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Abstract
Using several numerical invariants, we study a partition of the space of line arrangements in

the complex projective plane, given by the intersection lattice types. We offer also a new charac-
terization of the free plane curves using the Castelnuovo-Mumford regularity of the associated
Milnor/Jacobian algebra.

1. Introduction

1. Introduction
Line arrangements in the complex projective plane P2 look like being simple objects, but

a lot of questions related to them are still unanswered, e.g. Terao’s conjecture saying that
the freeness of such an arrangement is determined by the combinatorics, see Conjecture 6.1
below for a statement, [9, Chapter 8] for more information, and [36] for a survey. Or the
conjecture that the monodromy of the associated Milnor fiber is determined by the combi-
natorics, see [28] for a recent result and [9] for more information.

In order to treat such questions, the study of parameter spaces (a.k.a moduli spaces) of
line arrangements has being developed, centered especially on the irreducibility/connectivity
questions, see [3], [4], [5], [26], [35].

In this paper, the new idea is to look at the way in which the parameter spaces A(L)
and X(L) of line arrangements with a given intersection lattice L behave when the lattice L
changes. In section 2 we describe two parameter spaces for the line arrangements  : f = 0
in P2 having d lines, namely A(d) and X(d), which are both smooth irreducible varieties,
see Corollary 2.3. To partition these two varieties A(d) and X(d) into finer strata, keeping
track of the properties of the line arrangements, we use several numerical invariants and
study their semi-continuity properties in Proposition 2.4. We consider in this section both
line arrangements and arbitrary reduced curves in P2, in order to point out that the numerical
invariants associated to line arrangements enjoy special properties, see Corollary 2.6.

In section 3 we recall the definition and main properties of free and nearly free plane
curves. Then we prove that a classical invariant in Commutative Algebra, namely the
Castelnuovo-Mumford regularity, coincides, when applied to the Milnor/Jacobian algebra
M( f ) of a reduced plane curve C : f = 0, to a naive invariant st( f ), coming from the Hilbert
function of the graded algebra M( f ), exactly when the curve C is free, see Theorem 3.3
and Corollaries 3.4 and 3.5. Corollary 3.5 depends on a key result due to H. Schenck, see
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[29]. We end this section by noting that our partitions of the spaces A(d) and X(d) are G-
equivariant, where G = Aut(P2) is acting in the obvious way on these parameter spaces. In
Proposition 3.11 we describe the dimension of a line arrangement under this G-action.

In section 4 we fix an integer d ≥ 4 and denote by (d) the set of all possible intersection
lattices of arrangements with d lines, modulo lattice isomorphisms. For each (isomorphism
class of) lattice L ∈ (d), we denote by X(L) the subset of X(d) consisting of line arrange-
ments having an intersection lattice isomorphic to L. Hence the subsets X(L) for L ∈ (d)
form the strata of a partition of the smooth irreducible variety X(d). The first properties of
these strata are given in Proposition 4.1. Then we discuss several examples of simple lattices
L and of corresponding strata X(L), e.g. the lattice Lgen corresponding to the generic line
arrangement is discussed in Example 4.6 and an obvious generalization, the lattice L(d,m),
is considered in Proposition 4.7. Other lattices occurs in Proposition 4.10, Example 4.11,
Example 4.15, the last two describing free (resp. nearly free) line arrangements. Note that
our results on a stratum X(L) (e.g. dimension, connectivity) easily translate into properties
of the quotient X(L)/G. We also reprove in a new way a result due to Tohăneanu [34], giv-
ing the classification of line arrangements with a Jacobian syzygy of minimal degree 2, see
Theorem 4.12.

In section 5 we point out the complexity of the stratification (X(L))L∈(d) of the space
X(d). First we describe all the strata when d = 4, 5, 6, and pay particular attention to the
strata formed by (nearly) free arrangements. We explain just after Proposition 5.4 that these
stratification do not satisfy the frontier condition in general, in particular they are not Whit-
ney regular stratifications. In Remark 5.5 and in the answer to Question 5.6 we show that
some nice features of this stratification noticed when d ≤ 6 do not extend to higher degrees
d.

In the final section we discuss Terao’s conjecture in the case of line arrangements, recall
the known results and give a new proof for Theorem 6.3. Finally, in Proposition 6.5 we give
a generalization of the result saying that the generic arrangement is not free when d ≥ 4.

The authors would like to thank the Oberwolfach Research Institute for Mathematics,
where the major part on the work on this project was done during a RIP program.

We also thank Torsten Hoge for his useful remarks on the previous version of this paper
and the referee for the careful reading of the manuscript and for his useful suggestions.

2. General facts on plane curves and line arrangements

2. General facts on plane curves and line arrangements2.1. Two parameter spaces for line arrangements: A(d) and X(d).
2.1. Two parameter spaces for line arrangements: A(d) and X(d). Let S = C[x, y, z]

be the graded polynomial ring in the variables x, y, z with complex coefficients, and S m be
the vector space of degree m homogeneous polynomials in S . Fix an integer d ≥ 1 and
regard the projective space (d) = P(S d) as the parameter space of degree d curves in P2.

Definition 2.1. We denote by (d)0 the subset in (d) corresponding to curves having
only isolated singularities, and by A(d) the subset in (d)0 corresponding to line arrange-
ments consisting of d distinct lines.

Proposition 2.2. The set (d)0 is Zariski open and dense in (d). The set A(d) is a Zariski
closed subset in (d)0.
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Proof. For the first claim, note that the complement (d) \ (d)0 is the union of the finite
family of Zariski closed subsets given by the images of the obvious mappings

φm : P(S m) × P(S d−2m)→ P(S d),

(A, B) �→ A2B, for m = 1, 2, ..., [d/2]. For the second claim, we consider the map

(2.1) ψ : P(S 1)d → P(S d),

given by (�1, ..., �d) �→ �1 · �2 · ... · �d. Then A(d) is just the intersection of the set (d)0 with
the image of the mapping ψ. �
Note that

(2.2) X(d) := ψ−1(A(d))

is exactly the set of linear forms (�1, ..., �d) ∈ P(S 1)d such that �i � � j for i � j, and the
restriction ψ : X(d) → A(d) is a Galois covering with structure group the symmetric group
σd on d elements.

Corollary 2.3. The parameter spaces A(d) and X(d) are smooth, irreducible algebraic
varieties of dimension 2d. The space X(d) is simply connected and the fundamental group
of the space A(d) is given by

π1(A(d)) = σd.

Proof. The only claim that needs some explanation is the fact that X(d) is simply con-
nected. This follows from the fact that X(d) is obtained from the simply connected variety
P(S 1)d by removing the codimension 2 linear subvarieties Δi j : �i = � j for all 1 ≤ i < j ≤ d.

�

2.2. Some numerical invariants for plane curves and line arrangements.
2.2. Some numerical invariants for plane curves and line arrangements. For a poly-

nomial f ∈ S d, we denote by J f the ideal in S generated by the partial derivatives fx, fy, fz,
and call J f the Jacobian ideal of f . The graded ring M( f ) = S/J f is called the Milnor or
Jacobian algebra of f . We define

(2.3) mk( f ) = dim M( f )k.

Note that one has mk( f ) = τ( f ) for k > 3(d − 2) and f ∈ (d)0, where τ( f ) is the total
Tjurina number of the reduced plane curve C( f ) : f = 0, see [6]. We also denote by τ(C( f ))
this number, and note that it is nothing else but the degree of the Jacobian ideal J f .

The minimal degree of a Jacobian syzygy for f is the integer mdr( f ) defined to be the
smallest integer r ≥ 0 such that there is a nontrivial relation

(2.4) a fx + b fy + c fz = 0

among the partial derivatives fx, fy and fz of f with coefficients a, b, c in S r. We denote by
AR( f ) the graded S -module consisting of all the triples (a, b, c) ∈ S 3 satisfying (2.4). In fact
AR( f ) depends only on the class of f ∈ S d in (d) = P(S d).

