
PACIFIC JOURNAL OF MATHEMATICS

Vol. 176, No. 2, 1996

ON CONSTRAINED EXTREMA

THOMAS I. VOGEL

Assume that / and J are smooth functionals defined on
a Hubert space H. We derive sufficient conditions for / to
have a local minimum at y subject to the constraint that J is
constantly

The first order necessary condition for / to have a constrained minimum
at y is that for some constant λ, I'y + λJy is identically zero. Here I'y and
Jy are the Frechet derivatives of / and J at y. For the rest of the paper, we
assume that y in H satisfies this necessary condition.

A common misapprehension (upon which much of the stability results for
capillary surfaces has been based) is to assume that if the quadratic form
Iy + λJy is positive definite on the kernel of Jy then / has a local constrained
minimum at y. This is not correct in a Hubert space of infinite dimension;
Finn [1] has supplied a counterexample in the unconstrained case, and the
same difficulty will occur in the constrained case. In the unconstrained case,
if (as often occurs in practice) the spectrum of Iy is discrete and 0 is not
a cluster point of the spectrum, then Iy positive definite at a critical point
y implies that Iy is strongly positive, (i.e., there exists k > 0 such that
Iy{χ) > ^ll^ll2 holds for all x), and this in turn does imply that y is a
local minimum (see [2]). However, in the constrained case, things are not so
easy. Even if Iy + XJy has a nice spectrum (in some sense), it is not clear
that Iy + XJy being positive definite on the kernel of Jy implies that this
quadratic form is strongly positive on the kernel, nor that strong positivity
implies that y is a local minimum.

In [3], Maddocks obtained sufficient conditions for Γy + XJy to be positive
definite on the kernel of J'y. As Maddocks points out, this is not quite enough
to say that / has a constrained minimum at y. Remarkably, essentially
the same conditions as Maddocks obtained for positive definiteness do in
fact imply that / has a strict local minimum at y subject to the constraint
J — J(y), as we shall see.

For any h e H we may say J(y + h) - J(y) = J'y{h) + \ Jy\h) + e1(/ι)||/ι||2',
where βι goes to zero as \\h\\ goes to zero. If we consider an h for which
J(y + h) = J ( y ) , then of course 0 - Jy{h) + \J'y'{h) + e1(h)\\h\\2. Now, for
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that h we have

Δ I - I(y + Λ) - I(y) = Γy(h) + ^(h) + e 2 |H|

Since Γy + λ Jy is a bilinear form, there is a linear operator A defined on
H so that (Iy + XJy)(u,v) — (u,Aυ). Similarly there is some element of
If, call it VJ, so that Jy applied to a vector h is (h, VJ). Let σ(A) be the
spectrum of A. There are three cases which often arise in practice:

Theorem 1. Ifσ(A)Π (—00, c] = 0 for some c > 0, then I has a constrained
minimum at y.

Proof. Prom (1) we may write Δ I as (Λ, Ah) + (λei + e2)||/i||2. But (h,Ah) >
c\\h\\2 (this is easily verified using the spectral theorem, see [5]), so for h
sufficiently small, Δ I is positive. •

Theorem 2. Suppose that σ(A) Π (—00, e] consists of a single negative
eigenvalue λ0 for some e > 0. Let ζ solve Aζ = VJ. (A will be invertible.)
I has a constrained minimum at y if Jy(ζ) = (ζ,Aζ) < 0, and I does not
have a constrained minimum at y if Jy(ζ) = (ζ,Aζ) > 0.

The proof of Theorem 2 will proceed in a series of steps.

Step 1. Assume that (ζ,Aζ) < 0. Then Γy + XJy is strongly positive on the
kernel of Jy.

Proof. Take x in the kernel of Jy. As in [4], x may be written as υ+aζ, where
v is perpendicular to φ0, the eigenfunction corresponding to λ0. (The key
to this calculation is that (ζ,ψo) φ 0. But if C is orthogonal to φ0, it can be
shown that (ζ,Aζ) > 0.) One can verify that (x,Ax) = (υ,Aυ) — α2(ζ, Aζ),
so that (x,Ax) > (v,Av).

Let {Eλ} be the spectral family associated with A, so that A = / ^ XdEx.
By our assumption on σ(A), A = XOEXQ + /e°° λdEx, where EXo is orthogonal
projection onto φ0. Therefore,

(υ,Av) = (v,λoEXo(v)) + Γ \d\\Eλυf-
J e

The first term vanishes, so that

(υ, Av) > e Γ d\\Exvf > £ Γ d\\Exvf > Φ\\2-
J e J — 00
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Therefore, (x,Ax) > e\\v\\2.
To conclude the proof that I'y' + \J'y' is strongly positive on the kernel

of Jy, we need to show that \\v\\ > k\\x\\ for some fixed positive constant
k. Assume without loss of generality that \\x\\ = 1. For any fixed #, \\v\\
is greater than or equal to the distance from x to the line {cζ : c G R}.
Consider the projection of a; onto ζ. Its length is |(#, C/IICIDI We may write
ζ as βVJ + ζ, where ζ is perpendicular to V J. We cannot have β equaling
0, since by assumption, (ζ,Aζ) = (ζ,VJ) < 0.

