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We introduce the notion of a conditionally free product and
conditionally free convolution. We describe this convolution
both from a combinatorial point of view, by showing its con-
nection with the lattice of non-crossing partitions, and from
an analytic point of view, by presenting the basic formula for
its iΐ-transform. We calculate explicitly the distributions of
the conditionally free Gaussian and conditionally free Poisson
distribution.

1. Introduction.

In [BSp], we introduced a generalization with respect to two states of the
reduced free product of Voiculescu [Voil, VDN] and gave some prelimi-
nary results on this concept. Here, we want to examine this notion more
systematically, in particular, we want to investigate the corresponding con-
volution. We describe this convolution both from a combinatorial point of
view - by showing its connection with the lattice of non-crossing partitions
- and from an analytic point of view - by presenting the basic formula for
its /^-transform, which is the replacement of the classical Fourier-transform.
We calculate explicitly the distributions of the corresponding Gaussian and
Poisson law by a careful examination of the structure of the non-crossing
partitions.

Instead of the terms "^-independence" and "^-product" of [BSp], we will
use here the more precise expressions "conditionally free" and "conditionally
free product", or just the abbreviation "c-free".

Let us start with a motivation for our concept of "c-freeness". Consider
a group G = *i£iGι which is the free product of groups G, (i G /), i.e. each
element g φ e of G can be written uniquely in the form g = gλ .. .gn, where
e φ gj e Gi(j) and i(l) φ i(2) φ -' φ i(n). To see the nature of this
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decomposition of G more clearly, we state it in a more abstract way by using
the functions ψi = δe on (7,, i.e. φ{ : d -> C with (g G Gi)

Then the above decomposition has the form: Each element g φ e can be

written as g = <7i...<7n? where g$ G G. y), i(l) ^ i(2) ^ ••• φ i(n) and

Ψi(j)(9j) = ° f o r all j = 1,. . . , n.

If we are now given functions ψi : Gi —> C with < ,̂(e) = 1, then we
can form their c-free product in the canonical way, namely we define a new
function ψ = *,•£/(<#, ̂ , ) on G by (^(e) = 1 and

if g φ e has the above representation. The key property of this construction

is the fact that, if the ψi are positive definite on G, , then ψ is positive definite

o n G = *ie/Gff, see [Bozl, Boz2].

As an example of such a c-free product one can take each Gi as a copy of
Z and ψi as ψi(k) = exp(-λ|&|) (fc G Z) for some λ > 0. Then G is the free
group on |/ | generators and ψ is given by ψ(g) := exp(—λ|^|), where g ι-» |g|
is the canonical length function on the free group. Since the ψi are positive
definite functions on Z, this ψ is also positive definite. This property of the
length function on the free group was proven by Haagerup [Haa].

If we translate the above description of ψ from groups to group algebras,
then it reads in the following way: Let Λi := CGi and Λ := CG be the
group algebras of Gi and £?, respectively. Then, given linear functionals ψi
on Λi with ψi(l) = 1, we can define a linear functional ψ — *iei(ψi,ψi) on
Λ by ψ{l) = 1 and the characterizing property

ψ(aλ .. .α n ) = ψi(ι){aι) .. .ψi{n)(an),

whenever α, G A(j)> i(l) 7̂  2(2) φ " ' φ i{p) and ψi(j)(dj) = 0, where ^ is
now the linear extension of £e to Λi.

In this formulation it is unnatural to restrict to Λi = CGi and to ψi = <Se,
one can now consider the above c-free product for arbitrary unital algebras
Λi and arbitrary states ψi on Λi. One of the main results in [BSp] was that
also in this general case ψ is a state if the ψi are. This was proved by ah
explicit construction of the corresponding c-free product. We will give in
Sect. 2 another, purely algebraic, proof of this basic fact.

After this basic considerations we will then switch to the corresponding
notion of c-free convolution, the main topic of our investigations. Since
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compactly supported measures μ on R are determined by their moments,
such measures can be identified with states on the polynomial algebra C(X).
Thus we can characterize our convolution in the following way. Given pairs
of compactly supported probability measures (μi,iΊ) and (μ2,v2)i we define
their c-free convolution by the following prescription: Consider A\ = C(Xχ)
and A2 = C(X2). Then A = Aλ * A2 = C(XUX2). We have on A the
states μi and i/f, thus our construction of a c-free product gives a state ψ =
(μi?^i)*(μ2, 2̂) on ,4. If we restrict this state to C(X), where Jί = Xχ + ̂ 2,
then the distribution of X determines a measure μ, which we call the c-free
convolution of (μi,^i) and (μ2,v2), denoted by μ = (μi,ϊΊ) EB (μ2iv2). The
name "c-free convolution" indicates that μ is the distribution of the sum
of Xλ and X2, which are distributed according to μγ and μ2 and which
are c-free. If z/, = μf (i = 1,2), then our construction reduces to the free
convolution of Voiculescu [Voi2].