Proposition 2.4. (1) The subset { f ∈ S d : mk( f ) ≤ m} ⊂ (d) is Zariski open and
dense in (d) for any k ≥ 0 and any m ≥ 0. In particular, the following two sets
{ f ∈ (d)0 : τ( f ) ≤ m} ⊂ (d)0 and { f ∈ A(d) : τ( f ) ≤ m} ⊂ A(d), are Zariski
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open and dense in (d)0 (resp. in A(d)) for any k ≥ 0 and any m ≥ 0.
(2) The subset { f ∈ S d : mdr( f ) ≤ m} ⊂ (d) is Zariski closed in (d) for any m ≥ 0.

In particular, the following two sets { f ∈ (d)0 : mdr( f ) ≤ m} ⊂ (d)0 and
{ f ∈ A(d) : mdr( f ) ≤ m} ⊂ A(d), are Zariski closed in (d)0 (resp. in A(d)) for any
m ≥ 0.

Proof. The first claim is clear by the semicontinuity properties of the rank of a matrix,
whose rows are obtained by taking all the coefficients of the polynomials μg, where μ runs
through the set of monomials of degree k − d + 1 in S and g ∈ { fx, fy, fz}.

To prove the second claim, consider the closed subvariety Ym in P(S 3
m) × P(S d) given by

Ym = {((a, b, c), f ) : a fx + b fy + c fz = 0}.
Note that a polynomial f ∈ S d satisfies mdr( f ) ≤ m if and only if [ f ] ∈ P(S d) is in the image
of Ym under the second projection. �

Definition 2.5. For a polynomial f ∈ (d)0, we recall the following invariants.
(i) The coincidence threshold

ct( f ) = max{q : dim M( f )k = dim M( fs)k for all k ≤ q},
with fs a homogeneous polynomial in S of the same degree d as f and such that Cs : fs = 0
is a smooth curve in P2.
(ii) The stability threshold st( f ) = min{q : dim M( f )k = τ( f ) for all k ≥ q}.
(iii) The regularity reg( f ) is the Castelnuovo-Mumford regularity of the Milnor algebra
M( f ), regarded as a graded S -module, see [18, Chapter 4].

The exact sequences

(2.5) 0→ AR( f )(−(d − 1))→ S (−(d − 1))3 ( fx, fy, fz)−−−−−−→ S → M( f )→ 0

and

(2.6) 0→ AR( fs)(−(d − 1))→ S (−(d − 1))3 ( fs,x, fs,y, fs,z)−−−−−−−−→ S → M( fs)→ 0

and the fact that AR( fs)k = 0 for k < d − 1 imply that

(2.7) ct( f ) ≥ mdr( f ) + d − 2,

with equality for mdr( f ) < d − 1. To have equality always, it is convenient to introduce the
invariant mdre( f ), the minimal degree of an essential Jacobian relation for f , which is by
definition the minimal degree of a relation (2.4), where the triple (a, b, c) does not belong
to the S -submodule of AR( f ) generated by the Koszul relations ( fy,− fx, 0), ( fz, 0,− fx) and
(0, fz,− fy). With this definition we always have

(2.8) ct( f ) = mdre( f ) + d − 2,

see [13].

Corollary 2.6. With the above notation, the following hold.
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(1) Let C : f = 0 be a singular, reduced plane curve of degree d ≥ 3 in P2. Then

mdr( f ) ≤ d − 1, mdre( f ) ≤ 2(d − 2) and ct( f ) ≤ 3(d − 2).

Moreover, if τ(C) = 1, all these inequalities are equalities.
(2) Let  : f = 0 be an arrangement having d ≥ 2 lines. Then

mdr( f ) = mdre( f ) ≤ d − 2 and ct( f ) ≤ 2(d − 2).

Moreover, both of these inequalities are equalities for a generic arrangement.

Proof. To prove (1), note that mdr( f ) ≤ d − 1 follows from the existence of Koszul
relations. The inequality mdre( f ) ≤ 2(d − 2) follows using (2.8) and the obvious fact that
ct( f ) ≤ T = 3(d − 2). When τ(C) = 1, it follows from [13, Example 4.3] that ct( f ) = T .
Moreover, such a curve is nodal and irreducible, and hence mdr( f ) ≥ d−1, by [13, Theorem
4.1]. This remark completes the proof of the first claim.

In view of Proposition 2.4 (2), to prove (2) it is enough to show that mdr( f ) = d−2 when
 is a generic arrangement. But this follows from [13, Theorem 4.1]. �

The invariants st( f ) and reg( f ) are closely related, as the next section shows. However,
they do not seem to satisfy semicontinuity properties similar to those in Proposition 2.4, see
Remark 5.3.

3. Free and nearly free plane curves

3. Free and nearly free plane curves3.1. Free plane curves.
3.1. Free plane curves. For the equivalence of the properties in the next definition, we

refer to [33]. See also [9, Chapter 8].

Definition 3.1. The curve C : f = 0 is a free divisor if the following equivalent condi-
tions hold.

(1) The Milnor algebra M( f ) is a Cohen-Macaulay S -module.
(2) The minimal graded resolution of the Milnor algebra M( f ) as an S -module has the

following form

0→ S (−d1 − d + 1) ⊕ S (−d2 − d + 1)→ S 3(−d + 1)
( fx, fy, fz)−−−−−−→ S

for some positive integers d1, d2.
(3) The graded S -module AR( f ) is free of rank 2, i.e. there is an isomorphism

AR( f ) = S (−d1) ⊕ S (−d2)

for some positive integers d1, d2.

When C is a free divisor, the integers d1 ≤ d2 are called the exponents of C. They satisfy
the relations

(3.1) d1 + d2 = d − 1 and τ(C) = (d − 1)2 − d1d2,

where τ(C) is the total Tjurina number of C, see for instance [12]. For a free curve, one has
mdr( f ) = d1, ct( f ) = d1 + d − 2 in view of (2.7), and st( f ) = d2 + d − 3, see for instance
[10].
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Definition 3.2. The curve C : f = 0 is a nearly free divisor if the Milnor algebra M( f )
has a minimal graded resolution of the form

0→ S (−d − d2)→ S (−d − d1 + 1) ⊕ S 2(−d − d2 + 1)→ S 3(−d + 1)
( fx, fy, fz)−−−−−−→ S

for some integers 1 ≤ d1 ≤ d2, called the exponents of C.

For a nearly free curve, the exponents satisfy d1 + d2 = d, and one has mdr( f ) = d1,
ct( f ) = d1 + d − 2 in view of (2.7), and st( f ) = d2 + d − 2 by the results in [10].

Theorem 3.3. Let C : f = 0 be a reduced plane curve. Then

st( f ) − 1 ≤ reg( f ) ≤ st( f ),

and the equality reg( f ) = st( f ) holds if and only if C : f = 0 is a free curve.

Proof. Let HM( f ) (resp. PM( f )) be the Hilbert function (resp. the Hilbert polynomial) of
the graded S -module M( f ). Then [18, Theorem 4.2] implies that

HM( f )(k) = PM( f )(k)

for any k ≥ reg( f ) + 1. Since for a reduced plane curve the Hilbert polynomial PM( f )

is just the constant τ(C), it follows from the definition of the stability threshold st( f ) that
st( f ) ≤ reg( f ) + 1, and hence st( f ) − 1 ≤ reg( f ).

To prove the other inequality, let Jsat
f be the saturation of the Jacobian ideal J f , as dis-

cussed in a more general setting in [21]. Consider the exact sequence of graded S -modules

0→ Jsat
f /J f → M( f )→ S/Jsat

f → 0.

Then [17, Corollary 20.19] implies that

reg( f ) = regM( f ) ≤ max{reg(Jsat
f /J f ), reg(S/Jsat

f )}.
Note the module Jsat

f /J f has finite length, so [18, Corollary 4.4] implies that

reg(Jsat
f /J f ) = max{k : (Jsat

f /J f )k � 0} = sat(J f ) − 1,

in the notation from [8]. Moreover, [8, Corollary 2] says that

sat(J f ) ≤ max{T − ct( f ), st( f )},
where T = 3(d−2). On the other hand the quotient S/Jsat

f is a Cohen-Macaulay module sat-
isfying depth S/Jsat

f = dim S/Jsat
f = 1, and [18, Corollary 4.8] tells us that s = reg(S/Jsat

f ),
where s is the smallest integer such that k ≥ s implies

HS/Jsat
f

(k) = PS/Jsat
f

(k) = τ(C).

