x, y)f(x, y) ( / G L 2 ) ,
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where Λ denotes the Fourier transform, and maβ(x,y) is the multiplier
given by

m β J ,(*,y) = 0 ) .

Thus, the boundedness of TQ,β on L2 is, by the Plancherel Theorem, equiv-
alent to the uniform boundedness, in x and y, of the multiplier maβ . So we
first prove:

Theorem 2. The multiplier maβ(x,y) is uniformly bounded in R 2 for
β > 3a. More precisely:

\ma>β(x,y)\ < I
\C p ifp>l

, β>3a, (x,:

The proof of Theorem 2 depends mainly on the following:

L e m m a 3.1. Suppose that
(i) g is real-valued and smooth for α / / ί G [ α , i ] , 0 < a < b

(ii) \g(k){t)\ > p > 0 for all t € [α,6] wΛΛ k > 2; in addition, g' is
monotone on [a,b] ifk = l

(iii) z = σ + ir , σ > 0, r £ R

(iv) α > 0.

0

/ •

Proof Let
t

G(t) = ίe-2πi9^ ds.
a

Then, by van der Corput's Lemma (see [St3], Chapter VIII),

\G(t)\ < Ckp-t, te[a,b].

Integrating by parts, we get
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<C p
1

L b 1 + a + σ a 1 + a + σ

O

f at
^2+α+z

a+\z\)

This completes the proof of Lemma 3.1.

Proof of Theorem 2: We only need look at

i

m+ (x,y) = m+0 (z,y) = / < -2πi[xt+ytk+t~β] dt

D

since the other half can be dealt with similarly.

Since p(0, 0) = 0 and ra(0, 0) = 0; for (α, y) / (0, 0) but x2 + y2 < 1, so
that 0 < p < 1, if we let

then

and so there exists a T > 0 independent of z and y such that

flf'M < ~ f s- ( / ? + 1 ) for 5 G (0,T]. Then if we let

5

G{s) = f e-2πi9^ dt ,

we get I G(s) | < Cs^4"1, by van der Corput's Lemma. Hence integrating by
parts we get,

/ •

ds s=T

ds

<c
sβ+i

5 = 0
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1

= C [sβ-aYsZ
T

Q + C (1 + a) J ^ - o ) - 1 ds .

Both of these exist if β > a . Thus,

T

For 3 e [Γ, 1] ,

e-2πig(s)

J

ds

)-2πig(s) ds

Bl+or < c.

Thus m+(x,y) is uniformly bounbed when 0 < p < 1. We now turn to the
case when p > 1. With p = p(x, y) as defined above, the change of variable
t = s ρ~ι leads us to

ι~*~ (X) y) = p a I e p pk

s1*" "

Thus, to prove the theorem, we need only show that

Λ-nβt~βλ ds
P

/ •
<

for all (#, y) G R 2 . To this end, we show that the above integral is uniformly

bounded in each of the four quadrants of R 2 .

Note: For notational convenience, we shall write x (resp. y) if x (resp.
y) is positive, and — x (resp. — y) if x (resp. y) is negative.

Case I : x < 0, y < 0 .

Let

Then,

g'{s) = - - - -k
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and

Let

Since near 0 we have g'(s) < — pβ β s~^^1^ , van der Corput's Lemma
gives I G(s) I < C p~β sβ+1 . Hence, integrating by parts as before, we get

S

G{s) = f e~2πi9{t) dt .

o-2*t0(*)
ds

< C p~β for /? > a.

To tackle the integral from 1 to p, we need to consider the following two
cases:

~ 2 '
ΓΛ * <r p

(0 f >
This implies that - | < - ^- . Thus g'(s) <
together with Lemma 3.1, yields

~ < on [1, p] ,

o-2πig(s) ds

M
By the definition of p , this implies that — \ < — Kp . Then,

- - 4

for s €[!,/>]•
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This, along with Lemma 3.1, gives

p

o-2πig(s) _ ds

Hence, \τn+(x,y)\ < C ρ~^~°^ whenever x,y < 0 and β > a . This
completes Case I.

