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MEAN-VALUE CHARACTERIZATION OF
PLURIHARMONIC AND SEPARATELY HARMONIC

FUNCTIONS

L.A. AIZENBERG C.A. BERENSTEIN AND L. WERTHEIM

We show that separately harmonic functions and plurihar-
monic functions in Cn can be characterized by a finite number
of mean-value conditions over boundaries of ellipsoids or dis-
tinguished boundaries of polydisks. This is a generalization
of the Delsarte-Lions characterization of harmonic functions
and of the Morera theorem for holomorphic functions.

1. Introduction.

Let us recall the converse of Gauss's mean-value theorem as proved by Del-
sarte and Lions [11], it says that for any n > 2 there is a finite set Hn,
1 € Hn, such that if rx > 0, r2 > 0 and rλ/r2 £ Hn then any / G C(Rn)
satisfying

(1) / Πy)dσj(y) = f(x), (j = l,2;x € Rn)

is harmonic in Rn. Here S(x,Γj) is the sphere of center x and radius r,,
dσj is the normalized Lebesgue measure on the sphere.In fact, H3 = {1}, so
that any two distinct radii are sufficient in dimension 3. In [9] this result is
extended to arbitrary non-compact irreducible symmetric spaces of rank 1.
Finally, from [7, 8] we conclude that in Rn there is a local version of this
theorem (in fact, this result extends to symmetric spaces of rank 1), namely
if / G C(£(0, J?2)),ri + r2 < #, and satisfies (1), in the sense that (1) holds
as long as |ar| + Γj < #, then / is harmonic in the ball B(0, R) of center 0 and
radius R. On the other hand, we do not have such a satisfactory situation for
symmetric spaces of higher rank or the Heisenberg group (or other nilpotent
Lie groups for that matter). In the latter case, the results in [1, 2] are estab-
lished for Lp-functions /. The reason for this difficulty is slightly different
in these two cases. In the case of symmetric spaces X of rank bigger than
one it is due to the failure of the Spectral Synthesis Theorem in C°°(X) [6],
while in the Heisenberg group H n we do not have yet a resonable effective
method to study this kind of problem in C°°(Hn). In this paper we study

295



296 L.A. AIZENBERG, C.A. BERENSTEIN AND L. WERTHEIM

the characterization of separately harmonic and pluriharmonic functions in
Cn(n > 2) by means of mean-value properties. That is, by identities of the
type (1). As it will become clear later on, we have really a problem of the
type that arises in symmetric spaces of rank > 2. For a general perspective
on this kind of problems we refer to [13, 14].

This research was carried while the first author held a visiting Professor-
ship at the University of Maryland. He would like to thank the Mathematics
Department and the Institute for Systems Research for their hospitality.

2. Necessary conditions.

From now on we will be working in C n with n > 2, the orientation of the
space is the usual one that makes the differential form

-—r-dzι A dz\ Λ Λ dzn A dzn > 0.
(2i)n

We also recall that this form equals

v ' d~z Adz : = v ' d~zγ A Λ d~zn A dzx A Λ dzn.
[2ι)n (2ι)n

The notation dζ[k] = dζ1A...Adζk_ιAdζk+1A...Adζn will be used throughout.
Let us also introduce the following differential form

u(ζ -a) = ( - 1 ) ^ - i - Σ ( - l ) * - 1 (ζk - ak) dζ[k) A dζ.
yZ7ΓZ) k=i

A domain D C C n is called n-circular (or Reinhardt domain) with center
at the point α, if z G D implies (G^ + (zλ - αi)e ι ί l , . . . , an + (zn - an)eitn) G D
for 0 < tj < 2π,j = 1, 2,..., n. Such a domain is called complete, if with each
point z° G JD, D contains the whole polydisk Qr{a) = {̂  \%j ~ aj\ < rji3 —
1, ...,n}, where rj = \zQ - a,j\,j = 1, ...,n. Henceforth the space C(D) shall
be the space of real valued continuous functions in D.

Theorem 2.1. If D C Cn is a complete bounded n-circular domain with
center at the point a and f is a separately harmonic function in D (i.e.,
harmonic with respect to each variable Zj,j = 1,..., n) and continuous in D,
then

(2) ΊΓ&wJ /(CMC-*) = /(«)•
n voiyU) JdD

Also, if Qr = Qr{a) is a polydisk with center a, then for any function f,

separately harmonic in Qr and continuous in Qr one has
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where Δ Γ ( α ) is the distinguished boundary of the poly disk Qr (a), i.e., Δ r ( α ) =

{z :\z -a-\ = r ,j = l , . . . ,rc}.