This integer s is determined in [8, Proposition 2], where it is shown that one has s = T−ct( f ).
It follows that

reg( f ) ≤ max{T − ct( f ), st( f ) − 1}.
When C : f = 0 is free, we have ct( f )+ st( f ) = T by [10], and hence we get reg( f ) ≤ st( f ).
A direct computation using the definition of the Castelnuovo-Mumford regularity in terms
of a resolution (see [17], p.505) yields reg( f ) = d2 + d − 3 when C is free. The equality
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st( f ) = reg( f ) follows using the above formulas for st( f ). Note that in the free case, the
equality reg( f ) = st( f ) is also a consequence of Theorem 4.2 in [18], since M( f ) is Cohen-
Macaulay in this case.

When C : f = 0 is not free, then it is shown in [10, Corollary 1.7] that ct( f )+st( f ) ≥ T+2,
which implies that max{T − ct( f ), st( f ) − 1} = st( f ) − 1, and this completes the proof. �

Corollary 3.4. Let C : f = 0 be a reduced plane curve of degree d ≥ 4. Then the
following hold.

(1) C is free if and only if reg( f ) = 2(d − 2) − mdre( f ).
(2) C is nearly free if and only if reg( f ) = 2(d − 2) − mdre( f ) + 1.
(3) If C is neither free nor nearly free, then reg( f ) ≥ 2(d − 2) − mdre( f ) + 2.

Proof. The claims (1) and (2) then follow from the equalities ct( f ) + st( f ) = T (resp.
ct( f ) + st( f ) = T + 2) which are shown in [10, Corollary 1.7] to characterize the free (resp.
nearly free) curves. The claim in (3) follows from the equality (2.8) and the inequality
ct( f ) + st( f ) ≥ T + 3 which holds in this case by [10, Corollary 1.7]. �
Note that in the cases (1) and (2) above one has mdr( f ) = mdre( f ), while in the case (3)
both mdr( f ) = mdre( f ) and mdr( f ) = d − 1 < mdre( f ) may occur.

Corollary 3.5. If  : f = 0 is any arrangement of d ≥ 4 lines, then

reg( f ) ≤ 2d − 5 and st( f ) ≤ 2d − 4.

When  : f = 0 is a generic arrangement of d ≥ 4 lines, both of the above inequalities
become equalities.

Proof. The inequality reg( f ) ≤ 2d − 5, with equality for a generic arrangement, follows
from [29, Corollary 3.5]. The reader must notice that the regularity there is the Castelnuovo-
Mumford regularity of the graded S -module AR( f ), and not as in our paper that of the Milnor
algebra M( f ). The exact sequence (2.5) allows us to pass from one regularity to the other,
namely one has

reg( f ) = reg(M( f )) = reg(AR( f )) + d − 3.

The formula for st( f ) in the case of a generic arrangement follows from [13, Corollary 1.3].
In fact, using Theorem 3.3, we need only one of these two invariants, since it is known that
such a line arrangement is not free, see for instance [12] or Proposition 6.5 below.

In the general case, if the arrangement  is not free, then st( f ) = reg( f ) + 1 ≤ 2d − 4.
And for a free arrangement  : f = 0, one has st( f ) = d + d2 − 3 ≤ 2d − 4 since clearly
d2 ≤ d − 1. �

Definition 3.6. We denote by (d, τ) (resp. A(d, τ)) the set of curves in (d)0 (resp. the
set of line arrangements in A(d)) with a fixed global Tjurina number τ. We denote by F(d, τ)
(resp. FA(d, τ)) the set of free curves in (d, τ) (resp. the set of free line arrangements in
A(d, τ)).

For the following result we refer to [11]. For the case of hyperplane arrangements in Pn

see [37].
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Theorem 3.7. The set F(d, τ) is a Zariski open subset in (d, τ). The set FA(d, τ) is a
Zariski open subset in A(d, τ).

Using the Galois covering ψ : X(d)→ A(d), we introduce the following notation.

(3.2) X(d,mk ≤ m) = ψ−1({ f ∈ A(d) : mk( f ) ≤ m})
and X(d,mk = m) = X(d,mk ≤ m) \ X(d,mk ≤ m − 1).

(3.3) X(d, τ ≤ m) = ψ−1({ f ∈ A(d) : τ( f ) ≤ m}) and X(d, τ) = ψ−1(A(d, τ)).

(3.4) X(d,mdr ≤ m) = ψ−1({ f ∈ A(d) : mdr( f ) ≤ m})
and X(d,mdr = m) = X(d,mdr ≤ m) \ X(d,mdr ≤ m − 1).

(3.5) FX(d, τ) = ψ−1(FA(d, τ)) and FX(d) = ∪τFX(d, τ).

Then we have the following obvious consequence of Proposition 2.4 and Theorem 3.7.

Corollary 3.8. The sets X(d,mk ≤ m) and X(d, τ ≤ m) are Zariski open in X(d) for any
positive integers k and m. The set X(d; mdr ≤ m) is Zariski closed in X(d) for any positive
integer m. Moreover, the set FX(d, τ) is Zariski open in the variety X(d, τ).

It is known that FA(d, τ) � ∅ implies that there is an integer r ∈ [0, (d − 1)/2] such that

(3.6) FX(d, τ) ⊂ X(d,mdr = r), where τ = τ(d, r) = (d − 1)2 − r(d − 1 − r),

see [10], [14]. We set

(3.7) τ(d)min =
3
4

(d − 1)2 for d odd and τ(d)min = �34(d − 1)2� + 1 for d even.

With this notation we have the following result.

Corollary 3.9. If  : f = 0 is a free line arrangement in A(d, τ), then

τ = τ( f ) ≥ τ(d)min.

Proof. The inequalities follow from the formula for τ(d, r) given above. Here �x� denotes
the integral part of the real number x. �

Remark 3.10. It is shown in [10] that a line arrangement  : f = 0 with d = || is nearly
free with exponents d1 ≤ d2 = d − d1 if and only if

τ() = τ(d, d1) − 1.

3.2. Three group actions on parameter spaces.
3.2. Three group actions on parameter spaces. Consider the connected algebraic group

G = Aut(P2) = PGL(3,C) of dimension 8. This group acts naturally on the variety (d) and
all the subsets (d)0, A(d), F(d, τ), FA(d, τ) are in fact G-invariant, hence they inherit a
natural G-action, and are unions of G-orbits G · f , for some f ∈ (d). Moreover, G acts
also on the variety X(d) in a diagonal way, and such that the map ψ : X(d) → A(d) is G-
equivariant. It follows that all the subsets X(d,mk ≤ m), X(d, τ ≤ m), X(d, τ), X(d; mdr ≤ m),
FX(d, τ) are also G-invariant, so they consists of unions of G-orbits, denoted by G·(�1, ..., �d),
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for some (�1, ..., �d) ∈ X(d).

Proposition 3.11. Let (�1, ..., �d) ∈ X(d) and denote f = ψ(�1, ..., �d) ∈ A(d). Then one
has the following.

(1) dim G · (�1, ..., �d) = dim G · f .
(2) dim G · f = 2 if d = 1, dim G · f = 4 if d = 2 and for d = 3, one has dim G · f = 5 if

 : f = 0 consists of 3 concurrent lines, and dim G · f = 6 if  : f = 0 consists of
a triangle.

(3) For d ≥ 4, dim G · f = 5 if mdr( f ) = 0, dim G · f = 7 if mdr( f ) = 1 and dim G · f = 8
if mdr( f ) > 1.

