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OSCILLATORY THEOREM AND PENDENT LIQUID DROPS

KIMIAKI NARUKAWA AND TAKASHI SUZUKI

In this paper the bifurcation diagram for the equation of a
pendent liquid drop is devoted. The bendings of the branch of
solutions bifurcated from the trivial solution occur infinitely
many times.

1. Introduction.

In this article we discuss the bifurcation problem for a model equation which

describes capillary surfaces. The membrane in the equilibrium state which

is framed horizontally and filled up with fluid in the gravity field yields to

the equation of mean curvature type

/ ) = \u in Ω

Vi + ivui2;
with the boundary condition

(1.2) u = 0 on <9Ω

and the constraint

(1.3) u<0 in Ω,

where Ω is a bounded domain in iϊ2, λ a positive parameter determined by
the physical constants.

Here z = u(x,y), (#,y) G Ω, represents the shape of the membrane
spanned by dΩ. Actually, the left hand side in Equation (1.1) defines the
mean curvature of a graph (α;,y, ίi(α;,y)), (#,y) E Ω at each point.

Noting that u = 0 is the trivial solution for any λ > 0, we see that
nontrivial solutions of (1.1), (1.2), (1.3) bifurcate from u = 0 at the first
eigenvalue λ = λ0 of the linearized equation

(1.4) -Au- Xu = 0 in Ω

with

(1.5) u = 0 on <9Ω,
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by the usual method. The branch of solutions is subcritical, i.e., there exists
a solution for any λ with λ0 — δ < λ < λ0 for small δ > 0. Moreover, we can
show that there are no solutions of (1.1), (1.2), (1.3) for λ > λ0 (see the part
at the beginning of Section 2). However, we do not know how the branch
of solutions behaves globally by this method of bifurcation theory. When
the global behavior of the branch of solutions is regarded, we would like to
consider an equation

(1.6) H[X](p) = XX3(p) in Bx = {p G R2\ \p\ < 1}

instead of (1.1). Here X(p) = (Xι(p),X2(p),X3(p)), p e Bu represents
the deformed surface in parametrized form and H[X](p) denotes the mean
curvature of the surface at each point X{p). In fact, (1.1) is a reduced form
of (1.6) when the surface {X{p) \p £ Bλ} is represented by a graph: X3 =
u(XuX2).

In this paper we consider the case when the frame is given by a horizontal
unit circle, namely, (1.6) with

(1.7) (X1(p),X2{p))edB1 and X3(p) = 0 on ΘBX

and

(1.8) X3(p) < 0 in Bλ.

Wente [15] has shown that the surfaces given by Equations (1.6), (1.7),
(1.8) are the ones of revolution with #3-axis as the axis of symmetry. Then
the generating curve u of each surface is given by smooth continuations of
arcs determined by solutions of the ordinary differential equation

(1.9) ( - 7 = ^ =-λsgn(u r )ru

in terms of radial distance r from the axis of symmetry with the boundary
conditions

(1.10) u r (0)=0, t i ( l ) = 0

and the constraint

(1.11) u(r) < 0 on [0,1),
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where subindex r indicates the derivative with respect to r. Equation (1.9)
can be rewritten in terms of the arc length s along the trajectory as

(1.12)

dr
— = cos ψ
as

du . .
—- = sin φ
ds

dφ λ sin φ
—- = —\u

{ ds r
where φ is the angle of inclination of the solution curve with regard to the r-
axis. In this case we can avoid the argument of the continuation of solutions.
Physical backgrounds and many results concerning Equations (1.9) or (1.12)
are stated in detail in the monograph [7] by Finn. And further various
properties on solutions of the type of this equation have been investigated
precisely by many authors, i.e., ground state solutions [2], [10], [11], [14], a
singular solution [4], [5], and vertical points of solutions [1], [3], etc.

In the paper [13], Narukawa and Suzuki have shown the existence of the
lower bound λ > 0 for which solutions of (1.9), (1.10), (1.11) exist, and
Finn [9] has given a new proof of this fact by using the method of Green's
identities. Finn [9] further shows that the branch of solutions (λ,u\) blows
up at λ = λ* with λ* given by R2^ ~ 1.322, where Roo is the first zero of
singular solution of (1.9) for λ = 1. Here computational calculation suggests
that the branch bends infinitely many times at λ = λ*, but this result of
oscillation has not yet proved mathematically. It is our aim to give a partial
answer for this.