To be able to talk about associativity, we should also define a new measure
v and it turns out that the natural candidate for this is the free convolution
Vι EB v2 of V\ and ι/2, thus

where

μ = [μuvι) BB (μ 2 ,^), v - vλ EBi/2

In Sect. 3, we will examine this c-free convolution from a combinatorial point
of view and show that it is, similarly as in the case of the free convolution
[Spe2], determined by the lattice of non-crossing partitions.

In Sect. 4, we treat the c-free central and Poisson limit theorem by a care-
ful analysis of the structure of the non-crossing partitions. We will thereby
derive some combinatorial identities for these partitions which also have
some interest of their own.

In Sect. 5, we present a systematic machinery for an analytic description
of c-free convolution, namely the generalization of Voiculescu's i?-transform
[Voi2].

2. Definition and positivity of the c-free product.

We shall work in the category of unital *-algebras and states. By a state ψ
on a unital *-algebra A we will always mean a linear functional ψ : A —»• C,
which is normalized (<̂ (1) = 1), hermitian (φ(a*) — ψ{a) for all a 6 A) and
positive (φ(aa*) > 0 for all a £ A).
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Let now Ai (i £ /) be unital *-algebras equipped with a pair of states
{ψii Φi)- Then we want to define a new state φ = *;G/(<^ , φi) on the algebraic
free product A = *ieiAi (identification of the units is assumed). Observing
that with the decompositions Ai = Cl ®A°, where A\ := ker^ , one can
identify A as a vector space with

it is clear that we can define uniquely and consistently a linear functional
ψ — *iei(φi, φi) on A by φ(l) — 1 and the following characterization:

ψ(a1 .. .an) = ^, (i)(αi) . ..<#(„)fan),

whenever

α i € Λ(j), i(l) / i(2) # / i(n), Φaj){aά) = 0.

Such elements aλ .. .an £ ^ m ® * ®Aϊn) w ^ ^e called elementary elements
in the following.

Of course, the main problem is now to see that φ is positive. In [BSp],
this was proven by an explicit construction of the GNS representation of A
with respect to φ. Here, we want to give a purely algebraic proof of this
fact. For this we need a lemma about the calculation of φ.

Lemma 2.1. Consider two elementary elements

yι = aγK..aV and y2 = a?K..a%K

(1) If a^ and a^ do not belong to the same A\ then

(2) Consider a £ Ai for some i £ /. If a^ and a^ do not belong to A\
then

lay2) = Φi(a)φ(yly2) - Φi(a)φ(yl)φ(y2) + φi{a)φ(yl)φ(y2),

Proof. (1) Clear, since

*) ...ψ(αίx) )
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(2) This follows from

= φ(yl{a - ψi{a)l)y2) + Φi(a)φ(yly2)

Φi{a)φ{yly2).

Π

Theorem 2.2. If ψ% and φi are states for all i G /, then ψ =
is a state, too.

Proof. We will show

φ(x*x) > \ψ{x)\2 for all a? £ A

We can write each x £ Λ in the form

where a G C and α̂  .. .αLL are elementary elements (with ra(&) > 1) for
all k. It suffices to prove the asserted inequality for x without term of the
form α l , i.e. we can assume x to be of the form

with
(k) (k) i (k) (k) (k)

Our proof will be by induction on the length of x (i.e. the maximal n(k) in
the above representation), and we assume now the validity of the assertion
for elements of a smaller length than z, in particular for the y^ and linear
combinations of them.

Put now

* , : = Σ aik)y{k)-
k with

Then it suffices to prove the assertion for all x, , because this implies, by the

first part of Lemma 2.1.
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*=?

So let us consider the case of xt

second part of Lemma 2.1. gives
with all α ^ € A Then the

By positivity of ψ{ and ψi we can write

for some &(
this implies

W G C By using our induction hypothesis for

r L \ k

>Σ

But then, again by our induction hypothesis
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D

R e m a r k s .

(1) If we have ψi = φi for all i G /, then we recover the case of the
free product [Voil, VDN] and we obtain an algebraic proof for the
positivity also in this case, thus giving a positive answer to a question
posed in [Spe2].

(2) If we want to make our construction associative, then we should extend
also the φi to a new state φ on A. It is clear that φ should be the free
product of the φi, in our notations φ := *iei(φi,φi) This together
with ψ \— *%qi(ψi, Φi) will be denoted by

(not to be confused with our notation of a symmetrized product in
[BSp]). With these definitions one gets directly the associativity of
our c-free product: If / = 7X U J2 with Iλ Π I2 = 0, then

(3) Commutativity of our construction is clear.

