A UNIQUENESS THEOREM FOR THE MINIMAL SURFACE EQUATION

Jenn-Fang Hwang

In 1991, Collin and Krust proved that if u satisfies the minimal surface equation in a strip with linear Dirichlet data on two sides, then u must be a helicoid. In this paper, we give a simpler proof of this result and generalize it.

1. Introduction.

Let $\Omega_{\alpha} \subset \mathbb{R}^{2}$ be a sector domain with angle $0<\alpha<\pi$. Consider the minimal surface equation

$$
\begin{equation*}
\operatorname{div} T u=0 \tag{1}
\end{equation*}
$$

where $T u=\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}$ and ∇u is the gradient of u. In 1965, Nitsche [7] announced the following results:
(1) Given a continuous function f on $\partial \Omega_{\alpha}$, there always exists a solution u which satisfies the minimal surface equation in Ω_{α} with Dirichlet data f on $\partial \Omega_{\alpha}$;
(2) If u satisfies the minimal surface equation with vanishing boundary value in Ω_{α}, then $u \equiv 0$.
Nitsche thus raised the following question: Let $\Omega \subset \Omega_{\alpha}$ and let f be an arbitrary continuous function on $\partial \Omega$. If the Dirichlet problem

$$
\begin{cases}\operatorname{div} T u=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega\end{cases}
$$

has a solution, is it unique?
We notice that similar questions for higher dimensions are raised in [6]. Results in this direction were obtained by Miklyukov [5] and Hwang [4] independently, in which the following result was established:

Theorem 1. Let $\Omega \subset \mathbb{R}^{2}$ be an unbounded domain and let $u, v \in C^{2}(\Omega) \cap$ $C^{0}(\bar{\Omega})$. For every $R>0$, set $B_{R}=\left\{x \in \mathbb{R}^{2}| | x \mid<R\right\}$ and $\Gamma_{R}=\partial\left(\Omega \cap B_{R}\right) \cap$
∂B_{R}. Denote $\left|\Gamma_{R}\right|$ as the length of Γ_{R}. And suppose that

$$
\begin{cases}\text { (i) } \operatorname{div} T u=\operatorname{div} T v & \text { in } \Omega, \\ \text { (ii) } u=v & \text { on } \partial \Omega, \\ \text { (iii) } \max _{\Omega \cap B_{R}}|u-v|=O\left(\sqrt{\int_{R_{0}}^{R} \frac{1}{\left|\Gamma_{r}\right|} d r}\right) & \text { as } R \rightarrow \infty, \text { for some } \\ \text { positive constant } R_{0} .\end{cases}
$$

Then $u \equiv v$ in Ω.
A stronger version of Theorem 1 was discovered by Collin and Krust [2] independently, which is the following:

Theorem 1*. Let $\Omega, u, v, B_{R}, \Gamma_{r}$ and $\left|\Gamma_{r}\right|$ as in Theorem 1. And suppose that

$$
\begin{cases}\text { (i) } \operatorname{div} T u=\operatorname{div} T v & \text { in } \Omega, \\ \text { (ii) } u=v & \text { on } \partial \Omega, \\ \text { (iii) } \max _{\Omega \cap B_{R}}|u-v|=o\left(\int_{R_{0}}^{R} \frac{1}{\left|\Gamma_{r}\right|} d r\right) & \text { as } R \rightarrow \infty, \text { for some } \\ \text { positive constant } R_{0} .\end{cases}
$$

Then $u \equiv v$ in Ω.
In fact, for any unbounded domain Ω, we have $\left|\Gamma_{R}\right|=O(R)$, and condition (iii) in Theorem 1* becomes

$$
\max _{\Omega \cap B_{R}}|u-v|=o(\log R) \quad \text { as } R \rightarrow \infty
$$

In the special case when Ω is a strip, then $\left|\Gamma_{R}\right| \leq$ constant, and condition (iii) becomes $\max _{\Omega \cap B_{R}}|u-v|=o(R)$.