2. Main results.

Prior to starting the main theorems, we remark that there are no solutions of
(1.1), (1-2), (1.3) for λ > λ0, where λ0 is the first eigenvalue of —Δ with the
Dirichlet boundary condition. In fact, let u be a solution of (1.1), (1.2), (1.3)
and \(u) and ψ(x) be the first eigenvalue and eigenfunction corresponding
to this X(u) respectively, of the linear equation

(2.1) -divf -?*=)= \φ in Ω

with

(2.2) φ = Q on
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Multiplying Equations (1.1) and (2.1) by φ and u respectively and integrat-
ing over Ω, we have

(2.3)

and

(2.4) / . = dx — \(u) / uφdx.
JΩ Λ / Γ T Ί V U F JΩ

Since φ(x) > 0 in Ω from the Krein-Rutman theorem and u(x) < 0 in Ω

from (1.3), we have

/ uφdx < 0.
JΩ

And hence λ = X(u). On the other hand,

=inf 1

— 1[n χ/1 + |Vn|2

< inf ( / |V</f dx I v> e Hl(Ω), f \φ\2 dx = 1
{JΩ JΩ

where λ0 is the first eigenvalue of — Δ with the Dirichlet boundary condition.
This implies that there are no solutions of (1.1), (1.2), (1.3) for λ > λ0.

Therefore the branch of solutions which bifurcates from the trivial solution
at λ = λ0 does not reach into the region λ > λ0. Actually, allowing multi-
valued functions as solutions, we have the following two theorems.

Let X be the set of smooth curves C connecting (1,0) and (0,ϊio), ^o < 0?
in the half plane {(r, u) G R2\r > 0}. It is equipped with the metric defined
by

dx (Cι, C2) = max < max dist(p, C2), max dist(p', CΊ) >
{p=(r,u)eCι p'=(r',u')eC2 )

for Ci, C2 E X. We regard the arc Cχ whose revolution with u-axis is a
surface given by Equations (1.6), (1.7), (1.8) as an element in X. Namely,
Cχ e X represents the smooth continuation of arcs given by solutions (1.9)
with (1.10), (1.11) or a curve (r(s),u(s)) given by (1.12) with (r(0),V>(0)) =
(0,0), (r(si),u(s!)) = (1,0) for some sλ > 0 and u(s) < 0 on 0 < 5 < Si for
given λ > 0.

T h e o r e m 2.1. The set of solutions S = (λ,C λ ) forms a 1-dimensional
manifold in i ? x l , homeomorphic to i?, starting from (λ0,0) and approaching
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λ = λ* as the minimum of u-component of C\ goes up to — oo. Here, λ* =
R2^ ~ 1.322 with the first zero ROQ of the singular solution U(r) of (1.9) for
λ = 1 which is obtained in [8].

Theorem 2.2. The bendings with respect to λ on S in RxX occur infinitely
many times in any neighborhood of X = λ*.

Theorem 2.1 is already known, more or less. In fact, by the similar trans-
formation I = \/λr, v = \/λίi, Equation (1.9) is normalized as λ = 1. Further,
taking v as an independent variable and I as a function of v, (1.9) turns to

(2-5)
τ+^'V i

Taking account of the boundary condition (1.10) and the constraint (1.11),
we see that a solution curve C\ corresponds to the solution of (2.5) on (v0,0]
with some vQ < 0 which satisfies the boundary condition

(2.6) *(t>o) = 0, \imi'(υ) = oo
i4υo

and

(2.7) i(0) = Λ/X.

We also notice that the local existence and the uniqueness of solutions of
(2.5) with the initial condition (2.6) have been proved by Wente [16] and
Concus and Finn [6] (see also Sections 4.2 and 4.3 in [7]). Further a local
solution is continued globally on [vo,0] as a solution of (2.5) in a single
valued function of t>, which is denoted by ^(υ,v0), and the mapping from v0

to ^(0, v0) is smooth. Thus, for each v0 < 0, the solution ί(v, v§) corresponds
to a curve Cλ, λ = ^(O,^)2, by the relation

V

Namely, the branch of solutions S is a family parametrized by v0 < 0 and
the minimum of ^/-component of Cλ isj o/λ/λ. Hence, from the continuity
of solutions on initial data, the curve S = {£{0, vo)

2,vo/i(0,vo)\vo < 0} in
R2 defined by the solutions ί of (2.5), (2.6) indicates the branch of solutions
S. Finn [7] notes that ^(0,^0) converges to the square of the first zero of
the Bessel function JQ(Γ), which is the first eigenvalue of — Δ in Bλ with the
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Dirichlet boundary condition. This shows that the branch of solutions S
parametrized by υ0 as above is the one which bifurcates at λ = λ0. Hence
our problem is to investigate the behavior £(0,i>0), that is, how £(0,i>0) ap-
proaches i?oo, as v0 tends to — oo.

