ON CONSTRAINED EXTREMA

THOMAS I. VOGEL

Assume that I and J are smooth functionals defined on a Hilbert space H. We derive sufficient conditions for I to have a local minimum at y subject to the constraint that J is constantly J(y).

The first order necessary condition for I to have a constrained minimum at y is that for some constant λ , $I'_y + \lambda J'_y$ is identically zero. Here I'_y and J'_y are the Fréchet derivatives of I and J at y. For the rest of the paper, we assume that y in H satisfies this necessary condition.

A common misapprehension (upon which much of the stability results for capillary surfaces has been based) is to assume that if the quadratic form $I''_y + \lambda J''_y$ is positive definite on the kernel of J'_y then I has a local constrained minimum at y. This is not correct in a Hilbert space of infinite dimension; Finn [1] has supplied a counterexample in the unconstrained case, and the same difficulty will occur in the constrained case. In the unconstrained case, if (as often occurs in practice) the spectrum of I''_y is discrete and 0 is not a cluster point of the spectrum, then I''_y positive definite at a critical point y implies that I''_y is strongly positive, (i.e., there exists k > 0 such that $I''_y(x) \ge k ||x||^2$ holds for all x), and this in turn does imply that y is a local minimum (see [2]). However, in the constrained case, things are not so easy. Even if $I''_y + \lambda J''_y$ has a nice spectrum (in some sense), it is not clear that $I''_y + \lambda J''_y$ being positive definite on the kernel of J'_y implies that this quadratic form is strongly positive on the kernel, nor that strong positivity implies that y is a local minimum.

In [3], Maddocks obtained sufficient conditions for $I''_y + \lambda J''_y$ to be positive definite on the kernel of J'_y . As Maddocks points out, this is not quite enough to say that I has a constrained minimum at y. Remarkably, essentially the same conditions as Maddocks obtained for positive definiteness do in fact imply that I has a strict local minimum at y subject to the constraint J = J(y), as we shall see.

For any $h \in H$ we may say $J(y+h) - J(y) = J'_y(h) + \frac{1}{2}J''_y(h) + \epsilon_1(h)||h||^2$, where ϵ_1 goes to zero as ||h|| goes to zero. If we consider an h for which J(y+h) = J(y), then of course $0 = J'_y(h) + \frac{1}{2}J''_y(h) + \epsilon_1(h)||h||^2$. Now, for that h we have

(1)

$$\Delta I = I(y+h) - I(y) = I'_{y}(h) + \frac{1}{2}I''_{y}(h) + \epsilon_{2}\|h\|^{2}$$

$$= -\lambda J'_{y}(h) + \frac{1}{2}I''_{y}(h) + \epsilon_{2}\|h\|^{2}$$

$$= \frac{1}{2}(I''_{y} + \lambda J''_{y})(h) + (\lambda\epsilon_{1} + \epsilon_{2})\|h\|^{2}$$

Since $I''_y + \lambda J''_y$ is a bilinear form, there is a linear operator A defined on H so that $(I''_y + \lambda J''_y)(u, v) = \langle u, Av \rangle$. Similarly there is some element of H, call it ∇J , so that J'_y applied to a vector h is $\langle h, \nabla J \rangle$. Let $\sigma(A)$ be the spectrum of A. There are three cases which often arise in practice:

Theorem 1. If $\sigma(A) \cap (-\infty, c] = \emptyset$ for some c > 0, then I has a constrained minimum at y.

Proof. From (1) we may write ΔI as $\langle h, Ah \rangle + (\lambda \epsilon_1 + \epsilon_2) ||h||^2$. But $\langle h, Ah \rangle \ge c ||h||^2$ (this is easily verified using the spectral theorem, see [5]), so for h sufficiently small, ΔI is positive.

Theorem 2. Suppose that $\sigma(A) \cap (-\infty, \epsilon]$ consists of a single negative eigenvalue λ_0 for some $\epsilon > 0$. Let ζ solve $A\zeta = \nabla J$. (A will be invertible.) I has a constrained minimum at y if $J'_y(\zeta) = \langle \zeta, A\zeta \rangle < 0$, and I does not have a constrained minimum at y if $J'_y(\zeta) = \langle \zeta, A\zeta \rangle > 0$.

The proof of Theorem 2 will proceed in a series of steps.

Step 1. Assume that $\langle \zeta, A\zeta \rangle < 0$. Then $I''_y + \lambda J''_y$ is strongly positive on the kernel of J'_y .

Proof. Take x in the kernel of J'_{y} . As in [4], x may be written as $v + \alpha \zeta$, where v is perpendicular to φ_{0} , the eigenfunction corresponding to λ_{0} . (The key to this calculation is that $\langle \zeta, \varphi_{0} \rangle \neq 0$. But if ζ is orthogonal to φ_{0} , it can be shown that $\langle \zeta, A\zeta \rangle > 0$.) One can verify that $\langle x, Ax \rangle = \langle v, Av \rangle - \alpha^{2} \langle \zeta, A\zeta \rangle$, so that $\langle x, Ax \rangle \geq \langle v, Av \rangle$.