Case II: z > 0, y > 0 .

In this case,

g»(S) = +^-k(k-l) Sk-''

In the vicinity of 0 , we have g"(s) >

b

I--1-'-2πig(s) ds

and so

< Cp~* for β > 2α,

using van der Corput's lemma, where b can be chosen later.

Away from 0 , we have the following two cases:

This, and the definition of /> imply that § >

Then,

g>(s) >P~ - βP

β

pβ pβ

-Ύ " T
> — whenever 5 >

4
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Note that g1 is increasing since g" > 0 . Choosing b = (4/3) ̂ H-1 , and
using Lemma 3.1, we get

o-2πig(s) ds
< Cp~β .

H e r e , g"{s) > C Ky . C h o o s i n g 6 = 1 , a n d us ing L e m m a 3 .1, we get

o-2πig{s) ds
< C -*

Thus, I m+(a:, y) I < C p~^~a^ whenever x,y > 0 and β > 2a .

This completes Case II.

Case III : z < 0 , y > 0 .

Here,

g(8) = -Ϊ8+ \ s k + p V Λ
P P

Close to 0 , g"(s) > β {β + 1)

o

/ o l + ct
J &

and so

2 for β > 2α ,

using van der Corput's Lemma , where b can be chosen later.

Farther from 0 , the following two cases need to be considered:

8fc '

Here,

Λ-2
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p* sk~2

> Cpϊ pi

= Cp 3 whenever s 6 / = />3(fc-2), p .

Choosing b = ρ3(k-2) in the above, and using Lemma 3.1 we get

dsf e-2πig(s)
C

This implies that § > ^- , and so

pβ Γ 2β "I

< whenever s 6 1, />3(fc-1)

If β > \ Λ—*• , we are done using Lemma 3.1. If not, we need to

subdivide further:

y

a) fk < 8k

In this case,

t

M*-i)

"8Jb
y_

pk 8k

Thus, Lemma 3.1 gives

P

ί e-2πig(s) ds
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( i i b ) 8 F - ^ # < g r ; o < / ? < ^ ^ , se[ι,p}.

20
There is a real number j > 1 such that 0 < j — 1 < -ηr < j < k . Then

- β - ψ < β - U - 1) = β - [k - {k - (j - 1)}] .

Now, let

Then, 5 m + 1 = 1 +

n=0 ^ ^ '

Sm 2̂ > 0 . We choose iV so that

= it 1 - > A: - ( i - 1)

i.e., (j - 1) > k
We now look at:

This can be done since < 1

oβ-[k-Sm]

—T—

8A;

For

< 4 <

= 1, p1'^ , we have

- + 4

Hence,

< C p P using Lemma 3.1.

Next, for s € / = p1 ^ , p , we have

pβ -lk-sm] sk-2
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8

This, along with Lemma 3.1, gives

-2πig(a) ^SI'-2"
Thus, I m+(x, y) | is uniformly bounded when x, y < 0 and β > 3a

This completes Case III.

Case IV: x > 0 , y < 0 .

Here,

5 ( ) + +
p pk

g'(s) = + - - ^kksk~ι -
p pk

g»(s) = - ^ k (k - 1) Sk~2 + pf>β(β+l) <Γ
pk

- 2)

We need to split as follows:

(i) fk > (ϋ) fk <
where 0 < C\ < 1 is to be chosen appropriately at a later stage.

Note that, in the vicinage of 0 ,

9 [ S ) - P p

< pβ _ pβ β

5-(/Hi)

whenever 5 £ / = ί 0,

Therefore,

/ •

,-2ir flf(«) < C p~β for /3 > a
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using van der Corput's Lemma.

Note that, \g'"(s)\ > ^ k(k - 1) (k - 2) sk~3 > C pβ whenever

sei = I K ) * + 1 , p] .Thus,

/ •

-2πig(s) ds
< C

using Lemma 3.1. This completes (i).

(ϋ) f < d p?