(4) Cabanal-Duvillard [CDu] introduced a generalization of our construc-
tion from two to infinitely many states. However, his product ceases
to be associative.

3. Combinatorial description of the c-free convolution.

Let Λ4 be the set of all compactly supported probability measures on R.~.
Since such a measure μ is determined by its moments we can identify it with
a state on the *-algebra C(X) (where X* = X) via

μ(Xn)= ίtndμ(t)
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Let now μi,μ2, V\, ̂ 2 € Λί be given. We identify μ, , z/, with states on
C(Jft ) (i = 1,2) and get, by our results from Sect. 2, the c-free product
V = (μi,iΊ) * (^2,^2) on C(Xi> * C(X2) = C(Xi,X 2 ) (the latter being the
algebra of polynomials in the non-commuting variables Xι and X2). The
c-free convolution

is then given as the distribution of X := Xx + X2, i.e.

+ X 2 ) n ) (n > 0).Jtndμ(t) =

For μi = V{ (i = 1,2) this reduces to the free convolution of Voiculescu
[VDN].

As in Remark 2 of Sect. 2, we define also a measure v as the free convo-
lution of υx and i/2, i.e.

^ = (^1, v\) ffl (^2, ^2) = ^1 ffl ^2,

and denote this situation by

Then our mapping E : Λ 1 2 x Λ / l 2 - ^ Λ ί 2 i s commutative and associative.

Our aim is now to extend the combinatorial description of the free con-
volution with the help of the lattice of non-crossing partitions [Spe2] to our
case.

For a μ 6 M we denote its moments by

and we want to understand (at least in principle) the connection between

(m n (μ),m n ( i/)) n € N and (m n (μ 1 ) ,m n ( i/ i ) ) n € N , ( m n ( μ 2 ) ϊ m n ( i / 2 ) ) n € N .

As in the case of the free convolution this connection is quite complicated
and it is advantageous to introduce new quantities, called cumulants, which
linearize the convolution. These cumulants are connected with the notion'of
non-crossing partitions.

Definitions. Let π = {Vu.. .,VP} be a partition of the linear ordered
set { l , . . . ,n} , i.e. the V{ / 0 are ordered and disjoint sets whose union
is {1, . . . , n}. Then π is called non-crossing if α, c G V% and 6, d G Vj with
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a < b < c < d implies i = j .

The sets Vi e π are called blocks. A block V* of a non-crossing partition
7Γ = {Vi,..., Vp} is called inner, if there exists a V} G TΓ and α, 6 e V} such
that α < v < b for at least one (and hence for all) v G VJ A block K G TΓ
which is not inner is called outer.

We will denote the set of all non-crossing partitions of the set {1, . . . , n} by
NC(n). By iVC2(2n) we denote those non-crossing partitions π = {VΊ,...,
V^} G NC(2n) where each block VJ G π consists of exactly two elements.

The notion of non-crossing partition was introduced by Kreweras [Kre],
the distinction between outer and inner blocks was considered in [BSp].

After this preparations we can now introduce the notion of cumulants.
For the description of v = Vγ E5 v2 we have to use the free or non-crossing
cumulants rn = rn(ι/) (see [Spe2, NSpl , NSp2]), defined recursively in
terms of the moments mn = mn (u) by

This definition may be indicated symbolically by

C D = Σ1Q1QI IQI o
and it is equivalent to

(1)

Π ΓVi
π={Vlf...,Vp}

eNC(n)

or

(2) r n = Σ mVι...mVp μ(π,ln)= ^ /x(τr, ln) JJ
τr={^,...,Fp} π€NC(n) V,€ir

where we have used the notation my := m\v\ and ry := r\y\ for some set
V (with \V\ being the number of elements in V). The function μ(π, l n )
is the Mδbius function of the lattice of non-crossing partitions and is just
determined by resolving (1) for the rn in terms of the m, .
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Free convolution is then described by [Voi2, Spe2]

rn(uι BB u2) = rn(uι) + rn(i/2) for all n > 1.

For our c-free convolution we have, for a given pair (μ, v), to introduce,
in addition to rn = rn(z/), also c-free cumulants Rn = i?n(μ, */), which do
not only depend on the moments of μ but also on those of v. The most
instructive definition is again by recursion, namely

n

rrir, (u) — 7 N

'(!) + "

pictorially

l(l),...,l(k)>0
/(l) + .+/(Λ)=n-Λ

= 7|Q|Q|

Note that the "inner" moments are given by v, only the "outer" one is
connected with μ. Of course, the free cumulants are recovered from this by
rn{v) = Rn(v,u).