Therefore, Theorem 2.1 follows from a theorem proved by Finn [8], which
is nothing but Conjecture 3 in [7]. This shows that ί(υ,v0) converges uni-
formly to a singular solution i^υ) with all derivatives in any compact set
in (—oo,0]. Here ί^v) is a positive global solution of (2.5) on (—oo,0] sat-
isfying ^oo(^) ~> 0 as v -* —ex). Hence, when v0 goes to —oo, λ = £(0,v0)

2

tends to λ* = 4o(0)2 = R2^. Thus Theorem 2.1 is proven. D

3. Proof of Theorem 2.2.

For the solution l(v,v0) of (2.5) with (2.6), let us put

dί
(3.1) Φ{υ,υ0) = Q^(V'VO)I (vo<v< 0 ) .

Then the branch of solutions S bends at λ = ί(0,vo)
2 with respect to λ if

and only if there exists an interval J — [α, b] containing ΰ0 such that 0(0, v0)
vanishes on J and changes its sign on a neighborhood of J.

Our strategy is to look at the number of zero points of φ( ,υ0) in the
interval (vo,0\. We shall show that it goes to infinity as v0 -> — oo, since
the variational equation for the singular solution is oscillatory. On the other
hand, it will be also shown that the zeros of φ( ̂ v0) never appear afresh in
any compact subinterval of [i>o,0). This indicates that φ(0^vo) must change
its sign when the number of zeros of </>(•, ^0) changes, so that 0(0, υ0) changes
its sign infinitely many times as v0 —)> — oo.

We begin with some lemmas.

L e m m a 3.1. For each v0 < 0, the function φ(v,υQ) satisfies the variational
equation

on the interval (i?0,0], and further,

(3.3) lim φ(υ,υ0) = —oo,
V—>Vo

where subindex v indicates the partial derivative with respect to v.

Proof. Since the first part is a direct consequence of Equality (2.5), we only

show (3.3). Note that i(υ,υ0) (0 < υ — v0 <C 1) is the inverse function of
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v — V(Z,VQ) (0 < i <̂C 1) which is smooth in (£, v0), which solves

with

v0) = 0.( , 0) 0

Thus

(3.4) υ(£(υ,υo),vo)=υ

holds on the interval (vo,vo + S) with some δ > 0. Differentiating (3.4) by

Vo, we obtain

for v G (vo, ̂ o + ί) Noting

£(v,vo) -> 0 as v —> υ0

and

vvo(^t;o) -> 1, ^(^vo) \ 0 as £ -^ 0,

we obtain

φ(v,υ0) = ^oί^^o) -> -oo as t -4 v0.

D

Owing to Theorem 4.11 of [7], we have the asymptotic expansion

(3.5) ^ ) ^ _ l + ^ 3 _ 5 6 7 £ 7 + . . . M n o

for the inverse function of the singular solution ^oo(̂ ) Thus we have

(3.6) £oo(υ) (
V \V

In fact, from (3.5),

] as £\o.
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Noting v -» — oc if and only if ί \ 0, we have

v — g(i) v L v \ v2

as v —> —oo.

Thus

and

9«) = 0{ί!) = O ( i

Further, noting (3.5), (3.6) and (2.5), we have

(3.7) *ZL(Ό) = \ + ί

and

(3.8)
dυi

~{v) -^ 0, (0 < j < 3) - o o .

These are obtained by carrying out a tedious calculation in practice.
For the limit equation of the variational equation (3.2), we have the fol-

lowing oscillation theorem.

L e m m a 3.2. Let φ be a solution of the equation

(3.9)
3/2 ^

α + £;
== φ = vφ,

where ί' = —T^ . TΛen ^ Λα5 infinitely many zeros on the interval (—oo,0),
dv

that is, (3.9) is oscillatory.

