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HADAMARD-FRANKEL TYPE THEOREMS FOR
MANIFOLDS WITH PARTIALLY POSITIVE CURVATURE

KATSUEI KENMOTSU AND CHANGYU XIA

In this paper we prove some theorems that two minimal
submanifolds satisfying a condition for the dimensions of the
submanifolds in a Riemannian manifolds with partially pos-
itive curvature or a Kaehler manifold with partially positive
holomorphic sectional curvature must intersect. Our results
show that the famous Frankel theorem about intersections of
minimal submanifolds in a manifold with positive curvature is
generalized to the very wide class of manifolds with partially
positive curvature.

1. Introduction.

In 1966, Frankel [F2] showed that if N is an n-dimensional complete con-
nected Riemannian manifold with strictly positive sectional curvature and
if V is an r-dimensional compact totally geodesic immersed submanifold of
N with 2r > n, then the homomorphism of fundamental groups : ^(V) -»
πi(JV) is surjective. This important theorem follows from an earlier result
proved by himself in [Fl] : Two compact totally geodesic submanifolds P
and Q in a Riemannian manifold N of positive sectional curvature must nec-
essarily intersect if their dimension sum is at least that of N. Unfortunately,
the set of manifolds with positive sectional curvature is not so big. We don't
even know whether the product of two 2-spheres S2 x S2 admits a metric
with positive sectional curvature or not.

Frankel also showed in [Fl] that if N is a complete connected Kaehler
manifold with positive sectional curvature, then any two compact analytic
submanifolds must intersect if their dimension sum is at least that of N.
Goldberg and Kobayashi proved in [GK] that the same conclusions also hold
if N is only assumed to have positive bisectional curvature. We remark that
since a complete connected Kaehler manifold of positive bisectional curvature
which contains a compact Kaehler submanifold is compact (see Theorem
3.1 below), the above N is actually compact, thus it is biholomorphic to a
complex projective space by the settlement of Frankel's conjecture (see [M]
and [SY]). The topology of N is therefore very simple.
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The purpose of the present paper is to consider the situation where N
can only have either partially positive sectional curvature or partially pos-
itive bisectional curvature. Such manifolds cover many known examples.
We generalize PrankeΓs theorems quoted above to this class of manifolds
and therefore give some topological obstructions for the existence of higher
dimensional totally geodesic submanifolds in a Riemannian manifold with
partially positive sectional curvature. Also, we prove an intersection theo-
rem for totally geodesic submanifolds and Kaehler submanifolds in a Kaehler
manifold with partially positive holomorphic bisectional curvature.

2. Riemannian manifolds with partially positive sectional
curvature.

We recall the definition of Riemannian manifolds with partially positive cur-
vature (cf. [W2]). Let Nn be an n-dimensional Riemannian manifold with
metric (,) and p G Nn be a point of Nn. If, for any (k + 1) mutually or-
thogonal unit tangent vectors e, βi, , e* G TpN

n, we have Σ,^=1K(eAei) >
0(resp., > 0), we say Nn has A -positive (resp., fc-nonnegative) Ricci cur-
vature at p. If Nn has A -positive (resp., A;-nonnegative)-Ricci curvature at
every point of it, we call Nn has A -positive (resp., k—nonnegative)-Ricci cur-
vature and denote this fact by RiC(k)(Nn) > 0 (resp., > 0). Here K(e Λ ê )
denotes the sectional curvature of the plane spanned by e and ei(l <i < k).
Thus, 1-positive (l-nonnegative)-Ricci curvature is equivalent to positive
(nonnegative) sectional curvature and (n — l)-positive ((n —l)-nonnegative)-
Ricci curvature is equivalent to positive (nonnegative) Ricci curvature. Com-
pact locally symmetric spaces of rank > 2 are examples of manifolds with
positive k(> 1)-Ricci curvature. Slight purturbations of these metrics give
non-symmetric examples. Further examples of manifolds of positive A -Ricci
curvature can be found among the compact homogeneous spaces with a bi-
invariant metric (cf. [B]).