The above definition is equivalent to a generalization of (1), namely

Π Γ*Ί Π β ^
Vι€π Vk£π

Vι inner Vk outer

The following example shows that the analogue of formula (2) is not true for
the c-free cumulants.

Example. We have

(u) = r3(ί/) + 2r2{y) rλ(y) + Γχ(i/)3 + r2(i/) Γi(i/)

m3(μ) = R3(μ, v) + 2R2{μ, v) - R^μ, v) + Rx(μ, vf + Λ2(μ, v)

but

r3(i/) = m3{v) - 2m2(i/) m^i/) - m2(^) mi(i/) + 2m1(u)3

R3{μ,v) = m3(//) -2ra2(μ) mi(μ) - m2(μ) m^v) + 3

+ m1(μ)2 m1(i/).

But nevertheless we have the following theorem.

Theorem 3.1. The c-free convolution
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is described by

and

for all n > 1.

Proof. The proof follows the same line of arguing as in [Spe2J. Given (φ, ψ)
on some unital *-algebra A, we define more general cumulant functions r =
(rn) and R = (Rn) with

These equations can recursively be resolved for the

Let now (μ, ,i>i) on Ai = C(Xi) for i = 1,2 be given. Then we obtain in

the above way the functions r(μ, ) and i?(μ, , i/, ) on U^Li Afn. On |J^o_1(b41U

Λ ) x n C U~=i(Λ * Λ ) x n we define their direct sum

r := r(μi) ® r(^2) and β := R(μuuλ) φ β(μ 2 , ^2)

for all

definition of r
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and

(Rn(μu fi)[a>u > ,fln]i if all α, € Ax

Rn[au . . . , an] = < # n ( μ 2 , ̂ )[«i, , αn], if all α< G Λ

[O, otherwise

for all α i , . . . , αn G ̂ 4i U *42 C A\ * Λ2* Note that there is no ambiguity in
this definition because in the case that some αt G A\ ΠA2 = Cl, both values,

^ ) and Rn(μ2iV2), are the same.

Now we use the recursion formulas (A) and (J3) for the definition of the
states φ and ^ on A = *4i * ^2- One has to check that this is well-defined
because there are different possibilities for writing elements a G A as sums of
products αλ.. . αn with <2χ,... , αn G ̂ 4iU^42 But since this ambiguity comes
only from relations inside A\ and relations inside A2, which are respected
by r and R (because they are respected by r(ui) and R(μiiui)), no problem
occurs; for more details on this, see [Spe2].

It only remains to see that (</>, φ) on A = C(Xi, X2) ι s indeed the c-free
product of (μi,ι/i) and (^25^2)? ί e. we have to check that it fulfills the
characterizing property of the c-free product. For φ this follows from the
results of [Spe2]. So consider α G A of the form α = αi . . .α n with α̂  G «4»ϋ)?

t ( l ) ^ t ( 2 ) ^ . - . ^ t ( n ) , i/, ω ( o ί ) = 0.

Note that in (J3), because of the definition of R and the fact that φ is the
free product of φλ and φ2, only the term with k = 0 survives, i.e.

.. .α n) = i?i[a!J ψ{α2 .. .a n ) = <

which gives, by induction, the wanted factorization for φ.

To get the assertion of the theorem, one has now to use the definition of

R as the direct sum of R(μi, V\) and R{μ2<> ^2)

Rn(μ, v)=Rn[Xλ +X2,...,X1+ X2]

. . ., X\\

and the same for r. D

Remarks.
(1) The description of the c-free convolution in terms of cumulants can,

analogously to the free case [Spe2], be generalized to a description of
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the c-free product. Indeed, in our proof we had to use the correspond-

ing machinery for the c-free product on C(Xi,X 2 ) = C(Xι) * C(X2).

(2) An interesting special case of the c-free convolution is given if we put

v{ — £0. Then only outer sets survive in the definition of the c-free

cumulants. This leads to a description in terms of interval partitions,

which were introduced by von Waldenfels [vWa]. The corresponding

convolution (μ, δ0) = (μi, δ0) EB (μ2, δ0) shares a lot of properties with

the usual and the free convolution. This "boolean" convolution was

investigated in [Wor], the results will be published in [SpW],

4. Limit theorems for the c-free convolution.

To become familiar with the connection between non-crossing partitions and
the c-free convolution, we will now calculate quite explicitly the c-free cen-
tral and Poisson limit distribution. A more systematic machinery for the
treatment of such questions will be presented in the next section.

