
PACIFIC JOURNAL OF MATHEMATICS

Vol. 176, No. 2, 1996

ONE REMARK ON POLYNOMIALS IN TWO VARIABLES

E. ARTAL BARTOLO* AND P. CASSOU-NOGUES

In this paper, we study some topological properties of ra-
tional polynomial maps / : C2 -* C. One can extend f to a
map φ •: X -» P1 where X is a smooth algebraic compactifi-
cation of C2. The behaviour of φ on the curve V := X \ C2

contains all the information on the topology of / at infinity.
We study the relationship between the so-called horizontal
componentes of P, i.e., irreducible components D of D such
that 0|D is surjective.

In the article "Two remarks on polynomials in two variables" [5] S. Kali-
man states two results on polynomial maps / : C2 -> C. The first one is a
very nice result on the number of irreducible components of reducible fibers
of a primitive polynomial (i.e., a polynomial such that its generic fiber is
irreducible).

We introduce some notation in order to state the second result. Let C2 C
X a compactification of C2 where X is a smooth rational compact surface
and such that there exists a holomorphic map φ : X —> P1 = CU {oo} which
extends /.

Put V := X \ C2; V is a curve whose irreducible components are smooth
rational compact curves and all its singularities are ordinary double points.
The dual graph of V is a tree.

Kaliman calls horizontal (resp. sections) an irreducible component D C V
such that φ\D is surjective (resp. bijective). We recall the second result of
[5]:

If f is primitive and the generic βber of f is a rational curve then there
is at most one horizontal component which is not a section.
In this note we are going to give a counter-example to this result and we

are going to point out where Kaliman's proof does not apply. In the last
section we relate this problem to an article of P. Russell, [8].

§1.-A counter-example.

Let us denote

s(x, y) = 1 + xy, p(x, y) = xs(x, y) + 1, u{x, y) = s(x, y)2 + y.
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We define:

f(x,y) := p(x, y)Au{x, y)2 - (p(x,y)s{x, y) + I ) 2 .

For any / there exists a canonical way to get X and φ. Let

f(x,y) =ao(x,y) +a1{x,y) + ••• + ad(x,y),

w h e r e a,j(x,y) is a h o m o g e n e o u s form of degree j , j = 0 , 1 , . . . , d, a n d
ad(x,y) φ 0; let

j=0

Consider the rational map

φ0 : P 2 —> F 1 = CU {oo}

[x:y:z]* [F(x, y,z) : z*\ = F ^ » > z ) ,

which is well-defined outside A(f) := {[x0 ' yo : 0] | αd(a;o,yo) = 0} (which
is a finite set). This set is always contained in the line of infinity L^ whose
equation is z = 0.

The composition π : X -» P 2 of a suitable sequence of blowing-up maps
(over A(f)) gives the required compactification where φ := φ0 o π.

Let's compute X and φ in our example; we have d = 20 and α2o(^,y) =
r12?/8 so A(/) - {[1 : 0 : 0],[0 : 1 : 0]}. Let us start with the blowing-up
maps over P := [1 : 0 : 0]; this is the origin of the chart defined by x — 1.
We write down φ0 in the coordinates (y, z) of this chart:

F(l,y,z) y8 + . .
) = =

where " " means terms of higher degree. We consider πx : Yλ -^ P 2 the
blowing-up of P .

Convention. We will identify a curve with its proper transform after a
blowing-up, even in the notation, whenever it does not cause any confusion.

Let's call Aγ the exceptional locus of this blowing-up. It is easy to see from
last formula that the only point of indeterminacy over P of φyl := φQ o TΓI
is the infinitely near point P x of the line {y = 0}. We choose a chart of Y^
with coordinates y\,Zχ such that Pi is the origin of this chart and we can
write down TΓI as follows:
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Note that L^ does not intersect this chart and Aλ is defined by z\ = 0 (Pi is
in Aι but it is not in L^). We write down φyχ in these coordinates:

Φyl(yi,Zl) =
Z l

We consider π2 : Y2 -> Y\ the blowing-up of Plm Let's call A2 the excep-
tional locus of this blowing-up. It is easy to see that A2 does not intersect L^.
Prom last formula the only point of indeterminacy over P of φy2 := φy\ ° τr2

is the infinitely near point P2 of the line {yλ + zλ = 0}. We choose a chart
of Y2 with coordinates y2,z2 such that P2 is the origin of this chart and we
can write down π2 as follows:

