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Abstract
We give an algorithm for computing the Teichmüller polynomial for a certain class of fibered

alternating links associated to trees. Furthermore, we exhibit a mutant pair of such links distin-
guished by the Teichmüller polynomial.

1. Introduction

1. Introduction
McMullen introduced the Teichmüller polynomial as a geometric analogue of the Alexan-

der polynomial [16]. It is an invariant of flow equivalence classes of pseudo-Anosov home-
omorphisms, where two pseudo-Anosov homeomorphisms are flow-equivalent if there is a
homeomorphism between their mapping tori identifying the pseudo-Anosov flows induced
by the respective vertical directions of the mapping tori. The Teichmüller polynomial is used
to study all dilatations of elements in a flow equivalence class simultaneously.

Even though the Alexander and Teichmüller polynomials are invariants of flow equiva-
lence classes, they can be computed from a single monodromy. Thought of as invariants of
a pseudo-Anosov mapping class (S , ψ), these polynomials give subtle information that goes
beyond the information contained in the characteristic polynomials of the induced action of
ψ on the first homology of S or the edge space of a ψ-invariant train track τ ⊂ S , respec-
tively. For instance, we will give an example of two mapping classes (defining a mutant pair
of fibered alternating links) that are not distinguished by the characteristic polynomial of
their induced algebraic and geometric actions, but are distinguished by their Alexander and
Teichmüller polynomials.

The first explicit computations of Teichmüller polynomials were done case-by-case [16,
10, 1, 14]. More recently, Sun considered a special case of pseudo-Anosov maps arising
from Penner’s construction [19], and Lanneau and Valdez gave an algorithm computing the
Teichmüller polynomials of braid monodromies using folding automata for train tracks [15].

Our goal is to present an algorithm computing the Teichmüller polynomial for a large
class of fibered alternating links. Their fiber surfaces are of genus greater than one and their
monodromies are pseudo-Anosov products of multitwists, as in constructions developed by
Thurston and Penner [21, 17].

1.1. The Teichmüller polynomial.
1.1. The Teichmüller polynomial. Let (S , ψ) be a pseudo-Anosov mapping class with

mapping torus M. Results of Thurston and Fried [20, 6] show that the flow equivalence
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class of (S , ψ) determines a polygonal cone C ⊂ H1(M;R), called a fibered cone, with the
following properties:

(i) for each primitive integral point α ∈ C, the corresponding map α∗ : π1(M) → Z is
induced by a fibration ρα : M → S 1,

(ii) the fibrations of M arising in this way are exactly the ones with a monodromy which
is flow-equivalent to (S , ψ).

The Teichmüller polynomial ΘC defined by McMullen in [16] is an invariant of a flow
equivalence class, and is useful for understanding the behavior of the dilatation of its el-
ements. If n = dim(C), then ΘC is a polynomial in n variables and is well-defined up to
change of coordinates and multiplication by monomials. More precisely, given a fibered
cone C of a fibered hyperbolic 3-manifold M, the corresponding Teichmüller polynomial
ΘC is an element of the group ring Z[G], where G = H1(M;Z)/torsion:

ΘC =
∑
g∈G

agxg ∈ Z[G].

The Teichmüller polynomial is a geometric analogue of the Alexander polynomial in the
following sense: for each primitive integral point α ∈ C, the geometric dilatation λ(ψα) of
the monodromy mapping class ψα is the largest (real) root of the specialization

Θ
(α)
C (x) =

∑
g∈G

agxα(g)

by a theorem of McMullen [16]. Similarly, the largest root of the the specialized Alexander
polynomial equals the largest eigenvalue of the homological action of ψα.

1.2. Alternating-sign Coxeter links.
1.2. Alternating-sign Coxeter links. Our examples for the computation of the

Teichmüller polynomial are alternating-sign Coxeter links. They are constructed as follows.
To each finite plane tree Γ, we associate a surface S obtained by thickening vertical and
horizontal annuli whose incidence graph is Γ. We define a mapping class (S , ψ) as a compo-
sition of a positive multitwist along the horizontal annuli and a negative multitwist along the
vertical annuli. Such a mapping class (S , ψ) is called an alternating-sign Coxeter mapping
class, since its homological action acts, up to a sign, as the Coxeter element corresponding
to the tree Γ with alternating signs [11, 12].