This needs to be split further:

(ϋ b) -£ < ^ r

(ϋ a) <
1A t so = f f / / + i ^ 1 ̂  P . w e have 5"(s 0) = 0 . Since g'" < 0 , g' has

[K (K — I) t/J

a maximum at s0 .
Now,

x y , \β(β+l)

= -P ~ 7 k I
x

k(k-l)y

, ^ Γ ^ (/?-(- Λr)l fife ( f c - 1 ) 1 •

where C,,fc = [ ^ r r f ] [β\βψή\
h §Now, choose CΊ so that g'(s0) > h § Next, choose α < 1 and

b > 1 such that in the neighborhood Jα>6 = [ α s 0 , &s0 ] °f so , w ^ have

±>

Then,

< Cp~β
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using van der Corput's Lemma on [αs0, So] and [s0? bs0] .

Since g"'(s) < 0 , </"(s) is decreasing; and so on / =

we have

g"{s) > g"{as0) = - ^ k {k - 1) {aso)
k-2 + pf> β (β + l)(asQy

= Ca,β,k —2— > C'a,β,k P 3 Ϊ

, as0

as a simple calculation shows.
Thus on / ,

ί e-2πig(s) ds
< r

by Lemma 3.1.

Now, on / = [foo , p] ,

as before. Hence, once again,

o-2nig(s) <

using Lemma 3.1. This completes (ii a).

Have,

CF 1J

P Pk

β 2β-

- ~2 8 ~ 5 ~ P

> — whenever s £ / =
4 L

If β > 3(k — 1) , we are done using Lemma 3.1. If not, we need to subdivide

further:

( ϋ b A ) l < £ (ii b B)
pk - 8k

with 0 < β < 3(k - 1) , and s e I = [ I ,
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(ii b A)

Have,

= [i, P]

> — whenever s ζ I =
~ 4

Using Lemma 3.1 once again, we are done.

(ϋ b B) ; 0 < β < 3(*- l) , s e I = [ 1, p]

W e p r o c e e d h e r e a s in Case I I I (ii b ) :

T h e r e is a r e a l n u m b e r j > 1 s u c h t h a t 0<j — l<*r<j

T h e n = β - I < β - (j - 1) = β - [ Jfe - {k - {j - 1)}] .

With iV, S v , and Sm as in Case III (ii b), for

-[k-Sm] β -[k~Sτ

8k ~ pk ~ 8k

and s ξ / = [ ( 8 / 3 ) ^ , p 1 " ^ 1 , we note that

, m = 0 , 1 , 2 , . . . , Λ Γ - 1 ,

2 8 8

Hence Lemma 3.1 implies that

ds

/ •

,-2πig(s)

cl+a
< Cp~β.

For s G I = p 1 ^ , p , we use the fact that

\g'"(s)\>k{k-l)(k-2) ^

> Ck

> Ck
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Lemma 3.1 now yields,

f e-2πig(s) ds
- 3

On we use the fact that \g'"(s) \ > C ρβ ,

and Lemma 3.1. This completes Case IV, and shows that \m(x,y)\ <
C p~ 3 + α i.e., the multiplier m(x,y) is uniformly bounded in R2 when-
ever β > 3α . Thus the proof of Theorem 2 is complete. D

PlanchereFs Theorem now shows that

\\Tatβfh = \\%JTh < Aa%β ||/||2 = Aatβ\\f\\2 for β > 3α.

Theorem 3. Along the curve y = —Cβfk xβ+λ (x > 0),

m (x, -Cβ^x^) ^ Cp~l s"αJ α̂  /9—>• oo.

Proof. As before, it suffices to prove the above estimate for

1

— \ e

o

For (a;, y) on the above curve, write x = C ^ r̂ "1"1 and y = —
The change of variable s \-> sτ~x yields

(r > 0) .

ds
T

m+(Cβιkτ
β+1,-τβ+k) = τa f e-*™β9(>)

with g(s) = [Cβtk s — sk + s~P] . We split the above integral as

T a b T

l-hhl
0 a b

where [α, 6] is a small fixed interval centered at s0 = lf(fzHJ Then

since flf;(50) = g"(s0) = 0, but ̂ "(^o) Φ 0, we have

0

/ e-2πir^flr(5)
< +O as r - 4 oo,



406 SHARAD CHANDARANA

by a standard result on integral asymptotics; see [St3], Chapter VIII. Next,

o n 1Λ =

<-Cβtk.