^2) = ((1/2 -

Note that ^42 is defined by z2 = 0. We write down φy2 in these coordinates:

Φv2\y2,Z2) = = = .
A>2 A/2 4>2

We consider π 3 : F3 —> Y2 the blowing-up of P2. Let A3 be the exceptional
locus of this blowing-up. It is easy to see that A2 intersects neither L^ nor
Aι. Prom last formula the only point of indeterminacy over P of φy3 :=
ΦV2 ° 7Γ3 is P3 := A2Π A3. We choose a chart of Y3 with coordinates 2/3,̂ 3
such that P 3 is the origin of this chart and we can write down π 3 as follows:

^3(2/3,^3) = (2/3,2/3^3).

Note that A3 is defined by y3 = 0 while >12 is ^3 = 0. We write down φy3 in
these coordinates:

Λ O ) f j s ) - z \ + - -
Ύyό\yό >~όj — 44 ~ 4 r4

έ/3*3 ^3 ^3

Note that φy3{Loo) = ^3(^1) = φyz(A2 \ \P3\) — 00 = [1 : 0], but we have

6,3(4, \{P3}) = - 1 = [-1:1].

If π4 : y4 —> y3 is the blowing-up of P3 then φy4 := φy3 o π4 has no point
of indeterminacy in the exceptional locus A4 of π 4; this curve separates A2

and A3; the restriction of φy4 is a surjective map of degree 4 (an horizontal
component in the notation of S. Kaliman in [5]).

Let Q be the transform of [0 : 1 : 0] by the sequence π4 o π 3 o π2 o o π P

We consider also the transform of the chart y — 1. In its coordinates x, z we
have:

_ F(x,l,z) _x12 + '"
Φy4{X,Z)- z2Q - z 2 0
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We consider σx : Xx —> Y4 the blowing-up of Q. Let's call B1 the exceptional
locus of this blowing-up. It is easy to see that Bλ intersects L^. Prom last
formula the only point of indeterminacy of φxl := φy4 o σx is the infinitely
near point Qγ of the line x — 0 which does not lie in L^. We choose a chart
of Xι with coordinates Xι,Zι such that Qx is the origin of this chart and we
can write down σx as follows:

σi(zi52i) =

Note that Bλ is defined by zΎ — 0. We write down φxl in these coordinates:

F(xιZι,l,Zι) fχi(xi,Zι) zf + —-
zi zi zi

We consider σ2 : X2 —> Xi the blowing-up of Q x . Let's call B2 the
exceptional locus of this blowing-up. It is easy to see that B2 intersects Bλ

but it is disjoint with L^. From last formula the only point of indeterminacy
of φx2 := φxl oσ2 is Q2 := B1ΠB2. We choose a chart of X2 with coordinates
^2 5̂ 2 such that Q2 is the origin of this chart and we can write down σ2 as
follows:

σ2{x2,z2) =

Note that B2 is defined by a;2 = 0 and Bλ is z2 — 0. We write down ^ 2 in
these coordinates:

Φx2{2,2) g g 2 g j 8

• 2̂ 2 2 2 2 2

We consider σ3 : X 3 —> X2 the blowing-up of Q2 Let's call B3 the
exceptional locus of this blowing-up which separates Bλ and B2. From last
formula the only point of indeterminacy of φx3 := φx2 o σ3 is the infinitely
near point Q 3 of the affine line x2 = — 22 We choose a chart of X3 with
coordinates £ 3 ,£ 3 such that Q3 i s the origin of this chart and we can write
down σ3 as follows:

Note that i?3 is defined by 2:3 = 0. We write down φx3 in these coordinates:

We consider σ4 : X4 -> X 3 the blowing-up of Q3. Let's call B4 the
exceptional locus of this blowing-up which intersects only B3. It is easy to see
that £?4 is an horizontal component such that the restriction of φx4 := φx3°σ4

to B4 is a map of degree 2; we can also check that Q 5 := B4 Π i?3 is a point
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of indeterminacy of φx4. We choose a chart of X4 with coordinates x4,z4

such that Q4 is the origin of this chart and we can write down σ4 as follows:

σ4(x4,z4) = {x4,x4z4).

