ON CONSTRAINED EXTREMA

Thomas I. Vogel

Abstract

Assume that I and J are smooth functionals defined on a Hilbert space H. We derive sufficient conditions for I to have a local minimum at y subject to the constraint that J is constantly $J(y)$.

The first order necessary condition for I to have a constrained minimum at y is that for some constant $\lambda, I_{y}^{\prime}+\lambda J_{y}^{\prime}$ is identically zero. Here I_{y}^{\prime} and J_{y}^{\prime} are the Fréchet derivatives of I and J at y. For the rest of the paper, we assume that y in H satisfies this necessary condition.

A common misapprehension (upon which much of the stability results for capillary surfaces has been based) is to assume that if the quadratic form $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ is positive definite on the kernel of J_{y}^{\prime} then I has a local constrained minimum at y. This is not correct in a Hilbert space of infinite dimension; Finn [1] has supplied a counterexample in the unconstrained case, and the same difficulty will occur in the constrained case. In the unconstrained case, if (as often occurs in practice) the spectrum of $I_{y}^{\prime \prime}$ is discrete and 0 is not a cluster point of the spectrum, then $I_{y}^{\prime \prime}$ positive definite at a critical point y implies that $I_{y}^{\prime \prime}$ is strongly positive, (i.e., there exists $k>0$ such that $I_{y}^{\prime \prime}(x) \geq k\|x\|^{2}$ holds for all x, and this in turn does imply that y is a local minimum (see [2]). However, in the constrained case, things are not so easy. Even if $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ has a nice spectrum (in some sense), it is not clear that $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ being positive definite on the kernel of J_{y}^{\prime} implies that this quadratic form is strongly positive on the kernel, nor that strong positivity implies that y is a local minimum.

In [3], Maddocks obtained sufficient conditions for $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ to be positive definite on the kernel of J_{y}^{\prime}. As Maddocks points out, this is not quite enough to say that I has a constrained minimum at y. Remarkably, essentially the same conditions as Maddocks obtained for positive definiteness do in fact imply that I has a strict local minimum at y subject to the constraint $J=J(y)$, as we shall see.

For any $h \in H$ we may say $J(y+h)-J(y)=J_{y}^{\prime}(h)+\frac{1}{2} J_{y}^{\prime \prime}(h)+\epsilon_{1}(h)\|h\|^{2}$, where ϵ_{1} goes to zero as $\|h\|$ goes to zero. If we consider an h for which $J(y+h)=J(y)$, then of course $0=J_{y}^{\prime}(h)+\frac{1}{2} J_{y}^{\prime \prime}(h)+\epsilon_{1}(h)\|h\|^{2}$. Now, for
that h we have

$$
\begin{align*}
\Delta I=I(y+h)-I(y) & =I_{y}^{\prime}(h)+\frac{1}{2} I_{y}^{\prime \prime}(h)+\epsilon_{2}\|h\|^{2} \\
& =-\lambda J_{y}^{\prime}(h)+\frac{1}{2} I_{y}^{\prime \prime}(h)+\epsilon_{2}\|h\|^{2} \tag{1}\\
& =\frac{1}{2}\left(I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}\right)(h)+\left(\lambda \epsilon_{1}+\epsilon_{2}\right)\|h\|^{2}
\end{align*}
$$

Since $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ is a bilinear form, there is a linear operator A defined on H so that $\left(I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}\right)(u, v)=\langle u, A v\rangle$. Similarly there is some element of H, call it ∇J, so that J_{y}^{\prime} applied to a vector h is $\langle h, \nabla J\rangle$. Let $\sigma(A)$ be the spectrum of A. There are three cases which often arise in practice:

Theorem 1. If $\sigma(A) \cap(-\infty, c]=\emptyset$ for some $c>0$, then I has a constrained minimum at y.

Proof. From (1) we may write ΔI as $\langle h, A h\rangle+\left(\lambda \epsilon_{1}+\epsilon_{2}\right)\|h\|^{2}$. But $\langle h, A h\rangle \geq$ $c\|h\|^{2}$ (this is easily verified using the spectral theorem, see [5]), so for h sufficiently small, ΔI is positive.