Hence, by van der Corput's Lemma we get

/ •

-2πiτβg(s)

1
, a . Thus

J
Since g"1 < 0, g" is decreasing on 72 =

g"(s) > g"(a) = [-*(* - 1) ak~2 + β(β + 1) a~^2> \ = C > 0,

since 0 < a < s0 and g"(s0) = 0. Hence,

dsί e-2πiτβg{s)

sl+a

Since g"1 < 0, as seen before, g" is decreasing on 73 = [6, r]. Then

g"(s) < g"(b) = [~k(k - 1) bk~2 + /3(^ + 1) 0-C+2)] = - C < 0,

since b > s0 and g/f(s^) = 0. Hence, by van der Corput's Lemma,

f e-2πiτβg(s)

Thus on (0,α]U[6, r], ra+(#,i/) decays faster than required. This shows
that

I ί ^ ^ l M as r —* oo;

that is,

m (x, -Cβ^χe+1 J ~ Cp"l-3~αJ as p — ^ oo.

This completes the proof of Theorem 3. D

This shows that on the curve y = —Cβ)kXβ+1 (# > 0) , the multiplier
m(x,y) becomes unbounded if β < 3α; hence the bound β > 3ce on
m (x, y) is sharp, and the first assertion of Theorem 1 is proved.
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4. Lp-Boundedness.

To prove the second assertion of Theorem 1, we introduce an analytic family
of truncated operators defined by

( 7 ? ? ) ( a r , ί / ) = P z ( x , y ) m l ( x , y ) f ( x , y ) ( f e S ) ,

where

me

z(x,y) = ί e-2«[**+jn(0+l*r'] \t\-* JL . a > o, /? > 3α, and € > 0.

We note at the outset that 7̂ ° = Ta,β is bounded on L2 . We need to prove

that

where p is as in the statement of Theorem 1.

L e m m a 4.1. Let 2 = σ + i r 0 < < J < i U v — α , r E R. TΛen for

simple f

WVfh <

Proof. It suffices to show that for each z, |mj(x,y)| is uniformly bounded
for (x,y) G R 2 The proof of this fact is very similar to that of Theorem 2
of Section 3, and shows that

Then for p > 1,

For each z, this is uniformly bounded whenever 0 < σ < i S- — α . The

result now follows from the definition of T2

ε and the Plancherel theorem.

This completes the proof of Lemma 4.1. D

To prove the Lp-boundedness of T2

e, we need the following:
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Lemma 4.2. For -a z < 0,

ρz(x,y) = hz(xJy)

where

(i) hz (ar, y) is α locally integrable function;

(ii) Λ, GC°°(R 2 - 0);

(iii) Λ,(ίλ (x,y)) = \-a~> hz{x,y), λ > 0, (z,y) / (0,0)

(iv) eαcΛ derivative of hz (x, y) is bounded by a polynomial in \z\ if p(x,y) >

1.

Here a — (2β + k + 1) = trace A, and the Fourier transform is to be taken
in the sense of distributions.

Proof See [St, Wa]. D

R e m a r k 4.3. If the line joining x and x — w avoids the origin, and v -f is

sufficiently small, then

\hz(x — w) — hz(x)\ =
/

— hz(x- tw)
at

dt

i

- / Vhz (x -tw) 'W dt

o
1

< \w\ ί \Vhz(x -tw)\dt

(4.3-1) < C(z) \w\

since the derivatives of hz are bounded by C(z) , by Lemma 4.2. This

observation, and the homogeneity of hz with λ = p(x) and ||ar|| sufficiently

large, then imply that,

\hz(x- w) - hz(x)\

= hz (δp{x) (δ-fx)x - % w ) ) - K (δp{x)