Proof. Putting

a(v) = b(v) =

we consider the equation

(3.10) {a(υ)ψυ(υ))υ + b(υ)ψ(υ)=0 on (-oo,0].
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By the Liouville transformation

z(υ) = Γ - ^ L = , Φ(*(«)) = a
Jo y/a[w)

Equation (3.10) turns to

(3.11) Φ«+p(*)Φ = 0 on (-

where

p(z(v)) = b(v) - \a"{v) + ±a{v

and

./-oo V α ( v )

Noting (3.6), we have £ = oo. Thus z tends to —oo if and only if υ goes
to —oo. Hence Equation (3.10) is oscillatory at —oo, i.e., any solution has
infinitely many zeros on the interval (—i?, —oo) for any R > 0, if and only
if Equation (3.11) is oscillatory. The oscillatory theorem based on the Euler
equation (see e.g. [12, Theorem 7.1]) says that if the inequality

lim'mfz2p(z) > -
z—> — oo 4

holds, then Equation (3.11) is oscillatory. In our case, since

p(z(υ)) = — υ + o(l) as υ -> —oo

from (3.6), (3.7), (3.8) and z(υ) -» - o o a s v ^ - o o , we have

f f° dv V
lim z2p(z) — lim p(z(υ)) I / /-y-Γ. I = oo.z—> — oo /T; y/a(v) J

Thus (3.11), and hence (3.10) is oscillatory. D

Now, for a continuous function φ in υ, we denote by i(a,b){Φ) the number
of zeros of 0 in the interval (α, 6) and put i(v0) = ^(vo,o)(0(*7^o)) for the
function φ(υ,v0) defined by (3.1). Then we have

L e m m a 3.3. The number i(v0) tends to oo as v0 —>> — oo.

Proof. For each υ0 < 0, let ζ(v^v0) be the solution of (3.2) with the initiaΓ
data

(3.12) C(0,ϋo) = 0, ^(0,«o) = l.
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Note that the coefficients

i
ΓT Γ > 0 and — V

v

in (3.2) are smooth on [v0 + 1,0], where ί — i(v,v0). Prom the Sturmian
oscillation theorem, the solutions φ(v,v0) and ζ(v,v0 ---> ζ(v,v0)) have one
zero between any two consecutive zeros of the other function respectively
on the interval [v0 + 1,0] or these two functions are linearly dependent.
Therefore

(3.13) i(Vo+i,o)(0( ,ϋo)) = i(vo+ho)(ζ{',vo)) or i(vo+hO)(ζ( ,υo)) + 1

On the other hand, owing to the result obtained by Finn [9], we know that
£{v,υ0) converges uniformly to a singular solution 4χ>(υ) with all deriva-
tives on any compact set in (—oo,0]. Thus the coefficients in (3.2) and hence
ζ(υ, υ0) converge to the ones and φ(v), respectively, uniformly with its deriva-
tives in any compact set in (—oo,0] as v0 -> —oo. Here ψ(v) is the solution
of (3.9) with the initial data

This implies that, for any fixed c > 0, there exists a constant Vι(c) < 0 such
that

(3.14) |*(-co)(C( ,t;o))-i(-c,o)(^)|<l

for any v0 < Vι(c). Since ψ has infinitely many zeros on (—oo, 0) from Lemma
3.2, there exists a positive constant c(n) for each natural number n such that

(3.15) Vc(n),o)W0 >n

Thus, taking c = c(n) in (3.15) and υΌ < min{—c(n) — l,t;1(c(n))}, we have,
from (3.13), (3.14), (3.15),

i(v0) >i(-c(n),o

>*(-c(n),0)WO " I
> n - 1.

This implies that i(v0) -> oc as υ0 —> — oo. D

Now we give the proof of Theorem 2.2.
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Proof of Theorem 2.2. Prom (3.3), we can take a constant δ = δ(v0) > 0
such that φ has no zeros on the interval (v0, v0 + δ]. Consider Equation (3.2)
on the interval [v0 + 5,0]. Then the coefficients in (3.2) are continuous and
i/(l + ί2

v)
z/2 is strictly positive on [v0 + ί,0]. Hence the zeros of a solution

(3.2) cannot concentrate in the interval [υ0 + 5,0]. Thus any solution of (3.2)
has only finite zeros on [v0 + ί, 0] unless it vanishes identically. This means
that i(v0) = i(t/o,o)(0( jtfo)) ι s finite for each v0 < 0.

We want to show that 0(0, v0) changes the sign infinitely many times as
υ0 -» — oo. Then Theorem 2.2 follows immediately.

For this purpose, we assume that 0(0, v0) does not change the sign for
v0 G (α, b) with a < b < 0, but may vanish at some points in (α,6). Then
we can show that ί(v0) takes a constant value i* on the interval (α, b) except
at the points where 0(0, υ0) vanishes, and further, the difference between
this constant i* and i(v0) at these zero points of 0(0, υ0) is at most one.
This implies the desired consequence. In fact, i(v0) tends to oo as v0 —> —oo
from Lemma 3.3, and the above assertion indicates that there exist infinitely
many disjoint intervals Jn = [αn, 6n], 0 > bx > aλ > b2 > α2 > bn > an >
• —> —oo, such that 0(0, v0) = 0 on Jn and changes its sign on the both
sides of each interval Jn.