On the other hand, in a strip domain Ω, Collin [1] showed that there exist two different solutions for the minimal surface equation such that $u=v$ on $\partial \Omega$ and $\max _{\Omega \cap B_{R}}|u-v|=O(R)$ as $R \rightarrow \infty$. So condition (iii) is necessary.

This counterexample also answers Nitsche's question in the negative.
In contrast, the following result is also given in [2].
Theorem 2. Let $\Omega=(0,1) \times \mathbb{R}$ be a strip. Suppose that

$$
\left\{\begin{array}{l}
\operatorname{div} T u=0 \\
u(0, y)=a y+b, \\
u(1, y)=c y+d
\end{array}\right.
$$

where a, b, c, d are constant. Then u must be a helicoid.
The following inequality was discovered by Miklyukov [5, p. 265], Hwàng [4, p. 342] and Collin and Krust [2, p. 452]:

$$
(T u-T v) \cdot(\nabla u-\nabla v) \geq \frac{\sqrt{1+|\nabla u|^{2}}+\sqrt{1+|\nabla v|^{2}}}{2}|T u-T v|^{2}
$$

$$
\begin{equation*}
\geq|T u-T v|^{2} \tag{2}
\end{equation*}
$$

Using this inequality, Miklyukov [5] and Hwang [4] proved Theorem 1 independently, and Collin and Krust [2] proved Theorem 1^{*} also based on this inequality.

It seems that the method of proof of Theorem 1* can not be used to prove Theorem 2, and so Collin and Krust [2] resorted to the theory of Gauss maps instead.

In this paper, we will point out that the method of proof of Theorem 1 and Theorem 1* could be use to give a simpler proof of Theorem 2. Moreover, we shall generalize Theorem 1^{*} and Theorem 2 to get the more general results as stated in Theorem 3 and Theorem 4. And we will make a remark after Theorem 3 to point out why Collin and Krust [2] could get a better result then Miklyukov [5] and Hwang [4].

2. A new proof for Theorem 2 and its generalization.

Without loss of generality, we may rephrase Theorem 2 in the following form:
Theorem 2*. Let $\Omega=(b, a) \times \mathbb{R}$ be a strip domain in \mathbb{R}^{2} where a, b are two constants with $-\frac{\pi}{2}<b<a<\frac{\pi}{2}$, and let $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$. Suppose that

$$
\begin{cases}\operatorname{div} T u=0 & \text { in } \Omega \\ u=y \tan x & \text { on } \partial \Omega\end{cases}
$$

Then $u \equiv y \tan x$ in Ω; in other words, u must be a helicoid.
Proof. For any $y>0$, let

$$
\begin{aligned}
\Omega_{y} & =(b, a) \times(-y, y) \\
\Gamma_{y} & =\{(b, a) \times\{y\}\} \cup\{(b, a) \times\{-y\}\}
\end{aligned}
$$

and, set

$$
\begin{aligned}
g(y) & =\int_{\Gamma}(u-v)(T u-T v) \cdot \nu d s \\
& =\oint_{\partial \Omega_{y}}(u-v)(T u-T v) \cdot \nu d s \\
& =\iint_{\Omega_{y}}(\nabla u-\nabla v) \cdot(T u-T v)
\end{aligned}
$$

where $v \equiv y \tan x$ and ν is the unit outward normal of Γ_{y} and $\partial \Omega_{y}$. Since $(\nabla u-\nabla v) \cdot(T u-T v) \geq 0$, Fubini's Theorem yields that the derivative $g^{\prime}(y)$
exists for almost all $y>0$ and