Proof. The equality (3) is obtained using that any function separately har-
monic in Qr and continuous in Qr satisfies the mean value property with
respect to integration over the distinguished boundary Δ r . In order to prove
formula (2) we use the following lemma, whose proof is immediate.

Lemma 2.2. Let R = (|Ci - aλ\
2,..., \ζn - an\

2) = (#1, . . . , Rn). The form v
satisfies the following identity

(4) HC - a) = ^

where

ζ — a ζι — #1 £ n — an

and

μ(R) = (-l)^' "

It follows now from (4) and the identity (3) that the formula (2) must
be correct up to a multiplicative constant. This constant can be computed
using / Ξ I and applying the Stokes formula:

/ -I \ n ( n ~ 1 )

/ t/(z-a)=(< / 2 n [ dzΛdz=—vo\(D).
JdD K } (2πi)n JD πn y J

This concludes the proof. D

Let us recall that a domain Dι C C n is called circular or Cartan domain
with center at the point α, if z £ Dλ implies (z - ά)ext G £>i for 0 < t < 2π.
Such a domain is said to be complete, if for each each point / G A , Dx

contains the whole disk {aλ + (z\ - aχ)t,..., an + (z% — an)t : t £ C, \t\ < 1}.
An example is the ball Bp = {z : \z — a\ < p).

Theorem 2.3. If D\ C C n is a complete bounded circular domain with

center at the point a and f is a pluriharmonic function in Dι (i.e., real part

of a holomorphic function) and continuous in Dχ} then

n Stn \ ί
n vol(LΊ) Jd
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If Ql is a "circular polydisk"1 with center at a, i.e., Q\ = Q\{a) — {z :
| δ j ( * i - α i ) + ••• + & " ( * * - α Λ ) l < rάj = 1,..., n}, det ||&<|| φ 0_, then for any
function f which is pluriharmonic in Q\ and continuous in Ql we have

(6) /(«)
^ Z T Γ j r ι . . . r n J ( )

+ *>?(Cn ~ α n ) ) | Λ ... Λ K&i (Ci - α x ) + • + bn

n(ζn - an))\

where Δj(α) = {2: : \b)(z1 - aλ) -\ t-b](zn - an)\ - rάj = l,...,w} t'5 ίΛe
distinguished boundary of the circular polydisk Ql(a).

Proof. A pluriharmonic function is obviously separately harmonic as well,
therefore formula (3) is valid for it and (6) can be derived from (3) by a
linear transformation (a linear transformation conserves pluriharmonicity,
because a function is pluriharmonic if and only if its restriction to each
complex line is harmonic). The proof of (5) requires the following lemma,
whose proof is contained in [4, Lemma 17.8]. All complex lines a passing
through a and not lying in the hyperplane {z : zλ = a{\ can be written in
the form

a(v, a) = {z : zλ = aλ + ί, z2 = α 2 + υ2t,..., zn = an + vnt, ί G C }

where u = (v2,..., t>n) With this notation we have

Lemma 2.4.

1 di (-\\n~ι

(7) v(ζ - z) = — | ί | 2 n — Λ i-ii—-rfv Λ dϋ.

From this Lemma and the mean-value property for harmonic functions in
C we obtain (5) up to a multiplicative constant, which can be computed in
the same way as it was done in Theorem 2.1. D

Remark 2.5. Lemma 2.4 has appeared in work of Kytmanov (see [5]) and

in [12].

Remark 2.6. Formulae (2), (3), (5) and (6) in the particular case n = 1

are the classical mean value theorem for harmonic functions.

Remark 2.7. It is easy to show that each of the conditions above is suffix

cient for the corresponding class of functions, but we do not prove it here,

because stronger statements will be proved below.

xWe are using this terminology and notation to distinguish it from a usual polydisk,
which is rc-circular.
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Remark 2.8. It can be shown that in the formulae (2) and (5) the form v
can be replaced by the Bochner-Martinelli kernel (up to a ±1)

except that the constant in front of the integrals in the formulas correspond-
ing to (2) and (5) will be independent of the domain.