Proof. The first claim follows since the map ψ has finite fibers. To prove (2) and (3), note
that one has

dim G · f = dim G − dim Fix( f ),

where Fix( f ) is the stabilizer subgroup of f . The Lie algebra of Fix( f ) is exactly AR( f )1,
i.e. the linear Jacobian syzygies, see [16, Proposition 1.1]. When d = 1, we can take f = x
and it follows that dim AR( f )1 = 6, since in the notation from (2.4) one takes a = 0 and
b, c ∈ S 1 arbitrary. When d = 2, we can take f = xy, and it follows that dim AR( f )1 = 4,
since a = λx, b = −λy and c ∈ S 1 arbitrary. When d = 3 there are two possibilities. The
first one is f = x3 + y3, when dim AR( f )1 = 3, as a = b = 0 and c ∈ S 1. The second case
is f = xyz and then dim AR( f )1 = 2, since AR( f )1 is spanned in this case by (x,−y, 0) and
(x, 0,−z).

Assume now that d ≥ 4. Then, if r = mdr( f ) = 0, this means that dim AR( f )0 = 1,
which implies dim AR( f )1 = 3. If r = 1, then it follows from [16, Proposition 2.2] that
dim AR( f )1 = 1. When r > 1, one has AR( f )1 = 0, so the claims in (3) are now proved. �

Let  be the Galois group of C over Q. Then  acts on the parameter spaces A(d) and
X(d) by acting on the coefficients of the defining equations. It follows that all the subsets
X(d,mk ≤ m), X(d, τ ≤ m), X(d, τ), X(d; mdr ≤ m), FX(d, τ), as well as A(d,mk ≤ m),
A(d, τ ≤ m), A(d, τ), A(d; mdr ≤ m), FA(d, τ) are also -invariant.

The symmetric group σd also acts on X(d) by permuting the linear factors of the defining
equation f = 0 of a line arrangement, and this is the reason why some strata in X(d) are not
irreducible, while their images in A(d) have this property, see for instance Proposition 4.7
(1).

3.3. On rigid plane curves and line arrangements.
3.3. On rigid plane curves and line arrangements. We say that a plane curve C : f = 0

is algebraically rigid if (Jsat
f /J f )d = 0, where Jsat

f denotes as above the saturation of the
Jacobian ideal J f . Indeed, the vector space (Jsat

f /J f )d is naturally identified to the space of
first order locally trivial deformation of C in P2, modulo the above G-action, see [20, 31, 32].
These deformations preserve the analytic isomorphism type of each singular point of C.

Example 3.12. It is known that a curve C : f = 0 is free if and only if Jsat
f = J f , see [33].

In particular, any free curve is algebraically rigid. A generic line arrangement of 4 lines in
P2 is not free, but it is algebraically rigid by Proposition 3.11 (3) since mdr( f ) > 1 in this
case. In fact, in this case one has dim(Jsat

f /J f )3 = 1 and (Jsat
f /J f )k = 0 for k � 3.
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We say that a reduced plane curve C : f = 0 is topologically rigid if any deformation of
C preserving the number of irreducible components of C, their degrees and the topological
type of each singularity of C is trivial modulo the above G-action. For more on this type of
rigidity see [25].

Example 3.13. A line arrangement  consisting in d ≥ 4 lines passing through one point
satisfies mdr( f ) = 0, and it is free. Hence  is an algebraically rigid curve. On the other
hand, we can modify the cross-ratio of a subset of 4 lines in  by moving one line, without
changing the topology of the singularity, and hence such a family will not be contained in
one G-orbit. Hence  is not topologically rigid.

Remark 3.14. If a reduced plane curve has only simple singularities of type Ak, Dk and
E6, E7, E8, then C is algebraically rigid if and only if C is topologically rigid. Indeed,
for a simple singularity, a topologically constant deformation is the same as an analytically
constant deformation. In particular, for a line arrangement  having only double and triple
points, the two rigidity notions coincide. In such a case we will simply say that  is rigid.
For examples of this situation, see Remark 4.2 and the stratum A(L(Δ)) in Proposition 5.4
below.

For more on the interest of rigidity in the study of line arrangements, see [2].

4. A partition of the parameter space X(d)

4. A partition of the parameter space X(d)
From now on in this paper we assume that d ≥ 4. For a fixed integer d ≥ 4, we denote

by (d) the set of all possible intersection lattices L(), for line arrangements in P2 con-
sisting of d distinct lines. For a lattice L ∈ (d), we denote by X(L) the set of all elements
(�1, ..., �d) ∈ X(d) such that the line arrangement

(4.1)  : �1 = ... = �d = 0

has an intersection lattice L() isomorphic to L, see [27] for more on intersection lattices.
We also set A(L) = ψ(X(L)). Such a lattice gives in particular information on the multi-
ple points p in the arrangement , and about their multiplicities, denoted by mp ≥ 2. In
particular, we define

(4.2) τ(L) =
∑

p

(mp − 1)2 = τ().

By definition, we have the following partitions

(4.3) X(d) = ∪L∈(d)X(L) and X(d, τ) = ∪L∈(d),τ(L)=τX(L)

and similarly

(4.4) A(d) = ∪L∈(d)A(L) and A(d, τ) = ∪L∈(d),τ(L)=τA(L).

One has the following.

Proposition 4.1. For any lattice L ∈ (d), the following hold.

(1) The sets X(L) and A(L) are constructible; they are also G-invariant and -invariant.
(2) X(L) ⊂ X(d, τ(L)) and A(L) ⊂ A(d, τ(L)).
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(3) The function mdr : A(L) → N attains its minimal value on a Zariski closed subset
F of A(L), and in general F � A(L).

(4) The function mk : A(L) → N attains its minimal value on a Zariski open subset Uk

of A(L), and in general Uk � A(L).

Proof. The claim about the constructibility in (1) can be settled as follows. A point p of
multiplicity k ≥ 3 will give rise to a set (L)p of k − 2 equations to be satisfied by the set
of coefficients (ai, bi, ci) ∈ P(S 1), where �i = aix + biy + ciz. Indeed, if the lines passing
through p are for instance Li : �i = 0 for i = 1, 2, ..., k, then the fact that all these lines pass
through p is expressed by the vanishing of k − 2 determinants D(1, 2, j) of 3 × 3 matrices
A(1, 2, j), constructed using the coefficients of �1, �2 and � j to define the corresponding three
rows, where j = 3, 4, ..., k. Note that such determinants really define hypersurfaces in the
product P(S 1)d. Moreover, when three lines Lu, Lv and Lw are not concurrent, we should add
the condition that the corresponding determinant D(u, v, w) is not zero. More details on this
construction can be found in [26], see however Remark 4.4 below. The G-invariance and the
-invariance of X(L) is obvious.

The claim (2) is clear. For the first part in claim (3), use Proposition 2.4, (2). For the
second part of claim (3), one may consider the example of two line arrangements

 : f = xy(x − y − z)(x − y + z)(2x + y − 2z)(x + 3y − 3z)(3x + 2y + 3z)

(x + 5y + 5z)(7x − 4y − z) = 0

and


′ : f ′ = xy(x + y − z)(5x + 2y − 10z)(3x + 2y − 6z)(x − 3y + 15z)

(2x − y + 10z)(6x + 5y + 30z)(3x − 4y − 24z) = 0,

having isomorphic intersection lattices and constructed by Ziegler in [38]. A picture of these
arrangements can be found in [9, Chapter 8]. They consists both of nine lines, and have only
double and triple points. More precisely, they have n2 = 18 double points and n3 = 6 triple
points, and hence τ() = τ(′) = 42. In the case of , the six triple points are on a conic,
and a direct computation shows that mdr( f ) = 5. For ′, the six triple points are not on a
conic, i.e. the arrangement ′ is a small deformation of the arrangement , and a direct
computation shows that mdr( f ) = 6. See also [30, Example 13]. The above example settles
also the claim (4) by taking k = 13, since

m13( f ′) = τ( f ′) = 42 < m13( f ).

�

Remark 4.2. In fact, it is clear that there is a topologically constant 1-parameter family of
line arrangements t such that 0 =  and t for t � 0 has the same numerical invariants
as ′. This family is obtained by moving the sixth triple point till it gets onto the conic
determined by the first 5 triple points. It follows that  is not rigid, and one can check that
dim(I/J f )9 = 4. A direct computation shows that for ′ one has dim(I/J f )9 = 4 as well,
i.e. ′ is not rigid either.