\w\
< C{z)

p{x) (2β+k + l)+σ
by (4.3 - 1)

(4.3-2) < C{ι w

,
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Lemma 4.4. Suppose that
(i) 77/ is defined by

(Vf)(χ,y) = Pz{χ,y)me

z{χ,y)Kx,y), /

(ii) z = σ + iτ -a < σ < -a \ g φ ± < 0 , r G R.
Then

II77/H, <C(z) 11/11, (Kp<oo),
where, for fixed a and β, C(z) grows at most as fast as a polynomial in

ι*ι
Proof By Lemma 4.2, for / £ S, we see that

(4.4-1) (77/) (x) = (Kz * /) {x),

where

K,{x) =

with x <ΞR2, and Γ(ί) = [ί,γ(ί)] € R2 . It follows that (4.4-1) holds when
/ is simple. Our aim now is to show that, for x, y £ R2,

(4.4-2) y I Kz (x-y) - Kz (x) \ dx < Cλ (z),
p{x)>Cp{y)

where Cχ(z) has at most polynomial growth in \z\. Now[/ f t = {x:ρ(x) < a}
is a regular Vitali family; and proving (4.4-2) will prove our lemma by virtue
of Theorem 4.1 of [Ri].

There are two cases to consider: 0 < p(y) < 1, and p(y) > 1.

Case I : 0 < p(y) < 1.

Since

K (x) = J [h.{x - Γ(t)) - fc,(*)

The change of variable t = sp(y)l3+1 gives dt = p(y) <fs, and

Kz(x) = J [hz{x - Γ(sp(yf+ι)) - hz(x)} e-™!'
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p(y)

+

Now,

/

p(x)>Cp(y)

(4.4-3)

The change of variable ^ = Sp^xf implies dx — p(y) dx' /9(x) =
p(y) p(x') and that Har'H is large. The right-hand side of (4.4-3) now be-
comes:

J
p{x>)>C

I hz (δp(y) [x' - δ;iy) Γ (sp(y)β+1)}) hz (δβ(y) x')

•Isl-1-*-" p(yΓiβ+1)ia+σ)

 P(yfβ+k+1) dsdx>.

Now, using the homogeneity of hz:

and writing x — xf, this

p(x)>C '<M<i

- hz(x)

p{x)>C

- hz (δ
p{x)

\-1-a-σ dsdx.
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Note that fc*) x\[ ~ 1? a n ( ^ since p(x) is large,

||w|| = jjί-ij [5, 7(5)p(y)/?(*""1)]| is small. Fubini's theorem and (4.3-2)

then imply that the above is

dx
J o(χ\

Changing to polar-like coordinates with dx = p(xyβ'j~k+1*~1dp(x)dφ, the

above is

< C(z

Si p(x)>C ΓK '

For/?(y)" ( / 3 + 1 ) ( α + σ ) " σ to be bounded, we need -(/? + l)(α + σ) - σ > 0;

that is, σ < -a Γβ ]Γ 9 < ^" With σ as in the preceding statement,

—α — σ > — Λ °[_ cy > —1 since β > 3a; and so l^l"""*7 is integrable

on ^p{y)~^ < \s\ < 1. For the p-integral to be bounded, we need β +
σ + 2 > 1 that is, σ > -(β + 1) . Thus, whenever -(β + 1) < - α <

Γ/3 + l l ί
σ — ~a /j T 9 ? w e have that / /ί^(x) cίx is bounded by C(z).

p(x)>Cp(y)

Similarly, ί \K\{x - y)\ dx < C(z) using the fact that p(x + y) <

p(x)>Cp(y)

C[p(χ) + P(y)] •

Next,

I \Kl{x-y)-Kl{x)\dx
p(x)>Cp(y)

p(x)>Cp(y) l<

h.(x-y-Γ (sp(y)β+1)) -h.(x-T (sp(yf+1))

(4.4-4)