$$
g^{\prime}(y)=\int_{\Gamma_{y}}(\nabla u-\nabla v) \cdot(T u-T v)
$$

whenever $g^{\prime}(y)$ exists. Thus, in view of (2), for these y,

$$
\begin{aligned}
g^{\prime}(y) & \geq \int_{\Gamma_{y}} \frac{\sqrt{1+|\nabla u|^{2}}+\sqrt{1+|\nabla v|^{2}}}{2}|T u-T v|^{2} \\
& \geq\left(\min _{\Gamma_{y}} \frac{\sqrt{1+|\nabla v|^{2}}}{2}\right) \int_{\Gamma_{y}}|T u-T v|^{2}
\end{aligned}
$$

in which, as $v_{x}=y \sec ^{2} x$, we have

$$
\frac{\sqrt{1+|\nabla v|^{2}}}{2} \geq \frac{y \sec ^{2} x}{2} \geq \frac{y}{2}
$$

Furthermore, by means of Schwarz's inequality,

$$
\left|\Gamma_{y}\right| \int_{\Gamma_{y}}|T u-T v|^{2} \geq\left(\int_{\Gamma_{y}}|T u-T v|\right)^{2}
$$

and $\left|\Gamma_{y}\right|=2(a-b)$ (in virtue of the special geometry of Ω), thus

$$
\int_{\Gamma_{y}}|T u-T v|^{2} \geq \frac{1}{2(a-b)}\left(\int_{\Gamma_{y}}|T u-T v|\right)^{2} .
$$

Hence, for any y where $g^{\prime}(y)$ exists,

$$
\begin{align*}
g^{\prime}(y) & \geq \frac{y}{4(a-b)}\left(\int_{\Gamma_{y}}|T u-T v|\right)^{2} \tag{3}\\
& \geq \frac{y}{4(a-b)}\left(\frac{1}{\pi} \int_{\Gamma_{y}} \tan ^{-1}(u-v)(T u-T v) \cdot \nu\right)^{2}
\end{align*}
$$

Now, for all $y>0$, set

$$
\begin{aligned}
h(y) & =\int_{\Gamma_{y}} \tan ^{-1}(u-v)(T u-T v) \cdot \nu \\
& =\iint_{\Omega_{y}} \frac{(\nabla u-\nabla v) \cdot(T u-T v)}{1+(u-v)^{2}} .
\end{aligned}
$$

We note that $h \geq 0$ and $h(y)$ increases as y increases. Thus, if $h \equiv 0$, it is easy to see that Theorem 2^{*} holds. Hence we may assume that $h \not \equiv 0$ and
that there exist two positive constants y_{1} and c_{1} such that $h(y) \geq c_{1}$ for all $y \geq y_{1}$.

Substituting this into (3), we obtain $g^{\prime}(y) \geq \frac{c_{1}^{2}}{4(a-b) \pi^{2}} y$ for almost all $y \geq y_{1}$, which yields $g(y)-g\left(y_{1}\right) \geq \frac{c_{1}^{2}}{4(a-b) \pi^{2}}\left(y-y_{1}\right)^{2}$. Since $|u|=O(|y|)$ on $\partial \Omega$ as $|y| \rightarrow \infty$, by [7, p. 256], we have $|u|=O(|y|)$ in Ω as $|y| \rightarrow \infty$. Since for all $y>0, g(y)=\int_{\Gamma_{y}}(u-v)(T u-T v) \cdot \nu$ and $|T u-T v| \leq 2$, we have $g(y)=O(y)$ as $y \rightarrow \infty$, which gives a contradiction and completes our proof.