Theorem 2. Suppose that $\sigma(A) \cap(-\infty, \epsilon]$ consists of a single negative eigenvalue λ_{0} for some $\epsilon>0$. Let ζ solve $A \zeta=\nabla J$. (A will be invertible.) I has a constrained minimum at y if $J_{y}^{\prime}(\zeta)=\langle\zeta, A \zeta\rangle<0$, and I does not have a constrained minimum at y if $J_{y}^{\prime}(\zeta)=\langle\zeta, A \zeta\rangle>0$.

The proof of Theorem 2 will proceed in a series of steps.
Step 1. Assume that $\langle\zeta, A \zeta\rangle<0$. Then $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ is strongly positive on the kernel of J_{y}^{\prime}.
Proof. Take x in the kernel of J_{y}^{\prime}. As in [4], x may be written as $v+\alpha \zeta$, where v is perpendicular to φ_{0}, the eigenfunction corresponding to λ_{0}. (The key to this calculation is that $\left\langle\zeta, \varphi_{0}\right\rangle \neq 0$. But if ζ is orthogonal to φ_{0}, it can be shown that $\langle\zeta, A \zeta\rangle>0$.) One can verify that $\langle x, A x\rangle=\langle v, A v\rangle-\alpha^{2}\langle\zeta, A \zeta\rangle$, so that $\langle x, A x\rangle \geq\langle v, A v\rangle$.

Let $\left\{E_{\lambda}\right\}$ be the spectral family associated with A, so that $A=\int_{-\infty}^{\infty} \lambda d E_{\lambda}$. By our assumption on $\sigma(A), A=\lambda_{0} E_{\lambda_{0}}+\int_{\epsilon}^{\infty} \lambda d E_{\lambda}$, where $E_{\lambda_{0}}$ is orthogonal projection onto φ_{0}. Therefore,

$$
\langle v, A v\rangle=\left\langle v, \lambda_{0} E_{\lambda_{0}}(v)\right\rangle+\int_{\epsilon}^{\infty} \lambda d\left\|E_{\lambda} v\right\|^{2}
$$

The first term vanishes, so that

$$
\langle v, A v\rangle \geq \epsilon \int_{\epsilon}^{\infty} d\left\|E_{\lambda} v\right\|^{2} \geq \epsilon \int_{-\infty}^{\infty} d\left\|E_{\lambda} v\right\|^{2} \geq \epsilon\|v\|^{2}
$$

Therefore, $\langle x, A x\rangle \geq \epsilon\|v\|^{2}$.
To conclude the proof that $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ is strongly positive on the kernel of J_{y}^{\prime}, we need to show that $\|v\| \geq k\|x\|$ for some fixed positive constant k. Assume without loss of generality that $\|x\|=1$. For any fixed $x,\|v\|$ is greater than or equal to the distance from x to the line $\{c \zeta: c \in \mathbf{R}\}$. Consider the projection of x onto ζ. Its length is $|\langle x, \zeta /\|\zeta\|\rangle|$. We may write ζ as $\beta \nabla J+\hat{\zeta}$, where $\hat{\zeta}$ is perpendicular to ∇J. We cannot have β equaling 0 , since by assumption, $\langle\zeta, A \zeta\rangle=\langle\zeta, \nabla J\rangle<0$.

Then the projection has length at most $\|x\|\|\hat{\zeta}\| /\|\zeta\|$. But $\|\hat{\zeta}\|<\|\zeta\|$ (since $\beta \neq 0)$. Letting γ equal $\|\hat{\zeta}\| /\|\zeta\|$, we have $\gamma<1$ and the length of the vector component of x perpendicular to ζ is greater than or equal to $\sqrt{1-\gamma^{2}}$. But $\|v\|$ is greater than or equal to the length of that component, so we get our k to be $\sqrt{1-\gamma^{2}}$, concluding step 1 .
Step 2. If $\langle\zeta, A \zeta\rangle<0$, then I has a minimum at y subject to the constraint $J=J(y)$.
Proof. Take an h for which $J(y+h)=J(y)$. Now h need not be in the kernel of J_{y}^{\prime}, but we may write h as $h_{1}+\alpha \zeta$, where h_{1} is in the kernel of J_{y}^{\prime}, by taking α to be $\langle h, \nabla J\rangle /\langle\zeta, \nabla J\rangle$. (Note that $\langle\zeta, \nabla J\rangle=\langle\zeta, A \zeta\rangle \neq 0$.) Substituting into equation (1),