Note that B4 is defined by x4 — 0 and B3 is z4 = 0. We write down ^ in
these coordinates:

We consider σ5 : X5 —>> X4 the blowing-up of Q4. Let's call JB5 the
exceptional locus of this blowing-up which separates B3 and B4. It is easy
to see that there are two points of indeterminacy of φx5 := φx4 o σ5; let's
denote ζ>5 the infinitely near point of the aίfine line x4 = z4 and Q'b the
one of x4 = —z4. These points are the two points of indeterminacy. They
behave in the same way so we study only Q5. We choose a chart of X 5 with
coordinates ^ 5 , z 5 such that ζ)5 is the origin of this chart and we can write
down σ5 as follows:

Note that B5 is defined by x5 = 0. We write down φx5 in these coordinates:

-2(3a:5 + z5)

It is easy to see that if σ6 : X6 -> X5 is the blowing-up of Q5 then
Φxβ :— ^x5 ° ^6 has only one point of indeterminacy Q6 in the exceptional
locus BQ of σ6. It is not difficult to show that if σ7 : X7 —» X6 is the
blowing-up of Q6 then its exceptional locus B7 is a section of φx7 := </>x6 o σ7.

Let's denote σ^ : X'6 —>• X 7 and σ7 : X 7 -> Xg the corresponding blowing-
up maps over Q'5 where ^ g := (/>x7 o σ̂  ^ 7 := φ'x6 o σ7. Then if we denote

π := σ7 o σ'6 o σ7 o o αiπ 4 O OTΓI, X :— X7, ζ6 := (/47.

Then we have found the required compactification of C 2 .
Let us summarize the results above. We draw in Figure 1 the dual graph

of V = X \ C 2; note that V is the preimage by π of L^ C P 2 . Weights are
self-intersections in X; we recall that the exceptional locus of a blowing-up
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has self-intersection — 1 and if a smooth curve passing through the center
of the blowing-up has self-intersection e, then its proper transform has self-
intersection e — 1.

- 2 - 1 - 3 - 2 - 1 - 3

: 0], j = 1,..., 6;

Figure 1.

We are following the next conventions:

- π(Aj) = [1 : 0 : 0];

- π(Bj) = π(B'k) = [0 : 1 : 0], j = 1,..., 7, fc = 6,7;

- 0(1^) - ^Ai) = 0(A2) = φ(Bj) = φ(B'6) = oo =

- φ(A3) = - 1 = [-1 : 1];

- JB7 and Bγ are sections;

- A4 is an horizontal component of degree 4 and

- i?4 is an horizontal component of degree 2.

Proposition. / is a primitive polynomial.

Proof. If / would be not primitive then there exists p G C[t] and g G C[#, y]
such that f{x,y) = p(g(x,y)) and degp > 1. This fact uses Stein factorisa-
tion ([1, pp. 25-26]). An incomplete proof may be found in [4]. It is easy to
see that if we construct -00 : ^ 2 ~~* ^ f°r 9 m the same way as we construct
φ for / then the map φ := ψo o π : X -> P1 is holomorphic and it is an
extension of g.

We deduce that the horizontal components are the same in the two cases:
in fact if D C V is an irreducible component we have φ\D = p o φ\D, where
p is considered as a map P1 —>• P1 such that p(oo) = oo.

Then for an horizontal component D we have that deg φ\r> = degp deg φ\r>.
The existence of sections implies that degp = 1 so / is primitive. D
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Proposition. The generic fiber of f is rational.

Proof. Note that the general fiber is smooth; if we consider its compactifica-
tion in P2 its singularities are on A(f). It is known (see [2, pp. 569 and 574]
and [6, p. 85]) that the genus of an irreducible plane projective C curve is
(d —l)(d — 2)/2 — ΣP 5p, where d is the degree, the sum is over the singular
points and δP may be calculated as follows.

We recall that the sequence of multiplicities of a singularity is the list of
the multiplicities of the proper transform of the singularity at all infinitely
near points (see [2, p. 504]). Then

P =

where the sum is over the infinitely near points of C at P and m(Pi) is their
multiplicity.