858 A. Dimca, D. Ibadula and D.A. Măcinic

Remark 4.3. The above result says that the invariants mdr and mk are not determined
by the combinatorics in general. However, if  is a free arrangement, both mdr( f ) and
mk( f ) are determined by the lattice L(). The claim for mdr( f ) follows from the formula
(3.6). The claim for mk( f ) follows from the fact that the exponents d1 = mdr( f ) and d2 =

d − 1 − mdr( f ) determine the Hilbert function HM( f ) via the resolution given in Definition
3.1 (2).

Remark 4.4. The set of equations (L) = ∪p(L)p, with (L)p defined above in Propo-
sition 4.1, is smaller than the set of equations constructed in [26], and which we call  ′(L)
here. Indeed, any point p of multiplicity k ≥ 3 contributes k − 2 equations to our set (L),
and

(
k
3

)
equations to the set  ′(L). The two ideals I((L)) and I( ′(L)) are distinct. Indeed,

the equations in  ′(L) are linearly independent degree 3-forms, as each of them involves
monomials in distinct set of variables. For instance the monomial a1b2c3 occurs only in the
equation associated to the triple of lines (L1, L2, L3), supposed to pass through a multiple
point p.

On the other hand, it is clear that the two ideals I((L)) and I( ′(L)) both have Y(L) =
X(L) as zero set, and hence one has in particular

(4.5) codim X(L) = codim Y(L) ≤
∑

p

(mp − 2),

where codim X(L) means the codimension of X(L) in the corresponding X(d). For lattices
L coming from line arrangements with few lines, or of a reduced complexity, the above in-
equality is an equality, see for an example Proposition 4.7 (1) below. However, the monomial
arrangement

(m,m, 3) : f = (xm − ym)(xm − zm)(ym − zm) = 0,

has d = 3m, 3 points of multiplicity m and m2 points of multiplicity 3. It follows that∑
p

(mp − 2) = 3(m − 2) + m2 > 6m = dim X(3m)

for m ≥ 5. Hence for these values of m, the inequality (4.5) is strict.

Remark 4.5. The variety X(L) corresponds exactly to the variety of all ordered complex
realizations Σord() of the ordered combinatorics ord considered in [5], where ord is the
ordered combinatorial type associated to the lattice L with a fixed numbering of the lines.
The quotient X(L)/G is the ordered moduli space ord() considered in [5]. The variety
A(L) corresponds exactly to the variety of all complex realizations Σ() of the combinatorics
 as considered in [5], while A(L)/G is the moduli space () of the combinatorics . If
L is the lattice corresponding to the MacLane line arrangement, it follows from [5, Example
1.7] that X(L) is the union of two G-orbits and in particular is not connected, while A(L) is
just one G-orbit, and hence it is irreducible.

Example 4.6. For any d, we denote by Lgen the lattice of the generic line arrangement of
d lines. Then by the above description X(Lgen) is a Zariski open subset of X(d), and hence
dim X(Lgen) = dim X(d) = 2d. Moreover τ(Lgen) =

(
d
2

)
and in fact one has X(d, τ(Lgen)) =

X(Lgen), i.e. any lattice L ∈ (d) with τ(L) = τ(Lgen) is in fact isomorphic to the lattice Lgen.
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To prove this claim, recall the formula

(4.6)
∑

p

(
mp

2

)
=

(
d
2

)
,

valid for any line arrangement, see for instance [22]. Since(
mp

2

)
≤ (mp − 1)2

for any mp ≥ 2, and the equality holds if and only if mp = 2, the claim follows using the
formula (4.2). This argument implies also that τ(L) > τ(Lgen) for any lattice L ∈ (d),
L � Lgen.

Moreover, in this case it follows that the function mdr ◦ ψ is constant on X(Lgen), and it
takes the value d − 2, see [13, Theorem 4.1], as well as all the functions mk, since one has
ct( f ) = st( f ) = 2d − 4 in this case, recall Corollary 2.6 (2) and Corollary 3.5.

This example can be generalized as follows. For any m satisfying 2 ≤ m ≤ d, let L(d,m)
denote the intersection lattice of a line arrangement in A(d) having one point of multiplicity
m and only double points in rest. Note that L(d, 2) = Lgen for any integer d.

Proposition 4.7. Assume that d ≥ 4. Then the following hold.

(1) The sets X(L(d,m)) and A(L(d,m)) are smooth of dimension (2d−m+2). Moreover
A(L(d,m)) is irreducible.

(2) τ(L(d,m)) = (m − 1)2 + m + (m + 1) + .... + (d − 1) =
(

d
2

)
+

(
m−1

2

)
.

(3) For 2m > d, the function mdr is constant on A(L(d,m)), and it takes the values d−m.
(4) For m = d and m = d − 1, any arrangement in A(L(d,m)) is free. Any arrangement

in A(L(d, d − 2)) is nearly free. For 2 ≤ m ≤ d − 3, any arrangement in A(L(d,m))
is neither free, nor nearly free.

(5) Any line arrangement  : f = 0 with mdr( f ) = 0 satisfies L() = L(d, d). Any line
arrangement  : f = 0 with mdr( f ) = 1 satisfies L() = L(d, d − 1).

(6) A(L(d, d)) = A(d, τ(L(d, d)) and A(L(d, d − 1)) = A(d, τ(L(d, d − 1))).

Proof. To get an arrangement in A(L(d,m)), we have first to fix a point p ∈ P2, and then
m distinct lines passing through p. These choices are parametrized by B = P2 × U, where
U is an open subset in (P1)m. Note that B is smooth of dimension m + 2 and irreducible.
The remaining d − m lines are to be chosen in a Zariski open set F ⊂ (P(S 1))d−m, which is
smooth of dimension 2d − 2m and irreducible. In this way we have constructed a fibration
F → A(L(d,m))→ B, proving the first claim (1).

Note that X(L(d,m)) is not connected in general. Indeed, for d = 4 and m = 3, we cannot
continuously deform within X(L(4, 3)) an element (�1, �2, �3, �4) where the lines Lj : � j = 0
are concurrent for j = 1, 2, 3 to an element (�′1, �

′
2, �
′
3, �
′
4) where the lines L′j : �′j = 0 are

concurrent for j = 2, 3, 4.
The second claim follows from the formula (4.2). The third claim follows from [11,

Theorem 1.2]. The claim (4) follows from the formula for τ(L(d,m)) given in (2). Indeed, if
a line arrangement  : f = 0 in A(d) is free, then one has τ() = τ(d, r) where r = mdr( f ),
as explained in (3.6).

Suppose first that 2m > d, and hence r = d − m. The formula for τ(L(d,m)) given in (2)



860 A. Dimca, D. Ibadula and D.A. Măcinic

shows that

(4.7) δ = τ(d, r) − τ() =
(d − m)(d − m − 1)

2
.

Hence we have the equality δ = 0 only for m = d or for m = d − 1. Assume now that
r ≤ d − m − 1. Then [11, Theorem 1.2] implies that either r = m − 1 or m ≤ r. In the first
case the arrangement is free with exponents d1 = m − 1 and d2 = d − m, and the equation
(4.7) shows that this is possible only if m = d − 1 or m = d, which is impossible. In the
second case, [11, Theorem 1.1] shows that τ() ≤ τ(d,m) and equality holds exactly when
r = m and  is free. A direct computation shows that

(4.8) δ′ = τ(d,m) − τ() =
(d − m − 2)(d − m − 1)

2
+ (m − 1) > 0

for 2 ≤ m ≤ d − 2. For claim involving the nearly free arrangements, use the above and
Remark 3.10.

The first part in claim (5) is clear, since mdr( f ) = 0 if and only if f does not depend
on the variable z after a coordinate change. If mdr( f ) = 1, then let m ≥ 2 be the maximal
multiplicity of an intersection point in . Using [11, Theorem 1.2], we deduce that 3 cases
are possible.