By modifying the proof of Theorem 2*, we can derive the following
Theorem 3. Let $\Omega \subseteq \mathbb{R}^{2}$ be an unbounded domain and let $u, v \in C^{2}(\Omega) \cap$ $C^{0}(\bar{\Omega})$. Let B_{R}, Γ_{R} and $\left|\Gamma_{R}\right|$ be as in Theorem 1. Suppose that

$$
\begin{cases}\text { (i) } \operatorname{div} T u=\operatorname{div} T v & \text { in } \Omega \\ \text { (ii) } u=v & \text { on } \partial \Omega, \\ \text { (iii) } \max _{\Omega \cap B_{R}}|u-v|=o\left(\int_{R_{0}}^{R} \frac{1}{\left|\Gamma_{R}\right|} \min _{\Gamma_{R}} \sqrt{1+|\nabla v|^{2}} d R\right) & \text { as } R \rightarrow \infty\end{cases}
$$

where R_{0} is a positive constant. Then we have $u \equiv v$ in Ω.

Remark.

(a) Notice that condition (iii) depends on $|\nabla v|$ only, without assuming any condition on $|\nabla u|$.
(b) In Theorem 2^{*}, since $\operatorname{div} T u=0$ in Ω and $u=y \tan x$ on $\partial \Omega$, by [7, p. 256], we have $u=O(|y|)$ in Ω as $|y| \rightarrow \infty$. And so, condition (iii) of Theorem 3 holds.

Proof of Theorem 3. The proof is similar to that of Theorem 2*. For every $R>0$, let

$$
\begin{aligned}
M(R) & =\max _{\Omega_{\cap}}|u-v|=\max _{\Gamma_{R}}|u-v| \\
Q(R) & =\min _{\Gamma_{R}} \frac{\sqrt{1+|\nabla v|^{2}}}{2} \\
g(R) & =\int_{\Gamma_{R}}(u-v)(T u-T v) \cdot \nu=\iint_{\Omega_{R}}(\nabla u-\nabla v) \cdot(T u-T v)
\end{aligned}
$$

and

$$
h(R)=\int_{\Gamma_{R}} \tan ^{-1}(u-v)(T u-T v) \cdot \nu
$$

As in the proof of Theorem 2^{*}, we may assume that $h \not \equiv 0$ and that there exist two positive constants R_{1} and C_{1} such that $R_{1}>R_{0}$ and

$$
\begin{equation*}
h(R) \geq C_{1} \quad \text { for all } R \geq R_{1} \tag{4}
\end{equation*}
$$

For almost all $R>0$, we have

$$
\begin{align*}
g^{\prime}(R) & =\int_{\Gamma_{R}}(\nabla u-\nabla v) \cdot(T u-T v) \tag{5}\\
& \geq \int_{\Gamma_{R}} Q(R)|T u-T v|^{2} \\
& \geq Q(R)\left|\Gamma_{R}\right|^{-1}\left(\int_{\Gamma_{R}}|T u-T v|\right)^{2}
\end{align*}
$$

Thus $g^{\prime}(R) \geq\left(\frac{\pi}{2}\right)^{2} C_{1}^{2}\left|\Gamma_{R}\right|^{-1} Q(R)$, for almost all $R>R_{1}$. Hence, for every R and R_{2} such that $R>R_{2} \geq R_{1}$, we have

$$
\begin{equation*}
g(R)-g\left(R_{2}\right) \geq\left(\frac{2 C_{1}}{\pi}\right)^{2} \int_{R_{2}}^{R} \frac{Q(r)}{\left|\Gamma_{r}\right|} d r \tag{6}
\end{equation*}
$$

By (4), we have $M(R)>0$ for all $R \geq R_{1}$, hence (5) yields, for almost all $R \geq R_{1}$,

$$
\begin{aligned}
g^{\prime}(R) & \geq Q(R)\left|\Gamma_{R}\right|^{-1} \int|T u-T v|^{2} \\
& \geq \frac{g^{2}(R) Q(R)}{M^{2}(R)\left|\Gamma_{R}\right|}
\end{aligned}
$$

and so, for every R and R_{2} such that $R>R_{2} \geq R_{1}$,

$$
-\left.\frac{1}{g}\right|_{R_{2}} ^{R} \geq \int_{R_{2}}^{R} \frac{g^{\prime}}{g^{2}} \geq \int_{R_{2}}^{R} \frac{Q(r)}{M^{2}(r)\left|\Gamma_{r}\right|} d r \geq \frac{1}{M^{2}(R)} \int_{R_{2}}^{R} \frac{Q(r)}{\left|\Gamma_{r}\right|} d r
$$

and then

$$
\begin{equation*}
\frac{1}{g\left(R_{2}\right)} \geq \frac{1}{M^{2}(R)} \int_{R_{2}}^{R} \frac{Q(r)}{\left|\Gamma_{r}\right|} d r \tag{7}
\end{equation*}
$$