Note that we have constructed a resolution of the singular points of the
compactification of the general fiber as its proper transform in X is smooth.
We can get the sequence of multiplicities from this construction. In [1 : 0 :
0] the generic fiber has four branches and the sequence of multiplicities is
8,8,4,4, {1,1,1,1}; in [0 : 1 : 0] the generic fiber has also four branches and
the sequence of multiplicities is 12,6,6,4, {1,1,2}, {1,1,1,1}.

Putting these multiplicities in the formula we get zero. D

Corollary. / is a counterexample to KalimanJs second result in [5].

Finally we shoud note that the number of reducible fibers of / is equal to
three (each of them with exactly two components); it agrees with the first
result of Kaliman in [5], Using that ps = xu + 1 we have

f = (pu-ps- l)(pu+ps + 1),

/ + 4 = u (p3u - x(xu + 4)) .

§2.- Eisenbud-Neumann diagrams and horizontal sections.

These computations may be done using Eisenbud-Neumann diagrams of the
link at infinity of the generic fiber of /. In order to find the diagram in
Figure 2 we may use the computations for the compactification of C2 to
find the Puiseux expansions of the singularities of the generic fiber of / at
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infinity. Using [3, pp. 50] and [7, p. 450] we get the diagram in Figure 2,
called DEN

ί

\

(0)
?——

2

1

"- 1
r

(4)

2

(2) 4

- 5

(2)

- 3

(0)

2
—>

Figure 2.

We can see from DEN that / is primitive. We must construct the fibered
multilink associated to /, see [7], and verify that its fiber is connected using
[3, p. 37], The generic fiber of / is an n-punctured Riemann surface since
arrows in the EN-diagram correspond to punctures. The EN-diagram (The-
orem 4.3 from [7]) also enables us to compute the Euler characteristic of the
generic fiber which is —6. Hence the genus of the generic fiber is 0.

Remark. In our example horizontal components which are not sections are
detected at vertices υ in DEN such that lv — 0 (weight in brackets). In the
general case we detect in this way all horizontal components where / is not
equisingular; an horizontal component D is equisingular if for all t G C the
closure of f~λ{t) in X intersects D at exactly one point and transversally.
We are going to explain how.

Let us consider the diagram in Figure 1. If we attach four arrows to the
vertex A4, two arrows to J54 and one arrow to B7 and B'Ί then we obtain
a plumbing diagram of the link at infinity of /. The dictionnary between
these two kinds of diagrams may be found in [3, Chap. 5].

This diagram can be interpretted as a resolution diagram of the singular-
ities of the closure of the generic fiber in P2; this diagram includes also the
proper transform of the line at infinity. In this way is not minimal: we may
eliminate vertices with weight —1 and belonging to at most two edges (this
operation increases by one the weight of their neighbours). We call Dpb the
diagram obtained in this way. This construction correspond to a sequence
of contractions of (—l)-rational curves which we denote π : X ->• X; Dpb is
the dual graph of the curve V — π(D). Let's denote φ : X —> P1 the mero-
morphic function such that φ = φ o π. Let us emphasize that π : X -> P2

is the minimal embedded resolution of the singularities of the closure of the
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generic fiber in P 2 where π is the compositon of the blowing-up maps such
that π = π o π. Let us note that in general φ is not everywhere defined.

L e m m a . Let DEN be the Eisenbud diagram of the link at infinity of the
generic fiber of f. Let Dpb be the dual tree of the total transform of the
line at infinity in the minimal embedded resolution of the singularities of the
closure of the generic fiber in P 2 .

Then there exists a natural bijection between vertices with attached arrows
in DEN and Dpb such that if υ is such a vertex in DEN and Dv is the
corresponding vertex in Dpb then lv is the multiplicity of Dv as pole of the
meromorphic function φ.

Proof. We recall the definition of lv. Each vertex of DEN corresponds to a
submanifold of S3 which is an oriented fibration in circles. Let's denote fv a
fiber corresponding to v and disjoint from Kf which is the link at infinity of
a generic fiber of /. Then lυ is the linking number of fv and Kf. Let us take
an oriented Seifert surface Ff of Kf which is transversal to fv; by definition
of linking number lv is the algebraic intersection number of fυ and Ff.