$$
\begin{equation*}
\Delta I=\frac{1}{2}\left\langle h_{1}, A h_{1}\right\rangle+\alpha\left\langle h_{1}, A \zeta\right\rangle+\frac{1}{2} \alpha^{2}\langle\zeta, A \zeta\rangle+\left(\lambda \epsilon_{1}+\epsilon_{2}\right)\|h\|^{2} . \tag{2}
\end{equation*}
$$

However, $\left\langle h_{1}, A \zeta\right\rangle=\left\langle h_{1}, \nabla J\right\rangle=0$, causing this term to vanish. We have $0=\Delta J=J_{y}^{\prime}(h)+\epsilon_{3}\|h\|$, where ϵ_{3} tends to 0 as $\|h\|$ tends to 0 . Thus $\alpha^{2}=\epsilon_{3}^{2}\|h\|^{2}$, and we conclude that

$$
\Delta I=\frac{1}{2}\left\langle h_{1}, A h_{1}\right\rangle+\epsilon\|h\|^{2}
$$

where ϵ tends to zero as $\|h\|$ tends to 0 . From Step $1, A$ is strongly positive on the kernel of J_{y}^{\prime}, so

$$
\Delta I \geq \frac{k}{2}\left\|h_{1}\right\|^{2}+\epsilon\|h\|^{2}
$$

Since $h=h_{1}+\alpha \zeta$, with $\alpha=-\epsilon_{3}\|h\|$, it is easy to see that for $\|h\|$ sufficiently small there holds $\left\|h_{1}\right\| \geq \frac{1}{2}\|h\|$. Thus

$$
\Delta I \geq\|h\|\left(\frac{k}{8}+\epsilon\right)
$$

which must be greater than 0 for $\|h\|$ sufficiently small. Therefore I has a minimum at y subject to the constraint $J=J(y)$, concluding the proof of step 2 and the first half of Theorem 2.

Step 3. Suppose that $\langle\zeta, A \zeta\rangle>0$. Then I does not have a minimum at y subject to the constraint $J=J(y)$.
Proof. First, $I_{y}^{\prime \prime}+\lambda J_{y}^{\prime \prime}$ is no longer positive definite on the kernel of J^{\prime}. Indeed, $\eta=\varphi_{0}+c \zeta$ is in the kernel of J_{y}^{\prime} if $c=-\frac{\left\langle\varphi_{0}, \nabla J\right\rangle}{\langle\zeta, \nabla J\rangle}=-\frac{\left\langle\varphi_{0}, \nabla J\right\rangle}{\langle\zeta, A \zeta\rangle}$, but one can verify that $\langle\eta, A \eta\rangle<0$.

Now consider $f(r, s)=J(y+r \eta+s \nabla J)-J(y)$, a differentiable function of r and s. Then $\nabla f(0,0)=\left(0,\|\nabla J\|^{2}\right)$, so the zero set of f is tangent to the r axis at the origin. From this we conclude that there is a function $s(r)$ so that $J(y+r \eta+s(r) \nabla J)-J(y)=0$, with $\lim _{r \rightarrow 0} \frac{s(r)}{r}=0$. From equation (1), for $h=r \eta+s(r) \nabla J$ we have

$$
\Delta I=\left(I^{\prime \prime}+\lambda J^{\prime \prime}\right)(r \eta+s(r) \nabla J)+\left(\lambda \epsilon_{1}+\epsilon_{2}\right)\|r \eta+s(r) \nabla J\|^{2}
$$

so that $\Delta I=r^{2}\langle\eta, A \eta\rangle+o\left(r^{2}\right)$. Thus, for all r sufficiently small $\Delta I<0$, indicating that we do not have a constrained minimum, concluding the proof of Theorem 2.