(a) The case mdr( f ) = d − m = 1, which clearly settles our claim.
(b) The case mdr( f ) = m − 1, impossible, since this would imply that  is a generic

arrangement, for which mdr( f ) = d − 2 ≥ 2.
(c) The case m ≤ mdr( f ), which is clearly impossible.
For claim (6), let  : g = 0 be a line arrangement in A(d, τ(L(d, d)) (resp. in A(d, τ(L(d, d−

1))). Then mdr(g) ≥ 0 (resp. mdr(g) ≥ 1) and the claim follows using [11, Theorem 1.1],
which, though not stated there, holds for mdr(g) ≥ 0 as well. �

Corollary 4.8. For d ≥ 4 and m ∈ {2, d − 1, d}, one has

A(L(d,m)) = A(d, τ(L(d,m)) = A(d,mdr = d − m)

and

X(L(d,m)) = X(d, τ(L(d,m)) = X(d,mdr = d − m).

In the following definition we introduce two simple combinatorics for line arrangements.

Definition 4.9. Let L̃(m1,m2) be the lattice of a projective line arrangement  obtained
by the generic intersection of two pencils of m1, respectively m2 lines, with m2 ≥ m1 ≥ 2. Let
L̂(m1,m2) be the lattice of a projective line arrangement  having exactly one line containing
one point of multiplicity m1 and one point of multiplicity m2, m2 ≥ m1 ≥ 3, only double
points apart from that, and d = || = m1 + m2 − 1.

An arrangement with intersection lattice L̃(m1,m2) has d = (m1 +m2) lines, m1m2 double
points, one point of multiplicity m1 and one point of multiplicity m2. We prove next that
such an arrangement is never free.

Proposition 4.10. With this notation, one has the following.

(1) The set A(L̃(m1,m2)) is smooth, irreducible of dimension d + 4.
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(2) τ(L̃(m1,m2)) = (d − 1)2 − m1m2 + 1.
(3) The function mdr is constant on A(L̃(m1,m2)) and takes the value m1.
(4) The intersection FA(d) ∩ A(L̃(m1,m2)) is empty.

Proof. The first claim can be proved by a similar argument as that used in the proof of
Proposition 4.7 (1). The second claim is obvious using the formula

τ(L̃(m1,m2)) = (m1 − 1)2 + (m2 − 1)2 + m1m2.

By [11, Theorem 1.2] (applied for m = m2), either mdr( f ) = m1, or mdr( f ) ≤ m1 − 1. In the
second case, one has one of the following two possiblities.

(i) The arrangement  : f = 0 is free, mdr( f ) = m2 − 1 and 2m2 < m1 + m2 + 1,
which implies m1 = m2 = m. Then the exponents of  are (m − 1,m) and hence the
formula (3.1) implies

τ(L̃(m1,m2)) = (d − 1)2 − m(m − 1) = (d − 1)2 − m2 + m > (d − 1)2 − m2 + 1,

a contradiction with (2).
(ii) m2 ≤ mdr( f ) ≤ m1 − 1, contradiction with m1 ≤ m2.

In conclusion, mdr( f ) = m1 and this proves (3). To prove (4), note that the formula (3) for
τ(L̃(m1,m2)) can be rewritten in the form

τ(L̃(m1,m2)) = (d − 1)2 − m1(m2 − 1) + 1 − m1.

Then, by (3.1), the arrangement  is not free, since m2 − 1 = d − m1 − 1 and m1 > 1. �

Example 4.11. We consider now a line arrangement  : f = 0, having as intersection lat-
tice the lattice L̂(m1,m2) introduced in Definition 4.9 above. By [11, Theorem 1.2] (applied
for m = m2), either mdr( f ) = m1 − 1, or mdr( f ) ≤ m1 − 2. In the second case, it can only
happen that mdr( f ) ≤ m1−2 ≤ m2−1 and 2m2 < m1+m2, contradiction with the assumption
m1 ≤ m2. So, mdr( f ) = m1 − 1 and τ(L̂(m1,m2)) = (m1 − 1)2 + (m2 − 1)2 + (m1 − 1)(m2 − 1).
We already know that such an arrangement  is free, since it is supersolvable (see [27, Prop
5.114] and [23, Theorem 4.2]). See also [15] for this family of line arrangements.

In general one has X(L̂(m1,m2)) � X(m1 + m2, τ(L̂(m1,m2))). Indeed, by [15] any expo-
nents 2 ≤ d1 ≤ d2 of a free line arrangement can be obtained by such an arrangement. But
there are free arrangements  which are not of this type, e.g. the monomial arrangements
(m,m, 3) for m ≥ 2 considered in Remark 4.4.

The classification of the line arrangements  : f = 0 with mdr( f ) = 2 is given by
the following theorem, which is one of the main results in [34]. We give a proof of this
classification from a new viewpoint.

Theorem 4.12. Let  : f = 0 be a line arrangement in P2, with mdr( f ) = 2. Then
d = || ≥ 4 and  is one of the following type of line arrangements, described by their
intersection lattices.

(1)  ∈ A(L(d, d − 2)), or
(2)  ∈ A(L̂(3, d − 2)) with d ≥ 5, or
(3)  is linear equivalent to the monomial arrangement (2, 2, 3).
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Proof. Let m be the maximal multiplicity of an intersection point in . If we denote
d = || ≥ 2 and we assume mdr( f ) = 2, then [11, Theorem 1.2] implies that only the
following cases are possible.

CASE 1. mdr( f ) = d − m, in other words m = d − 2. This case covers the two cases (i)
and (ii) in [34, Theorem 2]. Indeed, the case (i) corresponds to the case when  has a triple
point except the point of multiplicity m = d − 2 (e.g. for d = 5 we have two triple points
in ), while the case (ii) corresponds to the case when  has only double points except the
point of multiplicity m = d− 2. In fact, the line arrangements of type (ii) are exactly the line
arrangement in A(L(d, d − 2)) considered in Proposition 4.7 (4) above, in particular they are
all nearly free. When d ≥ 5, the arrangements of type (i) are exactly the line arrangements
with the intersection lattice of type L̂(3, d − 2) which is discussed in Example 4.11 above, in
particular they are all free.

CASE 2. mdr( f ) = m − 1 and  is free. In particular, this implies that the exponents of 
are d1 = 2 ≤ d2, and hence d ≥ 5. Moreover m = 3, and hence  has n2 double points, n3

triple points and no points of multiplicity > 3. Using the formulas (3.1) and (4.6), we get
the equations

n2 + 4n3 = d2 − 4d + 7 and 2n2 + 6n3 = d2 − d.

They imply that n2 = 10d−d2−21 ≥ 0 which yields d ≤ 7. It is easy to classify the free line
arrangements with 5 ≤ d ≤ 7 and only double and triple points and we get in this way the
lattice L̂(3, 3) already seen above, and the case (3) in [34, Theorem 2], which is essentially
the monomial arrangement (2, 2, 3).

CASE 3. m = mdr( f ), in other words  has only double points, as in Example 4.6 above.
But one knows that in this case mdr( f ) = d − 2, see [13, Theorem 4.1], and hence we get
again the case (ii) from [34, Theorem 2] for d = 4. �

The above Theorem and Proposition 4.7 imply the following.

Corollary 4.13. Any line arrangement  : f = 0 with mdr( f ) ≤ 2 is either free or nearly
free. Moreover, when mdr( f ) ≤ 2, the lattice L() determines the values of mdr( f ) and
whether  is free or nearly free. In fact one has the following, where d = ||.

(1) mdr( f ) = 0 if and only if L() = L(d, d);
(2) mdr( f ) = 1 if and only if L() = L(d, d − 1);
(3) mdr( f ) = 2 if and only if L() is one of the lattices L(d, d − 2), L̂(3, d − 2) or

L((2, 2, 3)).

Remark 4.14. The line arrangements  : f = 0 with mdr( f ) = 3 can be classified using
the same approach, but the number of possibilities is much higher. Moreover, there are
line arrangements with mdr( f ) = 3 which are neither free, nor nearly free, for instance the
generic arrangement of 5 lines.