We are going to take a model of S3 in C2 adapted to our situation. Note
that X \ V — C2 and the boundary of a well-chosen tubular neighbourhood
of V is S 3 . Let's call V^ the union of irreducible components of V whose
image by φ is oo. We take φ~1(DR) as tubular neighbourhood of V^ where

DR := {teC\ \t\ > R} U {00} C P \

and R is big enough.
We may choose a Hermitian metric in X such that:

(a) For each double point of V there exists local coordinates (u, v) in a
neignbourhood U of this point such that VUU has uv = 0 as equation
and the restriction of the metric to U is the standard one with respect
to (u,υ).

(b) If the double point is in one component Dι C T> whose equation is

u = 0 and another component D2 £ V then φ\u = u~x.

For each component of V which is not in V^ we choose small tubular

neighbourhoods in this metric. The union of these tubular neighbourhoods

with φ~ι(DR) produces a tubular neighbourhood of V. Let's take S3 as the

boundary of this big tubular neighbourhood.

Let's take as generic fiber Ff the intersection of f~λ{R) with S3. Let -ua
take a vertex v such that Dv is not sent to 00; then we may choose fυ disjoint
from Ff and so lυ = 0 (fv is the boundary of a meridian disk of Dυ). In this
case as the generic point of Dv is not a pole its multiplicity as pole is also
zero.
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If Dv C Poo then choose a point P G Dυ which is smooth in X )U/~1(ί), for
a generic t £ C. We can choose analytic coordinates u, v around P such that
the equation of Dυ is v — 0 and φ(u, v) = v~a where a is the multiplicity of
Dυ as pole of φ. Note that we may take fυ = {{u,v) \ u = 0, \v\ = R~a}.
Then the algebraic intersection of Ff and fυ is equal to α. D

Let us use this lemma to prove the remark. We recall that lv > 0 for
regular links. If lv > 0 we deduce from the lemma that the generic point
of Dv is sent to infinity by φ. A generic fiber of φ is smooth at Dv and
transversal to it; let's denote P 1 ? . . . , P r the points of this generic fiber in
Dυ. These points are points of indeterminacy of φ as two different fibers pass
through them (a generic one and φ~ι(oo)). As π is an embedded resolution
of the closure of the generic fiber in F 2 Pi is a smooth point of φ~x(t), t G C,
and each fiber is transversal to Dv. The intersection number of two fibers
at Pi is equal to lv. Then blowing up over each P{ lv times, we obtain r
equisingular horizontal components which are sections.

If lυ = 0 there are two possibilities for Dυ. It may be an horizontal
component; minimality of Dph and the fact that this graph is a tree assure
that this component is not equisingular and its degree equals the number of
attached arrows. It may be also a component on which φ is constant and
finite. In this case we cannot have arrows of the generic fiber attached to
this component because only one fiber can intersect this component.

§3.-About Kaliman's proof.

The scheme of Kaliman's proof of this second result is as follows (see [5]):
Lemma 4 ==> Lemma 5 and then the result follows from Lemma 5 and Corol-
lary 3. Let us recall the statement of Lemma 4:

Lemma 4 [5]. Let f be a polynomial whose generic fiber is rational and let
φ : X —> F 1 an extension of f. Let Hχ^H2 two horizontal components ofV.
Then there is a commutative diagram

x -U x

such that
(1) φ : X —> F 1 is an extension of f where X is a rational smooth compact

surface and σ is a birational isomorphism.

(2) The restriction of σ to 0~1(C) is a regular isomorphism from ( ^ ( C )

toφ-ι{C).

(3) φ~ι(oό) is irreducible.
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(4) If Hk is the closure of the transform of Hk by σ, k = 1,2, then H1 Π
H2nφ~1(oo) = d).

As Kaliman says it is easy to see that (applying Kodaira-Morrow's theo-
rem) there exists a commutative diagram

X ?\ Xx

Φ\ )/Φl
pi

satisfying (1),(2) and (3) (σλ is regular). In our case σx is obtained collapsing
one after the other the curves L^, Au Bli A2i B3, B2, B5, B6.