Fig.1. The tree Γ = A3 and its associated surface S .

Equivalently, we can think of S as the fiber surface for the alternating-sign Coxeter link
corresponding to Γ and of ψ as its monodromy, see [12]. In this context, we obtain the ingre-
dients to compute the Teichmüller polynomial of the flow-equivalence class of ψ explicitly
from the tree Γ. We will see that the number of variables of the Teichmüller polynomial
equals one plus the rank of the kernel of the adjacency matrix of Γ. Therefore, we from now
on consider trees Γ with a singular adjacency matrix.
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Fig. 2. The fiber surface of the alternating-sign Coxeter link associated to
A3 is obtained by adding full twists to the bands of S .

1.3. Main result.
1.3. Main result. We describe an algorithm with input a plane tree Γ and output the

Teichmüller polynomial ΘCΓ of the flow-equivalence class of the associated alternating-sign
Coxeter mapping class (S , ψ). The description of the Teichmüller polynomial we use for our
computation builds on the cover S̃ → S with the ψ-invariant homology H1(S ;Z)ψ as deck
group, as described in [16]. In order to compute the Teichmüller polynomial, it is necessary
to find matrices for the induced action of a lift ψ̃ of ψ on the lift τ̃ of a ψ-invariant train track
τ ⊂ S . In our algorithm, we reduce this problem to one which can be solved explicitly using
only the structure of the plane tree Γ. A sample of this reduction is given below.

Illustration of the algorithm. Let Γ be a plane tree. In the following, we will define
matrices U,V,W and T , obtained explicitly using only the structure of Γ. These matrices
determine the specialization to a two-dimensional slice of the Teichmüller polynomial ΘCΓ
of the fibered cone CΓ containing the monodromy of the alternating-sign Coxeter link cor-
responding to Γ.

Theorem 1. The fibered cone CΓ of the alternating-sign Coxeter link associated to Γ has
a two-dimensional slice with coordinates (x, u) to which the Teichmüller polynomial ΘCΓ
specializes as

ΘCΓ(x, u) =
det(uI − UWVT )

det(uI −WT )
1
2

.

We now show how to define the matrices U,V,W and T from the plane tree Γ. Let 
be an arrangement of vertical and horizontal segments ai and b j in the plane with incidence
graph Γ. Identifying top and bottom of every vertical segment ai and identifying left and
right of every horizontal segment b j yields a graph τ with edges e0, . . . en, see Fig.3 for the
example Γ = A3. We define the following maps.

Fig. 3. The tree Γ = A3, the arrangement  with incidence graph A3 (the
vertex of degree 2 in Γ corresponds to the segment b1) and the graph τ.

(1) Let s, t : E(τ) → V(τ) be the maps associating to every edge of τ its starting and
terminal vertex, respectively, when oriented downwards and to the left.
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(2) Let l : V(Γ)→ V(τ) associate to every vertex of Γ the uppermost or rightmost vertex
on the corresponding vertical or horizontal segment, respectively.

(3) Let d : E(τ) → V(Γ) be the map associating to an edge e of τ the vertex of Γ in
whose corresponding segment e is contained.

(4) Let c : E(τ)×V(τ)×V(τ)→ {0, 1} be the map assigning 1 to (e, vi, v j) if e is contained
in the convex hull of vi and v j and 0 otherwise.

(5) Let p : E(τ) → {0, 1} be the map assigning 1 to vertical edges and 0 to horizontal
ones.

(6) Let g : E(τ)×V(τ)→ {0, 1} be the map assigning 1 to (e, v) if e and v lie on a straight
line and 0 otherwise.

(7) Let v0 ∈ V(τ) be fixed. For every vertex vi ∈ V(τ), there is a unique simple oriented
edge path γvi in τ connecting v0 to vi without using any of the edges with top-bottom
and left-right identifications. Let or(e) of an oriented edge e be +1 if the orientation
matches the orientation of the edge in τ as in (1) and −1 otherwise.

(8) Let a : E(τ) → V(Γ) be the map assigning to a horizontal edge e the vertex of
Γ corresponding to the segment perpendicular to e at its terminal vertex, and to a
vertical edge e the vertex of Γ corresponding to the segment perpendicular to e at its
starting vertex.