Our first result in this paper generalizes the PrankeΓs intersection theo-
rem for totally geodesic submanifolds in a manifold of positive curvature to
manifolds with positive A -Ricci curvature.

Theorem 2.1. Let N be an n-dimensional complete connected Rieman-
nian manifold with k—nonnegative Ricci curvature and let V and W be two
complete immersed totally geodesic submanifolds of dimensions r and s, re-
spectively, each immersed as a closed subset, and let one of V and W be
compact. Assume N has k—positive Ricci curvature either at all points of V
or at all points ofW. Ifr + s>n + h — 1, then V and W must intersect.

Proof. We can assume that V and W are embedded, otherwise the proof
given will then hold using any "sheet" of the immersion. If r < fc, we have
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s = n by the assumption on the dimensions. We know that W = N and we
have VΠW ^ Φ. Therefore we may assume that r > k. Suppose then that V
and W do not intersect. Let 7 : [0,£\ -> N be a normal geodesic from p G V
to q e W that realizes the minimum distance between these submanifolds
(since both V and W are closed subsets and one of them is compact, such
7 exists at least one). An argument using the first variation formula of arc-
length shows that 7 strikes both V and W orthogonally. Now, take a unit
orthonormal basis βi, , er of TPV. Parallel translating them along 7 gives
rise to r mutually orthogonal unit vector fields E\, , Er along 7. Prom
dim V + dim W > dim N + k — 1, we know that at least k of the vector fields
ϋα, , Er are tangent to W at q. Without loss of generality, we may assume
that £?i, , Ek are tangent to W at q. Each vector field Ei(i = 1, , k)
gives rise to a variation with lengh LE. (u) of the variational curves of the
geodesic 7 keeping endpoints on V and W. The first variation of arc-length
L'E. (0) is 0. By the second variation formula of arc-length [K, p. 99], we
find, for i = 1, , k, that

(2.1) 2^(0) =

where σy and σ^ denote the second fundamental forms of V and VF, respec-
tively. Since both V and W are totally geodesic, we have that σy = σw — 0.
Also, it follows from RiC(*.) (N) > 0 that

ΐ = l

Moreover, since N has positive A -th Ricci curvature either at all points of V
or at all points of W, we know that either

53 lf(7'(0)Λ £<(())) >0,
i-l

or

Substituting these formulas into (2.1), we get

k ,ί k

0.
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Thus we know that I/#.(0) < 0, for some i, which contradicts to the as-
sumption that 7 is of minimal length from V to W. Hence V and W must
intersect. This completes the proof of Theorem 2.1. D

Theorem 2.2. Let N be an n-dimensional complete, connected Riemannian
manifold with k—positive Ricci curvature and V be an r-dimensional totally
geodesic submanifold with 2r > n + k — 1, then the homomorphism of the
fundamental groups: π\(V) —» n1(N) is surjective.

Proof. We note that k < n — 1 and the condition 2r > n + k — 1 implies
that r > k. It then follows from Theorem 1 in [G] that N is compact. Prom
RiC(jfe)(iV) > 0, we conclude that the Ricci curvature of N is positive, because
we have that

Hence πi(iV) is finite by Bonnet-Myers Theorem [CE]. Also, it follows from
Theorem 2.1 that V is connected. Let N be the universal covering man-
ifold of N. N has again k—positive Ricci curvature for the lifted metric.
Denote by V = π~1(V) the inverse image of V under the projection map
π : N -> JV. Obviously, V is a compact totally geodesic submanifold (may
not connected). By Theorem 1 all components of V must intersect and
hence V is indeed connected. Thus V is a covering space of V. It then
follows from the same arguments as in the proof of the Main Theorem in
[F2] that the homomorphism of the fundamental groups : πι(V) —> τri(JV)
is surjective. D

The following Corollary is an immediate consequnce of Theorem 2.2 and
it strengthens the first result by Prankel stated in Introduction in the case
that dimiV is odd.