Let $\{E_{\lambda}\}$ be the spectral family associated with A, so that $A = \int_{-\infty}^{\infty} \lambda dE_{\lambda}$. By our assumption on $\sigma(A)$, $A = \lambda_0 E_{\lambda_0} + \int_{\epsilon}^{\infty} \lambda dE_{\lambda}$, where E_{λ_0} is orthogonal projection onto φ_0 . Therefore,

$$\langle v, Av \rangle = \langle v, \lambda_0 E_{\lambda_0}(v) \rangle + \int_{\epsilon}^{\infty} \lambda d \| E_{\lambda} v \|^2.$$

The first term vanishes, so that

$$\langle v, Av
angle \geq \epsilon \int_{\epsilon}^{\infty} d\|E_{\lambda}v\|^2 \geq \epsilon \int_{-\infty}^{\infty} d\|E_{\lambda}v\|^2 \geq \epsilon \|v\|^2.$$

Therefore, $\langle x, Ax \rangle \geq \epsilon ||v||^2$.

To conclude the proof that $I''_y + \lambda J''_y$ is strongly positive on the kernel of J'_y , we need to show that $||v|| \ge k||x||$ for some fixed positive constant k. Assume without loss of generality that ||x|| = 1. For any fixed x, ||v||is greater than or equal to the distance from x to the line $\{c\zeta : c \in \mathbf{R}\}$. Consider the projection of x onto ζ . Its length is $|\langle x, \zeta/||\zeta||\rangle|$. We may write ζ as $\beta \nabla J + \hat{\zeta}$, where $\hat{\zeta}$ is perpendicular to ∇J . We cannot have β equaling 0, since by assumption, $\langle \zeta, A\zeta \rangle = \langle \zeta, \nabla J \rangle < 0$.

Then the projection has length at most $||x|| ||\hat{\zeta}|| / ||\zeta||$. But $||\hat{\zeta}|| < ||\zeta||$ (since $\beta \neq 0$). Letting γ equal $||\hat{\zeta}|| / ||\zeta||$, we have $\gamma < 1$ and the length of the vector component of x perpendicular to ζ is greater than or equal to $\sqrt{1 - \gamma^2}$. But ||v|| is greater than or equal to the length of that component, so we get our k to be $\sqrt{1 - \gamma^2}$, concluding step 1.

Step 2. If $\langle \zeta, A\zeta \rangle < 0$, then I has a minimum at y subject to the constraint J = J(y).

Proof. Take an h for which J(y + h) = J(y). Now h need not be in the kernel of J'_y , but we may write h as $h_1 + \alpha\zeta$, where h_1 is in the kernel of J'_y , by taking α to be $\langle h, \nabla J \rangle / \langle \zeta, \nabla J \rangle$. (Note that $\langle \zeta, \nabla J \rangle = \langle \zeta, A\zeta \rangle \neq 0$.) Substituting into equation (1),

(2)
$$\Delta I = \frac{1}{2} \langle h_1, Ah_1 \rangle + \alpha \langle h_1, A\zeta \rangle + \frac{1}{2} \alpha^2 \langle \zeta, A\zeta \rangle + (\lambda \epsilon_1 + \epsilon_2) \|h\|^2.$$

However, $\langle h_1, A\zeta \rangle = \langle h_1, \nabla J \rangle = 0$, causing this term to vanish. We have $0 = \Delta J = J'_y(h) + \epsilon_3 ||h||$, where ϵ_3 tends to 0 as ||h|| tends to 0. Thus $\alpha^2 = \epsilon_3^2 ||h||^2$, and we conclude that

$$\Delta I = rac{1}{2} \langle h_1, Ah_1
angle + \epsilon \|h\|^2$$

where ϵ tends to zero as ||h|| tends to 0. From Step 1, A is strongly positive on the kernel of J'_u , so

$$\Delta I \ge rac{k}{2} \|h_1\|^2 + \epsilon \|h\|^2.$$

Since $h = h_1 + \alpha \zeta$, with $\alpha = -\epsilon_3 ||h||$, it is easy to see that for ||h|| sufficiently small there holds $||h_1|| \ge \frac{1}{2} ||h||$. Thus

$$\Delta I \ge \|h\| \left(\frac{k}{8} + \epsilon\right)$$

which must be greater than 0 for ||h|| sufficiently small. Therefore I has a minimum at y subject to the constraint J = J(y), concluding the proof of step 2 and the first half of Theorem 2.

Step 3. Suppose that $\langle \zeta, A\zeta \rangle > 0$. Then I does not have a minimum at y subject to the constraint J = J(y).

Proof. First, $I''_y + \lambda J''_y$ is no longer positive definite on the kernel of J'. Indeed, $\eta = \varphi_0 + c\zeta$ is in the kernel of J'_y if $c = -\frac{\langle \varphi_0, \nabla J \rangle}{\langle \zeta, \nabla J \rangle} = -\frac{\langle \varphi_0, \nabla J \rangle}{\langle \zeta, A \zeta \rangle}$, but one can verify that $\langle \eta, A \eta \rangle < 0$.