If k = (k1, . . . , k|V |) ∈ Z|V(Γ)| is a given primitive element of the kernel of the adjacency matrix
of Γ, define matrices U = I + (mi j) and V = I + (ni j) of size |E(τ)| × |E(τ)| by

mi j = p(ei)(1 − p(e j))g(ei, t(e j))xc(ei,l(d(ei)),t(e j))kd(ei) ,

ni j = p(e j)(1 − p(ei))g(ei, s(e j))xc(ei,l(d(ei)),s(e j))kd(ei) .

For example, mi j � 0 if ei is vertical and part of the segment perpendicular to the terminal
vertex of the horizontal edge e j. In this case, mi j = xkd(ei) if ei lies between the terminal
vertex of e j and the uppermost vertex of the segment perpendicular to the terminal vertex of
e j, and mi j = 1 otherwise.
Define two diagonal matrices W = (wi j) and T = (ti j) of size |E(τ)| × |E(τ)| by

wii =
∏

e∈γs(ei)

x(1−p(e))or(e)ka(e) ,

tii =
∏

e∈γs(ei)

xp(e)or(e)ka(e) ,

where the product is taken over the e ∈ E(τ) that appear in the path γs(ei). The matri-
ces U, V , W and T we just defined are the ones to be used in the formula of Theorem 1.
Note that since every vertex v ∈ V(τ) occurs twice as a starting point of an edge e ∈ E(τ),
the denominator in Theorem 1 is also a polynomial.

Remark 2. Alternating-sign Coxeter mapping classes (S , ψ) preserve the orientation of
the invariant train track. Equivalently, they preserve the orientation of the corresponding
invariant foliations. Thus, the induced foliations on the mapping torus are orientable, and
every other element in the flow equivalence class, given by a cross section to the suspension
flow of (S , ψ), is also orientable. In fact, one can show that the Alexander polynomial and
the Teichmüller polynomial agree for alternating-sign Coxeter links corresponding to trees.
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This gives an alternative way of computing the Teichmüller polynomial for these cases.
However, our focus lies on the perspective corresponding to the Teichmüller polynomial.

1.4. Application to mutant links.
1.4. Application to mutant links. Let B ⊂ S3 be a ball whose boundary sphere ∂B meets

a link L ⊂ S3 transversally and symmetrically in four points. The operation of exchanging
the interior of B with its image under a sequence of reflections is a mutation. Two links are
mutant if they are connected by a sequence of mutations. Mutants are hard to distinguish.
For example, by a theorem of Wehrli [23], an invariant f that is able to distinguish a pair of
mutant links cannot satisfy a skein relation of the form

α f (L+) + β f (L−) + γ f (L0) = 0,

where α, β ∈ R∗ and γ ∈ R are fixed elements of an arbitrary ring R. For instance, the single
variable Jones and Alexander polynomials are not able to distinguish mutant links. We
give an example of mutant alternating-sign Coxeter links distinguished by their Teichmüller
polynomials. In particular, it follows that there is no skein relation of the above form for the
Teichmüller polynomial of fibered links.

Proposition 3. There exists a pair of fibered alternating mutant links distinguished by
their Teichmüller polynomials.

In our examples of alternating-sign Coxeter links, the Teichmüller polynomial coincides
with the multivariable Alexander polynomial. In particular, Proposition 3 also applies to
the multivariable Alexander polynomial. This is in contrast with the existence of more
involved skein relations for the multivariable Alexander polynomial [13] and the fact that
the multivariable Alexander polynomial is invariant under many mutations [24].

1.5. Organization.
1.5. Organization. In Section 2, we give the necessary background on the Teichmüller

polynomial. In Section 3, we recall the construction of alternating-sign Coxeter links, their
fiber surfaces and their monodromies. In Section 4, we describe a general algorithm com-
puting the Teichmüller polynomial of a fibered cone containing the alternating-sign Coxeter
link associated to a tree. In particular, we will prove Theorem 1. Finally, in Section 5, we
describe the Teichmüller polynomial of the alternating-sign Coxeter links associated to the
trees An, give a detailed computation for A5 and prove Proposition 3.

2. Dilatation, fibered faces, and the Teichmüller polynomial

2. Dilatation, fibered faces, and the Teichmüller polynomial
In this section, we recall the necessary notions concerning the Teichmüller polynomial

and describe the formula we will use to compute it.