In the case of the ball the differential form v and the Bochner-Martinelli
kernel differ from the surface area element by constants. More generally, one
has the following two mean-value results.

Proposition 2.9. /// is separately harmonic in the n-circular ellipsoid

Ω = {z: bλ\Zl - aλ\
2 + + bn\zn - an\

2 < r2}

and continuous in Ω, then

(8)

Proof. For the proof we can assume a = 0. Then, observe that dΩ and the
area measure are invariant under the action of the group G = S1 X X S1,
whose normalized Haar measure dμ is (2π)~ndθι dθn. As / is separately
harmonic, if (£°,... , £°) is a fixed point of dΩ then

Therefore, replacing ζ by eiθ ζ (with the obvious meaning of this product)
in the left-hand side of (8) and integrating on G against the measure G?μ, we
obtain the desired identity. D

Proposition 2.10. If f is pluriharmonic in the circular ellipsoid

*i) + + <?(*n ~ an)\2 < r2

and continuous in Ωi, where det ||cy || φ 0, then

(9) ΊUTKΓΛI /(C)Λ»(O = /(«)•

Proof The proof is similar, just use that pluriharmonicity is invariant under
linear invertible transformations. D
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3. Sufficient conditions in terms of the mean-value property for
the whole boundary.

Let us recall that the Fourier transform of the normalized area measure of

the unit ball in C n is given by j n - i ((zf + - — h ^ ) M , where, in terms of

Bessel functions we have

The set H2n of the introduction is the set of positive quotients of zeros of
jn-ι(ζ) — 1. (For R m just replace n = ra/2.) In this section we will consider
mean-value properties with respect the following n-circular ellipsoids with
center at the point a:

Djjk(a) = [ z : b)\zx - aλ\
2 + ••• + b]\zn - a n \ 2 < ή k )

where k = 1, 2, j = 1,..., n, all bι

ά > 0.

Theorem 3.1. Let f £ C(Cn) be such that for each a £ Cn the 2n

conditions obtained by setting in (2) D = Dj}k{o), j = 1,..., n and k = 1, 2,

hold. If no Vj^/rj^ belongs to H2n,

(10) ! ^ ]

then f is separately harmonic in C n .

Proof. Fixing j , consider the change of variables Wι = JbljZh Then the family

of ellipsoids Djk(a) is transformed to a family of balls B{a, r ^ ) , δ/ = λ/^jα/

The function f(wu ..., wn) = f(zu ..., zn) ~ f (u>i/ψή, •••, wn/y/&j) satisfies

the following condition

πn f
— — / f(wu ..., wn)v(w - a) = /(α).

n vol(β(α,r i > Λ)) JdB{a^3,k)

Using the notation w — a — ξ + iη it can be shown that (see [5, p. 24])

Re v{w - δ) = ( ~ 1 } „' Σ ((-ir-^i^bi f^dη+ {~l)n+j'\dξ Λ

In other words, in the integral we are averaging / with respect to the volume
form on the sphere dB(ά, r ^ ) . According to the Delsarte-Lions mean-value
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characterization of harmonic functions [11], / is harmonic, i.e., for each

where z = (Wo] Zι,..., Jb™ zn J. Because z is arbitrary, z is arbitrary as

well. In other words, for all z G C n

In particular, / is real analytic. Since (11) holds for every j — l,...,n, it
follows from (10) that

- -

i.e., / is separately harmonic in C n . D

We have already mentioned that there is a local version of the Delsarte-
Lions two-radii theorem, the same argument in [8] shows that the same is
true for the two-radii theorem we used in the last proof. This is the reason
of the first condition imposed below.

Theorem 3.2. Let a domain Ω be the union of ellipsoids {z : b\\zι — α x | 2 +

hδ?|zn -Gn | 2 < r 2 } of radii r strictly bigger than r^i + r ^ . Let f G C(Ω)
and assume that for each point a 6 Ω such that Drik (a) C Ω (k either 1 or
2) the mean value condition holds (2) holds, where D = Drik(a), with the
corresponding value of k. Assume further that for each 2 < j < n there is
a closed ellipsoid Ej of the form {z : bι \zι — α^il2 + + b^\zn — α J ) n | 2 <
(rj,i + rj,2)2} contained in Ω (for a convenient choice of the point a^). If the
corresponding pair of mean value conditions (2) hold for all Drj k (a) C Ej
then f is separately harmonic in Ω.