Corollary 1. Let N be a complete connected odd dimensional Riemannian
manifold with RiC(2) (N) > 0 and let V be a compact totally geodesic subma-
nifold with 2dimV > dimiV. Then the homomorphism of the fundamental
groups : τri(V) —> τri(iV) is surjective.

3. Kaehler manifolds with partially positive bisectional curvature.

Let N be a Kaehler manifold of complex dimension n. Following [Wl], we
denote by J, G and R the complex structure, the (complex valued) Kaehler
metric tensor and the curvature tensor of the Riemannian metric which is
the real part of G. This Riemannian metric will always be denoted by ( ,)
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and its associated norm by | . |. If X and Y are vectors in TXN, x £ JV,
denote by H(X, Y) the bisectional curvature determined by X and Y, that
is, we have that

H(XY)-ί° i{X °Γ y = °'
I ^ F F

 if X*°
It is easy to see that if spanβ{X, JX} = spanΛ{X', JX'} and
spanΛ{Y, JY} = spanΛ{y ;, JY1}, then we have

Also, by Bianchi's identity, we know that

H(X, Y) = — ! j ^ {i?(x, y, x, Y) + R(χ, JY, x, JY)}.

The Kaehler manifold JV is said to have g-positive (resp., nonnegative) bisec-
tional curvature (1 < q < n) at a point x E N if, for every 2q orthonormal
vectors {euJeu>- ,e g,Je g} of TXN, Σq

i=1H(X,ei) > 0(resp.,> 0) for all
unit vectors X G TPN. N is said to have g-positive (resp., nonnegative) bi-
sectional curvature if it has g-positive (resp., nonnegative) bisectional curva-
ture at every point of it. Note that 1-positive (resp., nonnegative) bisectional
curvature is the same as positive (resp., nonnegative) bisectional curvature
in the usual sense, and n-positive (resp., nonnegative) bisectional curvature
is the same as positive (resp., nonnegative) Ricci curvature.

The following result is a counterpart in Kaehler geometry of Theorem 1
in [G].

Theorem 3.1. Let N be a complete connected Kaehler manifold of complex
dimension n > 2. Let M be a compact immersed Kaehler submanifold of
complex dimension r > 1. J/; for any x G M and any orthonormal basis of
the form {βi, Jeχ, , er, Jer} ofTxM, we have

(3.1) fe^jf j έ W(*),£i(s))} ds > 0,

then N is necessarily compact, where 7 : [0,00) —> N is the geodesic which
starts from x and is orthogonal to M at x and Eι denotes the vector field
obtained by the parallel translation of ê  along 7 for i = 1, ...,r.

Proof Suppose JV is not compact. By the same argument as in the proof of
Theorem 1 in [G], we can find a point x E M and a geodesic 7 : [0,00) -» N
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issuing orthogonally from M at x such that the length of the segment 7|[o,e]
realizes the distance from η(t) to M, and so 7 has no focal point.

Now, take an orthonormal basis {βi, J e l 5 , e r, Jer} of TXM and denote
by Ex{t), JjBi(t), > ,Er(t), JEr(t) the vector fields obtained by the parallel
translations of them along 7. Define K(t) = Σr

i=1H(y(t),Ei(t))/2r. The
condition (3.1) is equivalent to say that we have

ft
(3.2) lim inf / K(s)ds > 0.

t-*00 Jo

It then follows from [T] that the scalar Jacobi equation defined by

(3.3) / " + K(t)f = 0

has a solution on [0, 00) which satisfies the following initial conditions

(3.4)

and which has at least one zero in [0,00). Let φ : [0, 00) —> R be such a
solution and we can assume φ(t0) = 0 for some t0 > 0.