Example 4.15. We introduce a final lattice type. For two integers i ≤ j we define a
homogeneous polynomial in C[u, v] of degree j − i + 1 by the formula

(4.9) gi, j(u, v) = (u − iv)(u − (i + 1)v) · · · (u − jv).
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Consider the line arrangement  : f = 0 of d = m1 + m2 ≥ 4 lines in P2 given by

f (x, y, z) = x(y − z)g1,m1−1(x, y)g2,m2 (x, z) = 0

for 2 ≤ m1 ≤ m2. Denote by L′(m1,m2) the corresponding intersection lattice L(). One
can show that the following hold, see for instance [15].

(1) The line arrangement  has one point of multiplicity m1, one point of multiplicity
m2, in addition to (m1 − 2) points of multiplicity 3 and m1(m2 − 3) + 6 nodes;

(2) mdr( f ) = m1;
(3) τ( f ) = (d − 1)2 − m1(m2 − 1) − 1.

Remark 4.16. We say that a lattice L is rigid if the corresponding constructible set A(L)
is the disjoint union of finitely many G-orbits. It is clear that if  : f = 0 corresponds to a
point in A(L) with L rigid, any topologically constant deformation of  is in fact a path in
the connected component of A(L) containing , which is by definition a G-orbit. It follows
that any such line arrangement  is topologically rigid. Notice that the lattice L(d,m) is
rigid for d ≥ 4 if and only if either (d,m) = (4, 2) or (d,m) = (4, 3). This follows from
Proposition 3.11 and Proposition 4.7. Other examples of rigid lattices L are given in the
next section.

A case of special interest is when the Galois group  acts transitively on the set of orbits
in A(L) for a rigid lattice L, see [2], [3], [5].

5. On the partition A(d) = ∪L∈(d)A(L)

5. On the partition A(d) = ∪L∈(d)A(L)
In this section we describe the partition A(d) = ∪L∈(d)A(L) for 4 ≤ d ≤ 6, and show that

the complexity of this partition increases rapidly with d.

5.1. The case d = 4.
5.1. The case d = 4. For d = 4, the list (4) consists of 3 lattices, namely L(4, 2), L(4, 3)

and L(4, 4) in the notation from Proposition 4.7. Hence we have the following partition

A(4) = A(L(4, 2)) ∪ A(L(4, 3)) ∪ A(L(4, 4)),

where dim A(L(4, 2)) = 8, dim A(L(4, 3)) = 7 and dim A(L(4, 4)) = 6. Moreover, the sets
A(L(4, 2)) and A(L(4, 3)) are G-orbits, i.e. the corresponding arrangements are rigid, while
A(L(4, 4)) is the union of a 1-parameter family of G-orbits, as can be seen using Proposition
3.11 and its proof. Recall also Example 3.13. Note that the closure of A(L(4, 2)) in A(4)
is the whole space A(4), while the closure of A(L(4, 3)) in A(4) is A(L(4, 3)) ∪ A(L(4, 4)),
which follows from Corollary 3.8. Moreover the set A(L(4, 4)) is closed in A(4).

In this case, one has

6 = τ(L(4, 2)) < 7 = τ(L(4, 3)) < 9 = τ(L(4, 4))

and hence the corresponding 3 strata are distinguished by their Tjurina numbers. Moreover,
one has

FA(4) = A(L(4, 3)) ∪ A(L(4, 4)).

Note also that even in this simple case, the set

A(4, st ≤ 3) := { f ∈ A(4) : st( f ) ≤ 3}) = A(L(4, 3))
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is neither open nor closed. Hence the invariant st does not have nice semicontinuity proper-
ties as τ or mdr. By inspection of this list, we can state the following result.

Proposition 5.1. With this notation, one has the following complete list of free and nearly
free line arrangements for d = 4.

(1) The set A(4, 6) is open, 8-dimensional, and consists only of nearly free arrangements
with exponents d1 = d2 = 2.

(2) The set A(4, 7) is irreducible, 7-dimensional, and consists only of free arrangements
with exponents d1 = 1, d2 = 2.

(3) The set A(4, 9) is irreducible, 6-dimensional, and consists only of free arrangements
with exponents d1 = 0, d2 = 3.

5.2. The case d = 5.
5.2. The case d = 5. For d = 5, the list (5) consists of L(5, 2), L(5, 3), L(5, 4), L(5, 5)

and an additional lattice L = L() where  : xyz(x + y)(x + z) = 0. Note that the lattice L
is just the lattice L̂(3, 3) from Example 4.11. In this case one has

A(5,mdr = 2) = A(L(5, 3)) ∪ A(L),

with dim A(L(5, 3)) = 9 and dim A(L) = 8. Hence Corollary 4.8 does not hold for m = d − 2
in this case. One also has

10 = τ(L(5, 2)) < 11 = τ(L(5, 3)) < 12 = τ(L) < 13 = τ(L(5, 4)) < 16 = τ(L(5, 5)).

Hence again the corresponding 5 strata are distinguished by their Tjurina numbers. More-
over, one has

FA(5) = A(L) ∪ A(L(5, 4)) ∪ A(L(5, 5)).

Note that

A(L) ∩ A(L(5, 4)) = ∅.
Though this might be obvious for some readers, we prefer to give an argument which is
likely to work in many similar situation. Note that, using the Curve Selection Lemma, if
A(L) ∩ A(L(5, 4)) � ∅, then we get a deformation of an ordinary singular point (Y4, 0) of
multiplicity 4 into two ordinary singular points (Y3, 0) of multiplicity 3. Such a deformation
is impossible, since it would contradict the semicontinuity of the spectrum on the interval
I = (−1/3, 2/3], see for details [24, Theorem (8.9.8)]. Indeed, one has

1 = degI spec(Y4) < 2 degI spec(Y3) = 2.

It follows that

A(L) ∩ A(L(5, 4)) = A(L(5, 5)).

By inspection of the list of lattices in (5), we can state the following result.

Proposition 5.2. With this notation, one has the following complete list of free and nearly
free line arrangements for d = 5.

(1) The set A(5, 11) is irreducible, 9-dimensional, and consists only of nearly free ar-
rangements with exponents d1 = 2, d2 = 3. Any f ∈ X(5, 11) satisfies st( f ) = 6 and
reg( f ) = 5.
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(2) The set A(5, 12) is irreducible, 8-dimensional, and consists only of free arrange-
ments with exponents d1 = d2 = 2. Any f ∈ X(5, 12) satisfies st( f ) = reg( f ) = 4.

(3) The set A(5, 13) is irreducible, 8-dimensional, and consists only of free arrange-
ments with exponents d1 = 1, d2 = 3. Any f ∈ X(5, 13) satisfies st( f ) = reg( f ) = 5.

(4) The set A(5, 16) is irreducible, 7-dimensional, and consists only of free arrange-
ments with exponents d1 = 0, d2 = 4. Any f ∈ A(5, 16) satisfies st( f ) = reg( f ) = 6.

Note that among the above sets, only A(5, 12) is a G-orbit and hence the correspond-
ing arrangements are rigid. The arrangements in A(5, 13) are algebraically rigid, but not
topologically rigid, recall Proposition 3.11.

Remark 5.3. It is clear that A(5, 12) is contained in the closure of A(5, 11), and that
A(5, 16) is contained in the closure of A(5, 12). The values given above for st( f ) and reg( f )
show that these invariants do not enjoy simple semicontinuity properties as in Proposition
2.4.

5.3. The case d = 6.
5.3. The case d = 6. For d = 6, the list (6) consists of 10 lattices. We list them in

increasing order of their Tjurina numbers.
• For τ = 15, we have only the lattice L(6, 2) as predicted by the general theory, recall

Example 4.6. Moreover X(L(6, 2)) is an open subset in the 12-dimensional smooth variety
X(6)
• For τ = 16, we have only the lattice L(6, 3) and the corresponding set X(L(6, 3)) has

codimension 1 in X(6).
• For τ = 17, we have two lattices, namely L̃(3, 3) and a new lattice, say L̃′(3, 3). These

two lattices have each 2 triple points and 9 nodes, and the invariant mdr takes the value 3
in both cases. In the lattice L̃(3, 3) the 2 triple points are not on a line of the corresponding
arrangement, while in the lattice L̃′(3, 3) the 2 triple points are on such a line. In conclusion
the corresponding two sets X(L̃(3, 3)) and X(L̃′(3, 3)) are not distinguished by the numerical
invariants considered in this paper. Indeed, since ct( f ) = 7 and st( f ) = 8 in both cases, the
invariants mk’s also coincide for any k.