We will see (comp. [BSp]) that the moments of the limit distributions
are calculated with the help of the partitions in 7VC2(2n) or NC(n). Thus,
before presenting the limit theorems, we collect all relevant information on
the combinatorics of the respective partitions in two lemmas. These com-
binatorial statements have also some interest of their own. Although there
has been an increasing interest in the lattice of non-crossing partitions in
the last time [Edel, Ede2, Pou, Sim, SiU, Bia, Nic], we have not found
any investigation on this subject related to the distinction between "inner"
and "outer".

First, for the central limit theorem, we have to consider 7VC2(2n). We

will need the numbers (n G N, 0 < k < n)

cn := #7VC2(2n)

αj? := #{τr 6 NC2{2n) | the number of inner sets of π is equal to k}.

Of course, we have α™ = 0.

For the investigation of these quantities it is advantageous to use the
well known bijection between partitions TΓ £ NC2{2n) and n-Catalan paths
Λ (see, e.g., [HiP]). An n-Catalan path Λ={$i,. . . , s2n} is a graph in Z2,
starting at (0, 0), ending at (n, n), with possible steps S{ = (0,1) or s» = (1, 0)
(i = 1,. . ., 2n), such that no part of the path lies above the diagonal. The
above bijection is given as follows: To each π — {V1,.. .,Vn} G iVC2(2nJ
we assign a Λ(7r)={s!,.. .,s2 n} in the way that st = (1, 0) if i is the first
element in one of the V}, and st = (0,1) if ί is the second element in one of
the Vj. The number of outer sets of π corresponds thereby to the number of
points (i,i) (1 < ί < n), where Λ(π) meets the diagonal.
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Example. For π = {(1,4), (2,3), (5,6)} we have

A(τr) - {(1, 0), (1, 0), (0,1), (0,1), (1,0), (0,1)},

which corresponds to the following graph:

It is a well known fact [HiP] that the number of all n-Catalan paths is
given by the

( \

hence

Catalan number

1 / 2n
c = cn = -

n\n - .

1 ( 2n \
cn := — I,

n \ n — 1 /

l\n

This follows quite easily from the recursion formula

n

where c° := 1,c = ~ιcn-k,

which is the recursion for the Catalan numbers.

It seems that α£ has not received any interest so far. We collect their

basic properties in the next lemma.

Lemma 4.1.
(i) We have for n > 1

(ii) We have for n > 2

r.n _n
1 (2n - 2
-
n \ n — 1

(iii) We Λαt e /or n > 2 αnc? 0 < A; < n — 2
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Proof, (i) There is only one n-Catalan path which meets the diagonal n-

times, namely Λ={(1, 0), (0,1), (1, 0), (0,1),. . .} .

(ii) Shifting the diagonal one unit to the right induces a bijection between
the set of all n-Catalan paths which meet the diagonal once and the set of
all (n — 1)-Catalan paths. Hence α^_x = cn~ι.

For α"_2 we have, denoting with (A, k) the first intersection point with

the diagonal,

n - l n - l
nn _ Y^ k n-k _ V^ k-1 n-k-1 _ n-l
an-2 — Z^ ak-ian-k-l ~ Z^ ~ '

k=l k=l

by the recursion formula for the Catalan numbers.

(iii) We prove this by induction on n. For n = 2, the assertion is true,

namely for k = 0 we have

a2

0 + a\ = 1 + 0 = 1 = a\.

Now assume the assertion to be true for all n' with 2 < n' < n. We want to
show it for n.

First, consider k with 0 < k < n - 4. Again we use the general decompo-
sition

k+2

which results from the splitting of an n-Catalan path into two parts, the
first one from (0,0) to its first intersection point (/, /) with the diagonal (this
part thus gives rise to / — 1 inner sets) and the remaining (n — /)-Catalan
path, which has to produce the remaining (k + 1) - (/ - 1) inner sets. The
decomposition (*) is true for all n > 2 and k with 0 < k < n — 3. Since
0 < k < n - 4, we have 0 < f c - / + l < n - / - 3 < n - / - 2 and, for all /
with 1 < / < k + 1, we can use our induction hypothesis for n' = n - I to
obtain

a1 an~ι + ak+2 1

/c + l

k+2

1=1 1=1
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the last equality again by application of (*).

Now consider k = n — 3. Then the same arguments as before apply, but

now α£-/+2 = 0 for / = 1,..., k + 1, thus

*+i

1=1

For k — n — 2^ the assertion reduces to ii), because α%+\ = α£l} = 0 Π

For the treatment of the c-free Poisson distribution we will need some
specific information on the combinatorics of the sets NC(n), namely we will
use (n > 1, 1 < k < n, 0 < / < n - 1)

t% := #{ττ G NC(n) \ π consists precisely of k sets}

sĵ j := #{τr 6 NC(n) \ π consists precisely of fc outer and / inner sets}.