Proof. The first part of the proof of Theorem 3.1, the geometric condition on
Ω, and the possibility to localize the two-radii theorem allows us to conclude
/ satisfies (11) for j = 1 in Ω, and thus it is real analytic everywhere.
The other conditions guarantee that / satisfies the j-th condition (11) in a
neighborhood of the point α^. It now follows from the connectedness of Ω and
the real analyticity of/ that all the conditions (11) are satisfied everywhere!
Therefore, / is separately harmonic in Ω. D

Remark 3.3. Theorems 3.1 and 3.2 demand that the identity (2) must
hold for n pairs of ellipsoids. These theorems are not true if we impose
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conditions on only (n — 1) pairs. In fact, if we had only {n — 1) pairs, we
would obtain a system of equations like (11), but consisting only of (n — 1)
equations. Such a system has a nontrivial solution

(12) g g = c,, ,= !,...,»
where some c\ φ 0. Any solution of the system (12) satisfies our conditions
for (n — 1) pairs of ellipsoids, but it is not separately harmonic.

Consider now the following circular ellipsoids with center at the point α:

{ W i O * ! - αx) + • • + c?ln{zn - α n ) | 2 < ή^ ,

bι

ά > 0 ; j = 1 , . . . , n ; Ar = 1,2; p = 1 , . . . , n .

L e t (|dfm | |, ( / , m = 1, . . . , n ) b e t h e inverse m a t r i x of | |cfm | | for p fixed. L e t
Q = \\qps,ki\\, (P) 5 = 1 , . . . , n; k,l = 1, . . . , n ) b e t h e n2 X n 2 m a t r i x w i t h t h e
following e n t r i e s

qps,ki = dp

ksd
p

ls.

Theorem 3.4. Let f € C(Cn) 50 that for every a € C n Jfte conditions (5)
hold for Dλ = Dp

jk(a)J = l , . . . , n ; Λ = l , 2 ; p = l , . . . , n (2n conditions). If

Vjtι and r^2

 a r e chosen as in Theorem 3.1, det | | 1 / ^ || 7̂  0 ; αnc? det Q φ 0,

then f is pluriharmonic.

Proof Fixing p, we can consider Dp

k(a) as an affine image of Dj]k(0), where
the matrix of the linear map is ||dfm||. From the condition (5) and the
reasoning preceding Corollaries 2.9 and 2.10, we conclude that the function

(wu ..., wn) H-» f(dp

nwι + -•' + dp

lnwn,..., dp

nlw1 + -" + dp

nnwn)

satisfies all the conditions of the Theorem 3.1 and, therefore, it is separately
harmonic. Hence taking derivatives, we obtain

Since det Q φ 0, we get

τ ~ r Ξ θ , M = l , . . . , n .
OZkOZi

This means that / is pluriharmonic. D
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Remark 3.5. In this theorem we are considering images of the family
of ellipsoids from the Theorem 3.1 under n complex linear transformations.
The only restriction on them is the condition det Q φ 0. In particular, no
more than one of these transformations can be unitary. In the case n = 2
and one of them is the identity (say when p — 1), the condition on the other
is :

Im (cM 24<4) Φ 0.

Remark 3.6. Theorems 3.1, 3.2 and 3.4 can be rewritten using formulas
(8) and (9).

We leave to the reader the statement of local theorems corresponding to
Theorem 3.2.

4. Three circles theorem on the plane.

Theorem 4.1. Let φ be a continuous function on C. Suppose that

(13) λ{φ, z, n ) = \(φ, z, r 2) = λ(φ, z,r3),zeC

where λ(</>, z, r) = ~ /0

 π φ{z + reιθ)dθ. If ω — 0 is the only solution of the
system

Jo(rxω) = J o (r2ω) = J 0

then φ is harmonic.

Proof. Clearly, λ(<£, z,r) = φ* χ r(z), where χr £ £'(R2) is the following
distribution of compact support:

φ^^- I π φ(reiθ)dθ.
2τr Jo

Therefore, the condition (14) can be rewritten as

Φ * (Xn ~ Xra) = Φ * (Xr2 - Xr3) = 0.