•\8\-1-a-<'p(y)-{β+1)la+σ)d8dx.
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Again, with x = δp(y)X* so that \\x'\\ is large, dx = ρ(yγ2β+k+ι) dx',
ρ(x) = p(y) ρ{xf) , and using the homogeneity of hz with λ = ρ{y), the
right-hand side of (4.4-4) becomes

• / /
p{x')>C

dsdx1.l- l-ct-σ

W r i t i n g x — x' a n d w = x—\s, j(s) p(yf , so that dw = dx and

is large, and using Fubini's theorem, this is

I l-l-α-σ ds

j + j \hz(w- δp{

ι

y) y) - hz{w)\ dw
p{w)>C2

= p{y)~ I l-1-α-cr ds[I + II]

ι<\s\<p(yΓ(β+ι)

where C 2 is a large constant. Now, using the homogeneity of hz , and (4.3-2)

we see that,

/ = J \-i-"-" ds

- hz (δ
p{w)

dw

p(w)>C2

\-l-a-σds

p(w)>C:

p(w)

i<\s\<p(yΓ(β+1)

dw

Ίdψ I

σ)-σ J \s\
ι<\s\<p(yΓ(β+1)

dp{w)

— 1 — a — σ ds

ρ(w)
S 1 p(w)>C2

 r v J

β+σ+2 *
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For -α < σ < -a [ | ^ j < 0, we have 0 < pfo)"^ 1 )^)-" < i,

and 1 + α + σ > 1; and so |8|"1~α""σ is integrable on \s\ > 1. The p-
integral is bounded, since β + σ + 2 > 1 whenever σ > -a > -(β + 1).
Hence, / is bounded by C(z).

Next,

* > - * J |s|-i-«-"<
i<UI<p(y)-(^+ 1 )

/ hz[w- δ~{y) yj - hz(w)\ dw .

The inner ίϋ-integral is bounded, since hz is locally integrable; the outer

5-integral is bounded whenever — a < σ < —a \^λ "j~ 0 .

Case II: p(?/) > 1.

Fubini's theorem, homogeneity of hz , and (4.3-2) together imply that,

\Kz(x)\dx
p(x)>Cp(y)

< / \t\-1~a-σdt I \hz (x - Γ(t)) - hz(x)\ dx

e<\t\<l p(x)>Cp(y)

:i

~ hz [δp{x) ^~(^} x

e<\t\<l p(x)>C P^X>

<C(z) ί \t\-«-°dt ί dφ f —
J J J p(x)

e<\t\<l Si p(x)>C r K '

dp{x)
β+σ+2

since |Γ(ί)| = (t2+t2k)i < Λ/2 \t\ for |ί| < 1. The last expression is bounded

whenever — a < σ < —a \jΓjΓo\ Similarly, / \Kz(x — y)\dx is
p(x)>Cp(y)

bounded by C(z) . This completes the proof of Lemma 4.4. D

This brings us to the final step of the proof of Theorem 1:
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4.1. Interpolation. Lemma 4.1 shows that, for / simple,

\Wf\\2 < C i ( * ) | | / | | 2 whenever 0 < Rz < \ Γ | - a\ , β > 3a Lemma 4.4

shows that 1177/11? < C 2(2:) | |/ | | p, 1 < p < 00, whenever

-a < $lz < -a PΛ\_ 9 < 0 each Ci(z) (i = 1,2) grows at most as fast as

a polynomial in | z | . It follows that {Tz

6} is an admissible analytic family
for the Stein analytic interpolation theorem (see [St, We], page 205), defined
for z in the strip

Analytic interpolation and duality now imply that Tξ — T^β is bounded on
Lp whenever

3α (/? + !) ^ ( ^ + l ) + (/?3 f t)

for all simple f on R 2 . An easy limiting argument shows that
117^/llp < Baiβ\\f\\p for all f e S. The constant Baφ is independent
of 6. Letting e -> 0, Fatou's lemma gives | |7^^/| |p < -Bα./jH/Hp f°Γ ^
f G S. Now, another limiting argument shows that the last inequality holds
for all / 6 Lp . This completes the proof of Theorem 1. D
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