In addition, we define £j> := 0 for n > 1 and ίg := 1. Similarly, we put
5^ z := 0 if the indices are out of their natural domain, with the only exception

< o := I-

Lemma 4.2.
(i) We have for n > 1 and 1 < k < n

n r—1

r=2 » = 1

(ii) We have for n > 2 and 0 < / < n — 1

n ___ j.fi — 1

(iii) We have for n > 1 and k, I > 0

n /
5 n _ V^ V^ r n-r
/̂c + 1,/ ~~ Z ^ Z ^ 1J' kJ-J

r=l j=0

Froo/. (i) Let π = {Vi,..., V*} G iVC(n) consist of k sets, with 1 G Vλ. Then
there are two disjoint possibilities: either Vi = (1) or V\ φ (1). In the first
case, π H-> TΓ\(1) gives a bijection onto all non-crossing partitions of {2,..., n)
consisting of k - 1 sets. In the second case, let r φ 1 be the maximal element
of V\. Then, removing r from Vi, π splits into a non-crossing partition of
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{1, . . . , r — 1} (which may consist of i sets, where possibly 1 < i < r — 1)
and a non-crossing partition of {r + 1,. . . , n} (which has to consist of the
remaining k — i sets). If r = n, then k = i, and we need the special definition
£° := 1. The formula is also true for n = 1, since then ί| = ί° = 1.

(ii) If 7Γ € NC(n) has / inner sets and only one outer set Vi, then l , n ξ
Vi and the removing of n (n / 1) gives a bijection onto all non-crossing
partitions of {1, . . . , n — 1} consisting of / + 1 sets.

(iii) Let r be the maximal element of the first set Vi in π £ NC(n).
Then 7Γ decomposes into a non-crossing partition of { l , . . . , r} with Vi as
the only outer set (and possibly j inner sets) and a non-crossing partition of
{r + 1,.. . , n} which has to yield the remaining k outer and / — j inner sets.
If k = 0 and r = n, then j = 0, and we need SQQ = 1. D

Remark. Kreweras [Kre] gives the following explicit formula for t%

* (*-l)!Jfc!(n-λ:)!(n-Jfe + l)! '

but for our investigations the recurrence formula of our lemma is much more
useful.

Now we have finished the presentation of all needed combinatorial tools
and we can start our investigations on limit theorems for the c-free convo-
lution.

Let us denote, for λ > 0, by Dx the dilation of probability measures on E
by the factor λ, i.e.

(Dxμ)(A) := μJλ^A) for A C R measurable,

and

Dx(μ,v):=(Dxμ,Dxv).

Under the weak convergence

w-l\m(μN,ι>N) = (μ,i/)
iv-4 oo

we will understand the componentwise weak convergence

w-lim μ̂ v = μ and w-lim VN = v.
N—» oo N-+oo

Theorem 4.3 (c-free central limit theorem). Let (μ,v) G M2 with

= 0 and μ{X2) = α 2 , */(X2) = /32 (α,/3>0)
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be given. Then we have

N—times

where

4 α*-/?* ' u — a2 — 2

In particular

dufiAl) = X[-2

Remark. Of course, the statement about the convergence of the second
component is nothing else but the free central limit theorem [Voi2, VDN],
[Spel, Maa, Gir].

Proof. Since va>β and Uβfβ have compact support, it suffices to check that

the moments of D /r^{(μ> i') BB . . . EB (μ, */)} converge to the corresponding

moments of (^a,β^β,β)' Note that

rn(Dλu) = Xnrn{u) and Rn{Dλμ, Dxv) - λ n # n ( μ , v)

for all n > 0. This shows that the limiting measures (μ,*>) are determined

by
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or in terms of their moments

fθ, /odd
mΛv) = <

θ, /odd

This formula for the moments of μ was also derived in [BSp].
Now consider the generating power series

CO CO

f(z) := 5>2 n(i>)**\ F(z) :=^2m2n(μ)z2n.
n=0 n=0

The recursion formula for the Catalan numbers yields [Spe2, VDN]

/3V/(*)a = / ( * ) - 1 , thus f(z)=1 ^ β 2

For the determination of F(z), we use part (iii) of Lemma 4.1 to observe

(α2-/32)m2 ( n +i)(/i)

Λ=0

n-1

k=0

fc=0

which implies

n=0
CO

(α2 _ β*) + aAz<
n=0 n=0
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= (a2 - β2) + αVF(z) - a2β2z2f(z).