Now, since $M(R)>0$ for all $R \geq R_{1}, M(R)$ is an increasing function of R and, in view of condition (iii),

$$
(M(R))^{-1} \int_{R_{1}}^{R} \frac{Q(r)}{\left|\Gamma_{r}\right|} d r \rightarrow \infty \quad \text { as } \quad R \rightarrow \infty
$$

and also

$$
\int_{R_{1}}^{R} \frac{Q(r)}{\left|\Gamma_{r}\right|} d r \rightarrow \infty \quad \text { as } \quad R \rightarrow \infty
$$

hence we can choose a constant $R_{3}>R_{1}$ such that

$$
(M(R))^{-1} \int_{R_{1}}^{R} \frac{Q(r)}{\left|\Gamma_{r}\right|} \geq \sqrt{2} \pi C_{1}^{-1}, \quad \text { for every } \quad R \geq R_{3}
$$

and a constant $R_{4}, R_{4}>R_{3}$, which depends on R_{3}, such that

$$
\int_{R_{1}}^{R_{4}} \frac{Q(r)}{\left|\Gamma_{r}\right|} d r=2 \int_{R_{1}}^{R_{3}} \frac{Q(r)}{\left|\Gamma_{r}\right|} d r
$$

With this choice of R_{3} and R_{4}, we have

$$
\begin{aligned}
1 & \geq \frac{g\left(R_{3}\right)-g\left(R_{1}\right)}{g\left(R_{3}\right)} \\
& \geq\left[\left(\frac{2 C_{1}}{\pi}\right)^{2} \int_{R_{1}}^{R_{3}} \frac{Q(r)}{\left|\Gamma_{r}\right|}\right]\left[\left(M^{2}\left(R_{4}\right)\right)^{-1} \int_{R_{3}}^{R_{4}} \frac{Q(r)}{\left|\Gamma_{r}\right|}\right] \quad(\text { by }(6),(7)) \\
& =\left[\left(\frac{2 C_{1}}{\pi}\right)^{2}\left(M^{2}\left(R_{4}\right)\right)^{-1}\right] \frac{1}{4}\left(\int_{R_{1}}^{R_{4}} \frac{Q(r)}{\left|\Gamma_{r}\right|}\right)^{2} \quad\left(\text { by the choice of } R_{3}, R_{4}\right) \\
& \left.\geq \frac{C_{1}^{2}}{\pi^{2}}\left(2 \pi^{2}\right) C_{1}^{-2} \quad \quad \text { again by the choice of } R_{3} \text { and } R_{4}\right) \\
& \geq 2
\end{aligned}
$$

which is desired contradiction.
Remark. The above proof is to show (6), which is the lower bound of $g(R)$, and (7), which is the upper bound of $g(R)$. And from (6) and (7), we get contradiction and so prove the theorem. Miklyukov [5] and Hwang [4] only observed the upper bound of $g(R)$, and so could not derive the better result as in Collin and Krust [2].