Now consider $f(r,s) = J(y + r\eta + s\nabla J) - J(y)$, a differentiable function of r and s. Then $\nabla f(0,0) = (0, \|\nabla J\|^2)$, so the zero set of f is tangent to the r axis at the origin. From this we conclude that there is a function s(r)so that $J(y + r\eta + s(r)\nabla J) - J(y) = 0$, with $\lim_{r\to 0} \frac{s(r)}{r} = 0$. From equation (1), for $h = r\eta + s(r)\nabla J$ we have

$$\Delta I = (I'' + \lambda J'')(r\eta + s(r)\nabla J) + (\lambda\epsilon_1 + \epsilon_2) \|r\eta + s(r)\nabla J\|^2$$

so that $\Delta I = r^2 \langle \eta, A\eta \rangle + o(r^2)$. Thus, for all r sufficiently small $\Delta I < 0$, indicating that we do not have a constrained minimum, concluding the proof of Theorem 2.

Theorem 3. If $\sigma(A) \cap (-\infty, 0)$ consists of more than one point, I does not have a constrained minimum at y.

Proof. Suppose that ν and μ are in $\sigma(A) \cap (-\infty, 0)$, with $\nu < \mu$. Let E_{λ} be the spectral decomposition of A, so that E_{λ} is not constant in any neighborhood of ν nor in any neighborhood containing μ . Take an $\epsilon > 0$ so that the two ϵ neighborhoods around ν and μ are disjoint and contained in $(-\infty, 0)$. Then $E_{\nu+\epsilon} - E_{\nu-\epsilon}$ is nonzero, i.e., is a nontrivial projection. Therefore there is some $\varphi_0 \neq 0$ so that $(E_{\nu+\epsilon} - E_{\nu-\epsilon})\varphi_0 = \varphi_0$. I claim that $\langle \varphi_0, A\varphi_0 \rangle < 0$. Indeed, $\langle \varphi_0, A\varphi_0 \rangle = \langle \varphi_0, \int_{-\infty}^{\infty} \lambda dE_{\lambda}(\varphi_0) \rangle$, which is $\int_{-\infty}^{\infty} \lambda d\langle E_{\lambda}(\varphi_0), \varphi_0 \rangle$,

Indeed, $\langle \varphi_0, A\varphi_0 \rangle = \langle \varphi_0, \int_{-\infty}^{\infty} \lambda dE_{\lambda}(\varphi_0) \rangle$, which is $\int_{-\infty}^{\infty} \lambda d\langle E_{\lambda}(\varphi_0), \varphi_0 \rangle$, where the latter just a Stieljes integral. But beyond $\nu + \epsilon$, $E_{\lambda}(\varphi_0) = \varphi_0$, so we only get a negative contribution. It is certainly strictly negative, since for $\lambda < \nu - \epsilon$, $E_{\lambda}(\varphi_0) = 0$.

Now find a φ_1 for μ in the same fashion. We need to show that $\langle \varphi_0, A\varphi_1 \rangle = 0$. But $\langle \varphi_0, A\varphi_1 \rangle = \int_{-\infty}^{\infty} \lambda d \langle \varphi_0, E_\lambda \varphi_1 \rangle$, and it is routine to show that $\langle \varphi_0, E_\lambda \varphi_1 \rangle = 0$ for all λ .

We may take c_0 and c_1 , not both zero, so that $c_0\varphi_0 + c_1\varphi_1$ is perpendicular to ∇J . Then $\langle c_0\varphi_0 + c_1\varphi_1, Ac_0\varphi_0 + Ac_1\varphi_1 \rangle = c_0^2 \langle \varphi_0, A\varphi_0 \rangle + c_1^2 \langle \varphi_1, A\varphi_1 \rangle < 0$. The proof now proceeds as in Step 3 of Theorem 2.

Note. It often occurs in practice that the spectrum of A is discrete and may be written as $\lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$, with 0 not a cluster point of $\sigma(A)$. In this special case, the parts of the hypotheses of the above theorems which relate to $\sigma(A)$ are as follows. In Theorem 1 we require that $0 < \lambda_0$, in Theorem 2 we require that $\lambda_0 < 0 < \lambda_1$ (in addition to the hypotheses on ζ), and in Theorem 3 we require that $\lambda_0 < \lambda_1 < 0$.

References

- [1] R. Finn, *Editorial comment on Stability of a Catenoidal Liquid Bridge*, by Lianmin Zhou, to appear in Pac. J. Math.
- [2] I.M. Gelfand and S.V. Fomin, *Calculus of Variations*, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963.
- [3] J.H. Maddocks, Stability and Folds, Arch. Rat. Mech. Anal., 99 (1987), 301-328.
- [4] _____, Stability of nonlinear elastic rods, Arch. Rat. Mech. Anal., 85 (1984), 311-354.
- [5] M. Schechter, Spectra of Partial Differential Operators, North-Holland Publishing Co., Amsterdam, 1971.

Received November 17, 1994.

TEXAS A & M UNIVERSITY COLLEGE STATION, TX 77840 *E-mail address*: tvogel@math.tamu.edu