Both sets X(L̃(3, 3)) and X(L̃′(3, 3)) have codimension 2 in X(6)
• For τ = 18, we have again two lattices, namely the lattice L(6, 4), having a point of

multiplicity 4, 9 nodes and mdr = 2 and the lattice L′(3, 3) introduced in Example 4.15, and
having 3 triple points, 6 nodes and mdr = 3.

The set X(L(6, 4)) has codimension 2 in X(6), while the set X(L′(3, 3)) has codimension
3 in X(d).

Comparing the values of τ(L) ≤ 18 and the corresponding values of the invariant mdr, we
conclude that there are no free arrangements in this range.
• For τ = 19, we have again two lattices, namely the lattice L̂(3, 4), having one point

of multiplicity 4, one triple point and 6 nodes, and the lattice L(Δ) corresponding to the
arrangement

 : f = (x2 − y2)(x2 − z2)(y2 − z2) = 0,

and hence having 4 triple points and 3 nodes. Both of the corresponding sets X(L) contain
only free arrangements with mdr = 2.
• For τ = 21, we have only the lattice L(6, 5).
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• For τ = 25, we have only the lattice L(6, 6). The properties of the last two lattices are
discussed in Proposition 4.7 (4), (5) and (6). In particular, the sets X(d, τ) for τ = 19, 21, 25
consist only of free arrangements, i.e. the last claim in Corollary 3.8 holds in a stronger
version.

As a conclusion, we can state the following result.

Proposition 5.4. With this notation, one has the following complete list of free and nearly
free line arrangements for d = 6.

(1) The set A(6, 18) has two irreducible components, namely A(L(6, 4)) of dimension
10, and A(L′(3, 3)) of dimension 9; they consist only of nearly free arrangements
with exponents d1 = 2, d2 = 4, and respectively d1 = d2 = 3.

(2) The set A(6, 19) has two irreducible components, namely A(L̂(3, 4)) of dimension 9,
and A(L(Δ)) of dimension 8; they consist only of free arrangements with exponents
d1 = 2, d2 = 3.

(3) The set A(6, 21) is irreducible, 9-dimensional, and consists only of free arrange-
ments with exponents d1 = 1, d2 = 4.

(4) The set A(6, 25) is irreducible, 8-dimensional, and consists only of free arrange-
ments with exponents d1 = 0, d2 = 5.

Note that Y = A(L(Δ)) is the only G-orbit in the list above, and hence consists only of rigid
arrangements. Moreover Z = Y \ Y is a closed G-invariant subset of dimension < 8. Using
the same type of argument as in the case d = 5 above, one can show that Z ⊂ A(L(6, 6).
Since A(L(6, 6)) is 8-dimensional by Proposition 4.7 (1), it follows that Z is not a union of
strata in the partition. This shows in particular that this partition is not Whitney regular, see
[7, Chapter 1] for basic facts on regular stratifications.

Remark 5.5. It is possible to extend this discussion to d = 7. For d < 7 we have seen
that the closed set X(d, τ ≥ τ(d)min) contains only free arrangements. For d = 7, one has
τ(d)min = 27. The new aspect occurring in this case is that the set X(7, τ ≥ 27) contain free
arrangements and one nearly free arrangement type with exponents d1 = 2, d2 = 5.

The above leads us to ask the following.

Question 5.6. Is it true that, for any d ≥ 4, the closed set X(d, τ ≥ τ(d)min) in X(d)
contains only nearly free and free arrangements with d lines?

Unfortunately the answer to this question is negative. To see this, it is enough to consider
the arrangements in X(L(d, d− 3)) for d ≥ 11. Then using Proposition 4.7 it is easy to check
that τ(L(d, d−3)) > τ(d)min. On the other hand, the formula (4.7) and the characterization of
free arrangements (resp. nearly free arrangements) by the property δ = 0 (resp. δ = 1) given
in [10] show that any arrangement in X(L(d, d−3)) for d ≥ 11 is neither free nor nearly free.

6. On Terao’s conjecture

6. On Terao’s conjecture
With the above notation, this conjecture in the case of line arrangements can be stated as

follows.
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Conjecture 6.1. [Terao’s Conjecture for the line arrangement ] Let  be a free line
arrangement with d = ||. Then

A(L()) ⊂ FA(d).

Equivalently, X(L()) ⊂ FX(d).

Assume that  is free with exponents d1 ≤ d2. Then the following are known.

Theorem 6.2. Terao’s conjecture holds for the line arrangement  if one has either
d = || ≤ 12, or d1 ≤ 5.

For the proofs of this result, see [1], [2], [19]. The next result was proved in [11], but
we give below a new, clearer proof. Another rapid proof can be obtained by combining
Theorem 2.7 and Lemma 2.10 in [2]. Let m() denote the maximal multiplicity of an
intersection point in .

Theorem 6.3. Terao’s conjecture holds for the line arrangement  if m() ≥ d1.

Proof. We apply first [11, Theorem 1.2] to the free arrangement . It follows that

(6.1) d1 ∈ {d − m,m − 1,m},
where m = m(). It follows that m ∈ {d − d1, d1, d1 + 1}. Let now  ∈ A(L()), given by
g = 0, and note that m() = m. Now we apply [11, Theorem 1.2] to the line arrangement .

If we are in the case mdr(g) = d −m() = d −m ∈ {d1, d − d1, d − d1 − 1}, it follows that
mdr(g) ≥ mdr( f ) = d1. Since τ() = τ(), the result [11, Theorem 1.1] implies that  is
free with the same exponents d1 ≤ d2.

If we are in the case mdr(g) = m() − 1, then the arrangement  is free, so there is
nothing to prove. Finally, we have to consider the case m = m() ≤ mdr(g) ≤ d−m−1. For
m = d−d1 this implies d−d1 ≤ d1−1, which is impossible. For m = d1 or m = d−d1−1 = d2,
we are again in the case mdr(g) ≥ mdr( f ) = d1, and we conclude as above. �
As explained in [11], this Theorem implies the following.

Corollary 6.4. With the above notation, one has the following.

(1) Terao’s conjecture holds for the line arrangement  if m() ≥ d/2.
(2) Terao’s conjecture holds for the line arrangement  if d1 ≤

√
2d + 1 − 1.

We end with a result saying that a free arrangement cannot have too many singularities.

Proposition 6.5. The intersection FX(d) ∩ X(L) is empty if

(6.2) τ(L) <
3
4

(d − 1)2.

In particular, the inequality (6.2) holds if
∑

p

(mp − 1) >
(d + 3)(d − 1)

4

where p runs through the set of multiple points of the lattice L, and mp ≥ 2 denotes the
multiplicity of p.
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Proof. The first claim follows from Corollary (3.9).
Then the formula for τ(L) given in (4.2) and the equality (4.6) imply that

τ(L) = 2
(
d
2

)
−

∑
p

(mp − 1) < 2
(
d
2

)
− (d + 3)(d − 1)

4
=

3
4

(d − 1)2.

�

Example 6.6. Assume that the line arrangement  is not generic, but has a lot of nodes,
namely it has N > (d+3)(d−1)

4 − 2 nodes, besides some other multiple points. Then  is not
free by the above result, since there is at least one point p with mp ≥ 3. When d = 7, this
says that an arrangement  having at least 14 nodes satisfies

τ() < τ(7)min =
3
4

(d − 1)2 = 27

and hence it is not free. A detailed classification of the line arrangements  with || = 7,
shows that there is a nearly free arrangement  having 11 nodes and one point of multiplicity
5 such that τ() = 27. Moreover, for all arrangements ′ having 12 nodes (and some other
multiple points), one has τ(′) < 27. Hence our bound is two units apart from the optimal
one in this case.
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[33] A. Simis and S.O. Tohăneanu: Homology of homogeneous divisors, Israel J. Math. 200 (2014), 449–487.
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