Let Ω be a domain in \mathbb{R}^{2}. Consider the following equation in divergence form

$$
\operatorname{div} A(x, u, \nabla u)=f(x, u, \nabla u)
$$

where

$$
\begin{gathered}
A=\left(A_{1}, A_{2}\right), A_{i}: \Omega \times \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad i=1,2 \\
f: \Omega \times \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}
\end{gathered}
$$

and

$$
A_{i} \in C^{0}\left(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{2}\right) \cap C^{1}\left(\Omega \times \mathbb{R} \times \mathbb{R}^{2}\right), \quad i=1,2, f \in C^{0}\left(\Omega \times \mathbb{R} \times \mathbb{R}^{2}\right)
$$

We rewrite $A(x, u, \nabla u)$ briefly as $A u$.
Suppose that $A u$ satisfies the following structural condition:
(8) $\left\{\begin{aligned} &(A u-A v) \cdot(\nabla u-\nabla v) \geq|A u-A v|^{2} Q(R), \\ & \text { where } R=\sqrt{x^{2}+y^{2}} \text { and } Q(R) \text { is a positive function, } \\ &(\nabla u-\nabla v) \cdot(A u-A v)=0, \text { iff } \nabla u=\nabla v .\end{aligned}\right.$

Now we have the following result:
Theorem 4. Let $\partial \Omega=\Sigma^{\alpha}+\Sigma^{\beta}$ be a decomposition of $\partial \Omega$ such that $\Sigma^{\beta} \in C^{1}$. Let $u, v \in C^{2}(\Omega) \cap C^{1}\left(\Omega \cup \Sigma^{\beta}\right) \cap C^{0}(\bar{\Omega})$ and let $M(R)=\max _{\Omega \cap B_{R}}(u-v, 0)$. Suppose that
$\begin{cases}\text { (i) } A & \text { satisfies the structural condition (8) } \\ \text { (ii) } \operatorname{div} A u \geq \operatorname{div} A v & \text { in } \Omega \\ \text { (iii) } u \leq v & \text { on } \Sigma^{\alpha} \\ \text { (iv) } A u \cdot \nu \leq A v \cdot \nu & \text { on } \Sigma^{\beta} \\ \text { (v) } M(R)=o\left(\int_{R_{0}}^{R} \frac{\left|Q_{r}\right|}{\left|\Gamma_{r}\right|} d r\right) & \text { as } R \rightarrow \infty, \text { where } R_{0} \text { is } \\ & \end{cases}$

Then, if $\partial \Omega=\Sigma^{\beta}$, we have either $u(x) \equiv v(x)+a$ positive constant or else $u(x) \leq v(x)$. Otherwise, $u(x) \equiv v(x)$.

The proof of Theorem 4 is exactly the same as that of Theorem 3. The interested readers may consult [4].
Acknoledgements. The author would like to thank the referee for many helpful comments and suggestions.

References

[1] P. Collin, Deux exempes de graphes courbure moyenne constante sur une bande de \mathbb{R}^{2}, C. R. Acad. Sci. Paris, 311 (1990), 539-542.
[2] P. Collin and R. Krust, Le Problème de Dirichlet pour lequation des surfaces minimales fur des domaines non bornès, Bull. Soc. Math. France, 119 (1991), 443-462.
[3] R. Finn, Equilibrium capillary surfaces, Springer-Verlag, New York-Berlin-Heidel-berg-Toykyo, 1986.
[4] J.F. Hwang, Comparison principles and theorems for prescribed mean curvature equation in unbounded domains, Ann. Scuola Norm. Sup. Pisa, 15(4) (1988), 341-355.
[5] V.M. Miklyukov, On a new approach to Bernstein's Theorem and related questions for equations of minimal surface type, Mat. Sb., 108(150) (1979), 268-289; English transl. in Math. USSR Sb., 36 (1980), 251-271.
[6] U. Massari and M. Miranda, Minimal surfaces of codimension one, North-Holland Math. Studies, 91 (1984).
[7] J.C.C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Math. Soc., 71 (1965), 195-270.

Received November 4, 1994 and revised April 20, 1995. This author was partially sup. ported by Grant NSC83-0208-M-001-072.

Academia Sinica
Taipei, Taiwan
R.O.C. 11529