Theorem 3. If $\sigma(A) \cap(-\infty, 0)$ consists of more than one point, I does not have a constrained minimum at y.

Proof. Suppose that ν and μ are in $\sigma(A) \cap(-\infty, 0)$, with $\nu<\mu$. Let E_{λ} be the spectral decomposition of A, so that E_{λ} is not constant in any neighborhood of ν nor in any neighborhood containing μ. Take an $\epsilon>0$ so that the two ϵ neighborhoods around ν and μ are disjoint and contained in $(-\infty, 0)$. Then $E_{\nu+\epsilon}-E_{\nu-\epsilon}$ is nonzero, i.e., is a nontrivial projection. Therefore there is some $\varphi_{0} \neq 0$ so that $\left(E_{\nu+\epsilon}-E_{\nu-\epsilon}\right) \varphi_{0}=\varphi_{0}$. I claim that $\left\langle\varphi_{0}, A \varphi_{0}\right\rangle<0$.

Indeed, $\left\langle\varphi_{0}, A \varphi_{0}\right\rangle=\left\langle\varphi_{0}, \int_{-\infty}^{\infty} \lambda d E_{\lambda}\left(\varphi_{0}\right)\right\rangle$, which is $\int_{-\infty}^{\infty} \lambda d\left\langle E_{\lambda}\left(\varphi_{0}\right), \varphi_{0}\right\rangle$, where the latter just a Stieljes integral. But beyond $\nu+\epsilon, E_{\lambda}\left(\varphi_{0}\right)=\varphi_{0}$, so we only get a negative contribution. It is certainly strictly negative, since for $\lambda<\nu-\epsilon, E_{\lambda}\left(\varphi_{0}\right)=0$.

Now find a φ_{1} for μ in the same fashion. We need to show that $\left\langle\varphi_{0}, A \varphi_{1}\right\rangle=$ 0. But $\left\langle\varphi_{0}, A \varphi_{1}\right\rangle=\int_{-\infty}^{\infty} \lambda d\left\langle\varphi_{0}, E_{\lambda} \varphi_{1}\right\rangle$, and it is routine to show that $\left\langle\varphi_{0}, E_{\lambda} \varphi_{1}\right\rangle=0$ for all λ.

We may take c_{0} and c_{1}, not both zero, so that $c_{0} \varphi_{0}+c_{1} \varphi_{1}$ is perpendicular to ∇J. Then $\left\langle c_{0} \varphi_{0}+c_{1} \varphi_{1}, A c_{0} \varphi_{0}+A c_{1} \varphi_{1}\right\rangle=c_{0}^{2}\left\langle\varphi_{0}, A \varphi_{0}\right\rangle+c_{1}^{2}\left\langle\varphi_{1}, A \varphi_{1}\right\rangle<0$. The proof now proceeds as in Step 3 of Theorem 2.

Note. It often occurs in practice that the spectrum of A is discrete and may be written as $\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots$, with 0 not a cluster point of $\sigma(A)$. In this special case, the parts of the hypotheses of the above theorems which relate to $\sigma(A)$ are as follows. In Theorem 1 we require that $0<\lambda_{0}$, in Theorem 2 we require that $\lambda_{0}<0<\lambda_{1}$ (in addition to the hypotheses on $\zeta)$, and in Theorem 3 we require that $\lambda_{0}<\lambda_{1}<0$.

References

[1] R. Finn, Editorial comment on Stability of a Catenoidal Liquid Bridge, by Lianmin Zhou, to appear in Pac. J. Math.
[2] I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963.
[3] J.H. Maddocks, Stability and Folds, Arch. Rat. Mech. Anal., 99 (1987), 301-328.
[4] , Stability of nonlinear elastic rods, Arch. Rat. Mech. Anal., 85 (1984), 311354.
[5] M. Schechter, Spectra of Partial Differential Operators, North-Holland Publishing Co., Amsterdam, 1971.

Received November 17, 1994.

Texas A \& M University
College Station, TX 77840
E-mail address: tvogel@math.tamu.edu