In order to simplify the notation we keep the notation from Figure 1 for
the proper transforms of the curves in X. We have:

- (A4, P) is a simple singularity of type A*,

- (B4,P) is smooth,

- (B4 A4)p = 5 and

- (B4 BQ)P = 2.

Let us take Hi = A4 and H2 = B4. Kaliman asserts that if Hλ Π H2 Π
φ^ioo) Φ 0 then we may blow up P and then contract the proper transform
of BQ (a — 1-curve). We obtain φ2 : X2 —>• P1 and σ2 satisfying (1), (2) and
(3); he claims that the intersection number of the proper transforms of Hi
and H2 decrease and we can apply induction.

We see in our case that the intersection number does not decrease (it does
for the blowing-up but as the curves are tangents to B'6 it increases with the
contraction). In any case it is not possible to separate Hi and H2 with the
hypothesis of Lemma 4 because if it would be true we may apply the scheme
of Kaliman's proof showing that / has at most one horizontal component
which is not a section and this statement is not true.

§4.- Remarks on an article of Russell.

In [8] the author constructs an example of bad field generator, i.e., a poly-
nomial / G C[x, y], such that its generic fiber is rational and such that there
is no polynomial g G C[#,y] verifying k(f,g) = k(x,y). This property is re-
lated with the non-existence of sections: a rational polynomial is a bad ήeld
generator if and only if no horizontal component is a section. The example
given by Russell is a polynomial of degree 21; it has only two horizontal
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components, one of degree 3 and the other one of degree 2. It gives also a
counter-example to Kaliman's theorem. In fact, from the above characteri-
sation of bad field generator, [8, 2.2], we deduce that all bad field generators
are counter-examples to Kaliman's theorem; note that our counter-example
is a good field generator because there are two sections. We write down his
polynomial because the polynomial which appears in [8, p. 324] is not the
right one:

/Or, y) := y\xy + I) 9 + 4x7y9 + 25s V + 66x*y7

+ 6 z V + 95zV + 23s4y5 + S0x3y5 + 3Ax3y4 + Ax3y3

+39x2yA + 24x2y3* + 7x2y2 + lOxy3 + 8xy2* + 3xy + x + y2 + y*.

(The * shows the coefficients which do not match with [8].) Prom the first
remark of [5] we deduce that this polynomial has one factorisation. In fact
we have:

/ := {y2{xy + I) 4 + y{2xy + l)(xy + 1) + 1)

x (y{xy + I) 5 + 2xy(xy + I) 2 + x) .

References

[1] W. Barth, E. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse
der Mathematik und ihre Grenzgebiete 3, Folge Band 4, Springer Verlag, Berlin-
Heildelberg, (1984).

[2] E. Brieskorn and H. Knorrer, Plane Algebraic Curves, Birkhέίuser Verlag, Basel,
(1985).

[3] D. Eisenbud and W.D. Neumann, Three-Dimensional link theory and invariants
of plane curve singularities, Annals of Mathematic Studies 101, Princeton Univ.
Press, Princeton N.Y., (1987).

[4] M. Purushima, Finite groups of polynomial automorphisms in the complex affine
plane (I), Memoirs of the Fac. of Sci. Kyushu Univ. Ser. A, 36 (1982), 85-105.

[5] S. Kaliman, Two remarks on polynomial in two variables, Pacific J. Math., 154
(1992), 285-295.

[6] J. Milnor, Singular Points of Complex Hyper surf aces, Annals of Mathematic Studies
61, Princeton Univ. Press, Princeton N.Y., (1968).

[7] W.D. Neumann, Complex algebraic plane curves via their links at infinity, Invent.
Math., 98 (1989), 445-489.

[8] P. Russell, Good and bad field generators, J. Math. Kyoto Univ., 17 (1977), 319-331.



ONE REMARK ON POLYNOMIALS 309

Received May 20, 1994. The first author was partially supported by CAICYT PB91-0370-
C02-01.

UNIVERSIDAD DE ZARAGOZA
E-50009 ZARAGOZA, SPAIN
E-mail address: artal@posta.unizar.es

AND

UNIVERSITE DE BORDEAUX I
351 COURS DE LA LIBERATION
F-33405 TALENCE, FRANCE
E-mail address: cassou@math.u-bordeaux.fr