Let C be the collection of nonzero smooth vector fields X along ηr|[o,to]
which are perpendicular to 7, tangent to M at 7(0), and which satisfy
X(t0) = 0,X'(0) = 0. We introduce the index form / of the geodesic 7
along 7|[o,ίo]

 a s follows: for I , 7 G C w e have (see [BC, p. 221]),

(3.5) /(X,y) = (σM(X(0),F(0)),V(0))- f°{X"
Jo

where σM is the second fundamental form of M in N.
For each i = 1, ,r, define vector fields Xi(t) and Yi(t) along 7|[o,to] by

(3.6) Xi(t) = ΦiήEiit) and Y^t) = φ(t)JEi(t).

Note that each X{ and Y{ are elements of C. Substituting (3.6) into (3.5)
gives, for i = 1, ,r,

(3.7) I(Xi,Xi) = (σM(ei,ei),Ί'(0))

- f\φ"{t) + K{Ί'{t) A
Jo

and

(3.8) I(YuYi) = (σΛίίJe*, J e i ) , 7 ' (0))

/ t 0 " / * ) Λ
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Since M is a Kaehler submanifold of iV, we have that σM{Jei,Jei) =
i >^i)' Prom the definition of bisectional curvature, we know that

K{Ί' A Ei) + K(Ί' A JEi) = H(Ί\

Thus, we have, from (3.3), (3.7) and (3.8), that

= o.

Therefore, we have either I(Xi,Xi) < 0, or I{Y^Yi) < 0 for some i.
However, by the standard results of the index form (see [BC, p. 228]) we
must have, for any X G C, I(X, X) > 0 unless there is some point on 7|[0,ί0]
which is a focal point to M along τl[o,ί0]- This is a contradiction. The proof
of Theorem 3.1 is thus completed. D

Theorem 3.2. Let N be a complete connected Kaehler manifold with k-
nonnegative bisectional curvature of complex dimension n. Let V and W
be two compact complex analytic submanifolds in N of complex dimension r
and s, respectively. Assume N has k-positive bisectional curvature either at
all points of V or at all points of W. Ifr + s>n + k — 1, then V and W
must intersect.

Proof. Suppose that V and W do not intersect. Let 7 : [0, ί] —> N be a normal
geodesic from pQ E V to q0 G W that realizes the minimum distance between
them. Since V is a Kaehler submanifold of JV, we can choose an orthonormal
basis βi, , e r , e r + 1 , , e 2 r of TPoV such that er+i — Jei{i = 1, ,r) .
Parallel translating βi, Jei, , e r, Jer along 7 gives rise to 2r orthonormal
vector fields £7i, JEX, , Er and JEr along the geodesic. From dimΛ V +
dimΛ W > dimΛ N + 2(k-l), at least 2k-1 vector fields of Ex, JEλ, ,Er

and JEr are tangent to W at q0. We arrange them in the following form:
Ehr , J3 ip, JEhr - , JEjq, where we have iγ φ φ ip, jλφ ... φ jqe
{1, , r} and p + q = 2fc — 1. Thus one of p and ^ is greater than or
equal to k. lίp> k, then Eiλ, , Eik are tangent to W at g0. Since W is a
Kaehler submanifold, J ϋ ^ , , JElk are also tangent to W at qQ. Similarily,
if q > k, then JEj^- ,JEjk are tangent to W at q0, and so J(JEh) =
—£?j15 • , J{JEJk) = — £?Jfc are also tangent to V at </0 Thus Eh,- - , £^fc

are also tangent to ^ at go In either case, we can find some indices tx φ
- - φ tk e {1, , r} such that Etl, JEtl ,-Έtk and JEtk are tangent to V
at go Without loss of generality, we may assume Eu JEU , Ek and JEk

are tangent to V at go The vector fields EUJEU , £7* and J£"fc give rise
to 2k variations of the geodesic 7 keeping endpoints on V and W. We see
that the first variation of arc-length L'E. (0) = .Lj£t(0) = 0 for i = 1, , k.
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Using the second variation formula of arc-length, we get, for i = 1, , A;,
that