Consider the closed convolution ideal in £'(R2) generated by the radial distri-
butions χΓ l — χ r 2 and χΓ2 — χΓ3. Our aim is to show that the Laplace operator
Δ (considered as the distribution Aδ0) belongs to this ideal. (Because any so^
lution of Laplace equation in the sense of distributions is automatically a har-
monic function.) Translating this statement into the space £'(R2) of Fourier
transforms, we have to prove that ξ2+η2 belongs to the closed ideal generated
by Jo (rlλ/ξ2 + η2) - Jo (r2\/£2 + V2) a n d Jo (fWf2 + V2) ~ Jo (*W£2 + η2)-
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According to [10, 9], it is enough that Jo(rιω) — Jo(r2ω) and JQ(r2ω) — Jo(r3ω)
have ω — 0 as their only common zero. •

R e m a r k 4.2. The correspondent statement for only two radii is false. On
the other hand, let us show that for almost every choice of distinct rλ,r2, r 3

our conditions hold. In fact, fixing r2jrλ φ 1 we have a discrete set of
solutions JQ(W) — Jo(wr2/r1) and for each such a w, we have a discrete set
of exceptional values of r 3 /r 2 such that Jo(wr3/r2) — Jo(w). Hence, we have
at most countable set of exceptional values of r3/r2 for each fixed τ2jτι φ 1.

5. Sufficient conditions in terms of the mean-value property for
distinguished boundaries.

T h e o r e m 5.1. Let rλ^r2)r3 be such that they satisfy the conditions of

Theorem 4.1. Let p\,ρ2 > 0 such that p\j'p2 $. H2. If a continuous function

f € C ( C n ) satisfies

^ •••>*» + Rneitn)dtλ ...dtn = f(a)
{2π)n

for every a G C n and any choice of R^ such that

Rι € { Γ I , Γ 2 , Γ 3 } , / = l , . . . , n - 1 ; Rn 6

then f is separately harmonic.

Remark. We are considering 2 β""1 polydisks at each point.

Proof We proceed by induction on n. When n — 1 it is Delsarte-Lions's
theorem [11].

For n > 1 consider the auxiliary function

(15)

F(zλ) = \ ί f(zι,a2 + R2e
it*,...,an + Rne

it»)dt2...dtn

(27Γ)"- 1 7[0,2π]»-i

with α 2 , . . . , an, R2,... ,Rn fixed. By virtue of (14) we have

(16)

λ(F, zu n) = λ(F, zur2) = λ(F, zu r 3) = f(zua2, . . . , « „ ) , V^ € C.

Therefore, by Theorem 4.1, F is harmonic and so

(17) λ(F, zu rx) = F ( ^ ) = / f a , α 2 , . . . , α n ) .
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Hence, / is harmonic with respect to the first variable. Fixing zx for a
moment, consider the function

g(z2,... ,zn) = f(zuz2,... ,*„) .

From (15) and (17) we observe that g satisfies all the conditions of the
theorem. Hence by the induction hypothesis g is separately harmonic with
respect to the variables J2τ2, -. - ,^n, and thus / is separately harmonic with
respect to all variables. •

Consider the following circular polydisks

Qp(a;R) = {z : {^(zi - ax) +-- + c%n(zn - an)\ < Rj, j = l , . . . , n }

ϊoτp= l,...,n, Rj e {rur2,r3}, j = 1,..., rc- 1, and Rn G {/>i,/>2} Further-
more, let

Ap(a]R) = {z: lήxfa - ax) + - - + <$n(zn - an)\ = RjJ = l , . . . ,n}

be its distinguished boundary. Let Q be the same matrix as in Theorem 3.3.

Theorem 5.2. Let ri,r2,r3,pup2 be as in Theorem 5.1, det Q φ 0. Let
f G C(Cn) be such that for any a G Cn,p = 1,... , n and any posible choices
of Rj we have

f
Ap(a;R)

Then f is pluriharmonic.

Proof It is based on Theorem 5.1 and a reasoning similar to that in Theorem
3.3, so we omit the details. D

Remark 5.3. A natural question is whether it is possible to diminish
the number of polydisks in Theorems 5.1 and 5.2. There is a reasonable
expectation to obtain an analogous to the Theorem 5.1 result with only
(n + 1) polydisks at each point. The analytical difficulties in doing so are
similar to those of studying the Pompeiu problem in the case of symmetric
spaces of rank > 1.
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