T h e n t h e p r o j e c t i o n h a s l e n g t h a t m o s t ||a?||||CII/HCII B u t IICII < IICII ( s ince
β φ 0 ) . L e t t i n g 7 e q u a l HCII/HCII? w e ^ a v e 7 < 1 a n < 3 t h e l e n g t h of t h e v e c t o r
component of x perpendicular to ζ is greater than or equal to y/1 —η2. But
||ι;|| is greater than or equal to the length of that component, so we get our
k to be y/1 — 72, concluding step 1.

Step 2. If (ζ, Aζ) < 0, then / has a minimum at y subject to the constraint
J = J(y).

Proof. Take an h for which J(y + h) = J(y) Now h need not be in the
kernel of Jy, but we may write h as hλ + αζ, where hi is in the kernel of
j ; , by taking a to be (Λ,VJ)/(C,VJ>. (Note that (ζ,VJ) = (ζ,Aζ) φ 0.)
Substituting into equation (1),

(2) ΔJ = \{huAhx) + a(huAζ) + ^«2(C,^C) + (Aei + e2)\\h\\2.

However, (hχ^Aζ) = (hi, VJ) = 0, causing this term to vanish. We have
0 = Δ J = Jy(h) + e3||Λ||, where e3 tends to 0 as \\h\\ tends to 0. Thus
α2 = e|||/ι||2, and we conclude that

Δ/=i(Λ1,i4Λ1>+c||/ι | |2

where e tends to zero as \\h\\ tends to 0. Prom Step 1, A is strongly positive
on the kernel of J^, so

Since h = hx +αζ, with a = —e3||/ι||, it is easy to see that for \\h\\ sufficiently
small there holds \\hλ\\ > \\\h\\. Thus

which must be greater than 0 for \\h\\ sufficiently small. Therefore I has a
minimum at y subject to the constraint J = J{y), concluding the proof of
step 2 and the first half of Theorem 2.
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Step 3. Suppose that (£, Aζ) > 0. Then / does not have a minimum at y
subject to the constraint J = J{y).

Proof. First, I'y' + XJy' is no longer positive definite on the kernel of J'.

Indeed, η — φ0 + cζ is in the kernel of Jy if c = — ^ ^ f t ^ ?
one can verify that (77, A77) < 0.

Now consider /(r, 5) = J(y + rη + sVJ) — J(y), a diίferentiable function
of r and 5. Then V/(0,0) = (0, | |VJ||2), so the zero set of / is tangent to
the r axis at the origin. Prom this we conclude that there is a function s(r)
so that J(y + rη + s(r)VJ) — J(y) = 0, with lim^o ^ = 0. From equation
(1), for h — rη + s(r)VJ we have

ΔJ = (/" + \J")(rη + s(r)VJ) + (λCl + e2)\\rη + s{r)VJ\\2

so that Δ/ = r2(η,Aη) 4- o(r2). Thus, for all r sufficiently small Δ/ < 0,
indicating that we do not have a constrained minimum, concluding the proof
of Theorem 2. D

Theorem 3. If σ(A)Π(—00,0) consists of more than one point, I does not
have a constrained minimum at y.

Proof. Suppose that v and μ are in σ(A)Π(—00,0), with v < μ. Let E\ be the
spectral decomposition of A, so that E\ is not constant in any neighborhood
of v nor in any neighborhood containing μ. Take an e > 0 so that the two e
neighborhoods around v and μ are disjoint and contained in (—00,0). Then
Ev+e — Ev-€ is nonzero, i.e., is a nontrivial projection. Therefore there is
some ψQ Φ 0 so that (Ev+€ — Eu_€) φQ = φ0. I claim that (φ0, Aφ0) < 0.

Indeed, (φo,Aφo) = ( ^ Γ o o λ ^ W ) , which is J^ooλd(Eχ{φ0),φ0),
where the latter just a Stieljes integral. But beyond v + e, Eχ(φ0) — φ0, so
we only get a negative contribution. It is certainly strictly negative, since
for λ < v - e, #λ(<Λ)) = 0.

Now find a ψ\ for μ in the same fashion. We need to show that (φ0, Aφλ) —
0. But {ψQ,Aψi) — f^°ooλd(φo^Eχφι): and it is routine to show that
{φ^Eχψι) = 0 for all λ.

We may take c0 and ci, not both zero, so that coψo + cχψι is perpendicular
to VJ. Then (coφo +Cιφ1,Acoφo + Acxψι) = c ^ ( ^ o , ^ o ) + c ? ( ^ i , ^ i ) < 0.
The proof now proceeds as in Step 3 of Theorem 2. D

Note. It often occurs in practice that the spectrum of A is discrete and
may be written as λ0 < λi < λ2 < .. , with 0 not a cluster point of σ(A).
In this special case, the parts of the hypotheses of the above theorems which
relate to σ(A) are as follows. In Theorem 1 we require that 0 < λ0, in
Theorem 2 we require that λ0 < 0 < λi (in addition to the hypotheses on
OJ and in Theorem 3 we require that λ0 < λi < 0.
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