- fl

Jo

and

L'}Ei(0) = (σw(JEi(q0),JEi(q0))Π

t(ί)) -

ή
- / K(JEi Λ V)dt,

Jo

where σv and σ^ denote the second fundamental forms of V and W, re-
spectively. Since V and W are Kaehler submanifolds of iV, we know, for
i = 1, , A:, that

Hence, we have that

k Λ k

]C (L'k (0) + LjEi (°)) = ~ / Σ ί ^ ( ^ ( ^ ) Λ V
i=l **° i=l

(3.9) = - / ]£#(Y(t),J
°̂ i=l

Prom the assumption that iV has fc-nonnegative bisectional curvature and
A -positive bisectional curvature either at all points of V or at all points of
W, we see that

for any t G [0, £], and

max <
I i=\ i=l

Substituting these formulas into (3.9), we get that
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Hence the second variation corresponding to at least one of the vector fields
Eι, JEi, , Ek and JEk is strictly negative, contradicting to the assump-
tion that 7 is of minimal length from V to W. Thus V and W must intersect.
This completes the proof of Theorem 3.2. D

Theorem 3.3. Let N2n(n > 2) be a complete connected Kaehler manifold
with k-nonnegative bisectional curvature of real dimension 2n. Let W2r and
V1 be a complete immersed complex analytic submanifold of real dimension
2r and a t(> 2n — r + k — 1)-dimensional complete immersed totally geodesic
submanifold, respectively, each immersed as a closed subset, and let one of
W2r and V1 be compact. Assume N2n has k-positive bisectional curvature
either at all points of W2r or at all points of V1. Then W2r and Vt must
intersect.

Proof. The theorem and proof are variations of a situation dealt with in
a previous result. Suppose then that W2r and Vt do not intersect. Let
7 : [0,^] -» N2n be a normal geodesic from p0 £ W2r to q0 G V1 that
realizes the minimum distance between them. We choose an orthonormal
basis {βi, , e r , e r + i , ,e 2 r} of TP0W

2r such that er+i = Jβi{i = 1, , r) .
Parallel translating them along 7 gives rise to 2r orthonomal vector fields
JS?i, JEi, - jEr and JEr along the geodesic. Prom dim# W2r + dimV t >
2n + k-\-r — 1, we know that at least r + k of the vector fields i?i, Jϋα, , Er

and JEr are tangent to V1 at q0. Thus there exist some indices i\ φ — - φ
ik G {1, , r} such that Eh, JEh, , Eik and JEik are tangent to V1 at
q0. The vector fields £? i l ? JEiχ, ,Eik and JEik give rise to 2k variations
of the geodesic 7 keeping endpoints on W2r and V1. By the first variation
of arc-length, we have that L'E. (0) = L'JEi (0) = 0 , j = 1, , ft, and using
the second variation formula of arc-length, we get, for j = 1, , fc, that

- ['
Jo

and

^ . ( 0 ) = (σvt(JEij(q0),JEij(q0)),Ί'(e)) -

t; ΛΊ')dt,

where σw^ and σVt denote the second fundamental forms of W2r and Vt

in i\Γ2n, respectively. Since Vt is totally geodesic and W2r is a Kaehler
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submanifold, we have that

σVt = 0 and σwi, (Je^., Jeiά) = -σwir (e^, e{j), for j = 1,.., k.

Hence, we have that

]Γ fe. (0) + Z/̂ . (0)) = - /' Σ W^i Λ V) + * W , A </)} dt
ii J J o i i

where the last inequality follows from the assumption on the bisectional
curvature of N2n. Therefore the second variation corresponding to at least
one of the vector fields Eiχ, JEiλ, , Eik and JEih is negative, contradicting
to the assumption that 7 is of minimal length from W2r to Vt. Thus W2r

and F* must intersect. D

Remark. In a previous paper [KX], we proved a special case of Theo-
rem 3.3, that is, k = 1.
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