In proving the above fact, first we consider the case that 0(0, υQ) does not
vanish on (α,6). Then, for v0 £ (α,&), we denote by {^}i<j<m? 0 > vλ >
υ2 > - > vm the zeros of φ(v,v0) on (̂ O)O), where m — i{v0). Here, each
zero point of φ(v,ϋ0) is not degenerate i.e.,

-g-{vj,ϋ0) φ 0, 1 < j < m,

because 0( , v0) solves the linear equation (3.2) under the boundary condition
(3.3), where v0 — v0. Hence, for sufficiently small ε > 0, there exists a
constant δ > 0 such that, if \v0 —ΰo\ < δ, then there exists exact one zero of
φ(v,υ0) in each ε-neighborhood of Vj, 1 < j < m. This means that i(υ0) is
continuous on (α,6), and hence it never varies on (α, 6).

Next, we consider the case that 0(0, υ0) vanishes on [c,d\ but does not
change sign in a neighborhood of [c, d]. When υ0 varies on a compact set in
(—oo, 0), from Lemma 4.17 and 4.18 in [7], we know that £(v, v0) is extended
continuously to υ £ (vo,p) with some p > 0 as a solution of (2.5) with
(2.6) and i(υ,υ0) > 0 there. Let us take p > 0 sufficiently small so that
φ(υ, υ0) > 0 (or < 0) on (-p, p) \ {0} for any v0 E [c, d). In each step we take
positive constants p and δ smaller, still denoted by p and J, respectively.

Considering Equation (3.2) on the interval (vo,p) instead of (t>o,O), we
obtain
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similarly to the former case. Namely, i(VtP)(</>(•, v)) is continuous in υ G [c,d\.
Because v — 0 is the only zero point of φ(v,c) and also of φ(v,d) in the
interval (—p, p), we have

We consider the case

0(0, υ0) > 0 for c — δ < v0 < c, d < v0 < d + δ with some δ > 0,

^(0,c)>0,
ov

to prove that

i(c) = i(d) — i(υ0) — 1 = i(tJ0) - 1 ΐor c~ δ < v0 < c and cf < v0 < d + δ.

The other cases

0(0, υ0) > (or <) 0 for c - δ < v0 < c, d < v0 < d + ί,

^,o.c) <o

will be treated similarly.
For this purpose, we consider Equation (3.2) on the interval (^θ5 ~p) and

[—p, p] separately. From the continuity of (dφ/dv)(0,vQ) in vo,

-^(0, v0) > 0 on [c - 5, c + ί] for small δ > 0.

Since 0(0, v0) > 0 on (c — ί,c) and (d,d + δ), we have φ(v,v0) > 0 for any
(v, v0) with 0 < v < p with small p > 0 and c—δ < v0 < c+δ. Namely </>(•, v0)
does not vanish on [0, p] for any v0 G (c — 5, c + δ). On the other hand, by the
same argument as above, if p and δ are taken sufficiently small, then φ(-,υ0)
has exactly one zero point in the interval [—p, p] for any v0 G (c — 5, c + 5).
Hence the zero point of φ(y, υ0) belongs to [—p, 0) for c — <5 < v0 < c and is
equal to zero for c < υ0 < c + δ. This shows

i t - p ^ M ' ^ o ) ) = 1 and i[_p,o) (</>(•, c)) = 0.

Noting 0(—p, i>o) Φ 0 for t?0 G (c - <J, c + 5), considering Equation (3.2) on
the interval (i>0, —p) and proceeding the same argument as above, we have
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Therefore the equality

= <(c) + 1

holds for c — δ < υ0 < c.
Finally, noting φ(0,vo) = 0 on [c,d], we see that (dφ/dv)(0,vo) does not

vanish on [c,d]. Hence (dφ/dv)(0,d) > 0. Then, we also have

i(v0) — i(d) + 1 for d < v0 < d + δ

in the same way as above.
Since i(c) = i(d), we have i(v0) = i(ϋ0) for any v0 G (c — J, c) and ϋ0 G

(d,d + δ). Ώ

Concluding Remarks. So far, we have proven the infinitely many bend-
ings around λ = λ* of the bifurcation diagram for the pendent liquid drop
(1.6) with (1.7) and (1.8). However, the computational calculation (Figure
4.13 in [7]) suggests the existence of infinitely many solutions at λ = λ*. We
have not given a proof for this cojecture yet.
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