This can be resolved for F(z),

F(z) =
(a2 - β2) - a2β2z2f(z) _ {a2 - β2) - \o? ( ! - > / ! - 4/32z2)

{a2 - β2) - aAz2 (a2 - /92) - a4z2

In terms of the Cauchy-transform G(z) of /i this reads

The Stieltjes inversion formula (see, e.g., [AG1]) gives then the distribution
as stated in the theorem. D

R e m a r k s .
(1) An instructive way to write the Cauchy-transforms

g(z) = l/zf(l/z) and G{z) = l/zF(l/z)

of Vββ and vaβ, respectively, are the following continued fraction ex-
pressions

z —

z —

G(Z)

z —

1
z — a2g(z) a2

z II2

z
 P

z — z _ . . .

These expansions follow directly from the relations

β2z2f(z)f(z) = f(z) - 1

a2z2F(z)f(z) = F(z) - 1.

The second identity can be checked with our explicit form of / and P

or it may be derived directly by the recursion formula
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(2) The sequence of orthogonal polynomials corresponding to va)β satisfies
the following recurrence relations:

po(x) = 1

px(x) = x

p2(x) = x2-a2

Pn+l(x) = XPn(x) - β2pn-l(x) fa > 2).

For a2 = β2 = 1 we obtain the Tchebyscheff polynomials of the sec-
ond kind, whereas for a2 = 1 and β2 = 1/2 we get the Tchebyscheff
polynomials of the first kind.

(3) It may be interesting to note that in the limit α,/? —>• oo under the
restriction β/a2 = const = 7, the distribution vaφ converges to the
Cauchy distribution μ with density

(4) In Fig. 1, we have plotted the density of va^ for fixed β — 1 and for

six different values of α.

Theorem 4.4 (c-free Poisson limit theorem). For a,β > 0 define for
allN>\

μ N : = \ 1 ~ ^ ) δ o + ̂ δl and U:= 1 J ^ +

ffl ... ffl (μ
N-+00

V—times

a-β

[0, l<β

\ PZ(Γ^a\ i & < β — \fβ o r β + y/β ^ a

[o, β -
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1 a y 4β - (t

In particular

Remark. Again, the statement about the second component reduces to

the free Poisson limit theorem [Maa, VDN, Spel, Gir].

Proof. Again, it is sufficient to check the convergence of all moments. Since
for n > 1

mn(uN) = — and mn(μN) = —,

we have

Γ2^ and Rn(μN, uN) = ^ + O(l/N2),

from which it follows that the limiting measures (μ, v) are determined by

rn(ί>) = β for all 7i > 1

Rn(β, v) — oί for all n > 1,

or equivalently, for all n > 1,

mn(A) = Σ ^X^

For v, this gives the free Poisson distribution, see [VDN, Maa, Spel]. The
formula for the moments of μ was also derived in [BSp].

As before, we want to calculate the generating power series in the moments

oo oo

/(*):= £ > „ ( % » and F(z) := ̂  mn(μ)zn.
n=0 n=0
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Since f(z) is of eminent importance for the determination of F(z), we will
briefly derive its form, although this may also be found in [Maa, VDN]. By
part (i) of Lemma 4.2, we obtain

oo / n

n-l \k=zl /
oo n / n r—1

n = lfc = l \
oo n

n = l Λ = l

where

oo n n r— 1

n = lAr = l r = 2 i = l

thus

f(z) = l + βzf(z) + z(f(z)-l)f(z).

This can be resolved to give (note /(0) = 1)

=

2z

or

. , 1 / 1 \ + { l β )
9{Z) = ~zf \Γz) = z

For the determination of F(z), we use part (iii) and (ii) of Lemma 4.2. We

have

n = l l,k>0

oo n /

-1 + Σ Σ ΣΣ ( ^ * r ) {$7-^?-'*"-'
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r > 2

which implies

β
F(z) =

β-az(f(z)-l

This yields for the Cauchy-transform G(z) = l/zF(l/z) of μ after some
calculations the expression

_ z(2β -a) + α(l - /?) - α^/fc - (1 + /?))2 - 4/3
( 2 ) ~ 2z[z{β -a) + a{l-β + a)]

The Stieltjes inversion formula [AGl] gives then, after some computations,
the distribution as stated in the theorem. •

Remarks.
(1) Again, it is quite instructive to write the Cauchy-transforms as infinite

continued fractions, namely

g(z) =

and

(2) Note that our formula for G(z) in [BSp] was wrong.

(3) In Fig. 2, we show the Poisson limit distribution πα>/? for a — 1 and
for six different values of β.
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5. Analytic description of the c-free convolution.

In Sect. 3, we described the c-free convolution from a combinatorial point of
view by presenting the connection between moments and free and c-free cu-
mulants; the convolution is then characterized by the fact that the cumulants
are linear under convolution.

For an analytic description one wants to translate this connection into a
functional relation between the corresponding power series, i.e. instead of a
collection of moments or cumulants one prefers to deal with one respective
analytic function containing the same information. This has the advantage
that an analytic machinery is usual more powerful than a mere combinatorial
description and it may serve as a starting point for the treatment of measures
with unbounded support.

Thus, given a pair (μ,v) € Λί2, we define the following power series
(formally, we put r0 = i?o = 0)

oo

B(z) := Σ mn{»)zn = 1 + Σ m n ( Φ "
n=0 n=l

D(z) :=

Since rn and Rn are additive under c-free convolution, one has for (μ, v) —
(μi,i/i) ffl (μ2,^2)

Au{z) = AUl(z) + AU2(z)

C(μ,v)(Z) - C(μi,»i)(Z) + C(μ2,V2)(Z)

and it remains to derive the connection between A(z) and C(z) on one side
and B(z) and D(z) on the other side. Since v — vλ EB v2 is nothing else
than the free convolution, the relation between A(z) and B(z) is given in
[Voi2, Spe2].

Theorem 5.1. With the above definitions we have

A[zB(z)] + l=:B(z) or fl [^-JL-] = l +

and

C[zB(z)] D(z) =
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Proof. We only have to show the relation between B(z), C(z), and D(z).

The crucial relation is the definition of the c-free cumulants Rk = Rk{μ,v)

by

n
mn(μ) = Σ Σ Rk' m^)iu) ' "•' mi(k-i)(v) ' mι{k)(μ).

Now define

C(z):=-
Z

Then we have

C[zB(z)] D(z)

) Σ
\/=o /

oo

n = l

z

hence
-C[zB(z)].D(z) = -

zB(z) ι y " x ' z

which gives the assertion. D

Instead of dealing with the generating power series B(z) and D(z) in the

moments it is usually more convenient to replace them by the corresponding

Cauchy-transforms

g(z) = 1/z - B(l/z) and G(z) = 1/z D(l/z).

If we also replace the series A(z) and C(z) by the r/Λ-transforms

r(z) = A{z)/z and R(z) = C(z) - C(^)/^,
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then our main result can be rewritten as follows.

Theorem 5.2. With the notations as above we have

9{Z) ~ z - r[g(z)] °r 9[Γ{Z) + Z J

and

G(z) =
z-R[g{z)\

Examples.
1) Gaussian distribution as in Theorem 4.3.

We have

φ ) = β2z and R(z) = o?z,

which gives

and G(z) =

which agrees with our calculations in Sect. 4. Note that in our proof of
Theorem 4.3 we used other combinatorial identities than here. Our current
machinery does not reproduce the proof of 4.3, but it specializes to the
formulas given in the remark after 4.3.

2) Poisson distribution as in Theorem 4.4.

We have

r(z) = β and R(z) — a ,
v } 1 - z \-z

which gives

q(z) = — i — or q(z) =

and

G(z) = ?—5— or G(z) =
z+z(i-β)-eLzg(zy
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in agreement with our calculations in Sect. 4.

R e m a r k . In the case of the boolean convolution (μ, δ0) = (μ1 ? δ0) EB (μ2? <50),
which we mentioned in Remark 2 in Sect. 3, we have g(z) — gso{z) = 1/z
and our formula in Theorem 5.2 reduces to

G(z) = \FΓΛ w i t h K(z)
z -

This simple formula reflects the simple structure of the underlying lattice
of interval partitions and offers the possibility for a far reaching analytic
treatment of the boolean convolution, in this respect see [Wor, SpW].
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Figure 1. c-free Gaussian distribution ua>β for fixed β = 1 and
six different values of α; vertical double lines indicate ί-peaks.
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β = 0.25 1.50-

1.00-

0.50-

0.00- 1

β

I

= 0.4

1 1 r~J , ,

-1.00 -.50 .00 .50 1.00 1.50 2.00 2.50 3.00 -1.00 -.50 .00 .50 1.00 1.50 2.00 2.50 3.00 3.50

β = 0.64

-T 1 1 1 1 1—"—I 1

.00 -.50 .00 .50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

1 i — . i 1 1

2 3 4 5 6 7

- 1 0 1 2 3 4 5 6 7 8 9 10

Figure 2. c-free Poisson distribution πa>β for fixed a = 1 and six
different values of /?; vertical double lines indicate 5-peaks; note
that the 5-peak at z0 lies first on the right side of the continuous
spectrum, then it dissapears and reappears again on the left side
of the continuous spectrum.
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