2.1. Dilatation.
2.1. Dilatation. Let M be a 3-manifold that fibers over the circle. Then M has the struc-

ture of a mapping torus M = S ×[0, 1]/(x, 1) ∼ (ψ(x), 0), where S is a surface and ψ : S → S
is a homeomorphism defined up to isotopy and conjugation. If M is hyperbolic, then by a
fundamental result of Thurston, the monodromy (S , ψ) is pseudo-Anosov [22] and has an
associated dilatation (or stretch factor) λ = λ(ψ) > 1, which can be characterized in any of
several equivalent ways:

(i) (pseudo-Anosov property) there is a pair of ψ-invariant transverse measured singular
foliations (±, ν±) so that ψ∗(ν±) = λν±;
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(ii) (exponential growth rate of lengths of curves) for any Riemannian metric ω on S , and
any essential simple closed curve γ on S , we have

λ = lim
n→∞ (φ

n(γ))
1
n ;

(iii) (entropy) log(λ) is the minimal topological entropy of any representative of the isotopy
class of homeomorphisms defined by φ; and

(iv) (geodesics on moduli space) the orbits of φ in Teichmüller space determine a geodesic
on the moduli space of S whose Teichmüller length is log(λ).

See [3, 4, 5, 21] for more details and background.

2.2. Fibered faces.
2.2. Fibered faces. The mapping classes we are considering are pseudo-Anosov, so each

mapping torus M is hyperbolic. Thus, the Thurston norm ‖ψ‖T defined on H1(M;Z) is non-
degenerate and has convex norm ball Bx [20]. Let F be a top-dimensional face of Bx and
let CF = R+ · F be the cone over F. We say F is a fibered face of the Thurston norm ball
if every integral element α in CF corresponds to a fibration ρα : M → S 1. By a theorem
of Fried [7], proximity in the projectivization F of the cone CF implies closeness for the
normalized dilatation L(S α, ψα) = λ(ψα)|χ(S α)|, where ψα : S α → S α is the monodromy
of ρα. In fact, L extends to a convex, real analytic function on F that goes to infinity toward
the boundary of F.

2.3. The Teichmüller polynomial.
2.3. The Teichmüller polynomial. Let G = H1(M;Z)/torsion. For each fibered face F

of the Thurston norm ball on H1(M;Z), McMullen [16] defined an element

ΘCF =
∑
g∈G

agxg ∈ Z[G],

called the Teichmüller polynomial of the fibered face F (or the fibered cone CF), which
comes packaged with the dilatation of each primitive integral class αψ ∈ CF: the dilatation
λ(ψα) is the largest (real) root of the specialization

Θ
(α)
CF(x) =

∑
g∈G

agxα(g).

McMullen also gives a formula for the Teichmüller polynomial ΘC , see [16]. We quickly
review the statement. Fix a fiber ι : S → M and let ψ : S → S be the associated pseudo-
Anosov monodromy with ψ-invariant cohomology H1(S ;Z)ψ. Let H = Hom(H1(S ;Z)ψ,Z)
and let S̃ be the cover defined by ι∗ : π1(S ) → H. We think of S̃ as a component of the
preimage of the chosen fiber S under the covering map π : M̃ → M where M̃ is the maximal
abelian cover of M. From this point of view, H is the subgroup of Deck(π) that fixes S̃ . We
can think of M̃ as ⊔

i∈Z

(
S̃ i × [0, 1]

)
,

where S̃ i � S̃ and (s, 1) in S̃ i is identified with (ψ̃(s), 0) in S̃ i+1.
Let τ be a connected graph with an embedding j : τ → S so that the edges are tangent

at the vertices. We can partition the edges at each vertex into two sets, thought of as incom-
ing and outgoing edges. The region created by two consecutive edges (in the cyclic order
determined by j) of the same type is called a cusp. Then τ is a train track if no vertex has
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degree 1 or 2 and the connected components of S \ j(τ) are either polygons with at least one
cusp or annuli with one boundary contained in ∂S and the other boundary with at least one
cusp. Associated to a pseudo-Anosov mapping class ψ there is a ψ-invariant train track τ. In
particular, there is an action on the space of weights on the edges of τ induced by ψ, sending
an edge e to the edges (counted with multiplicity) in the edge path given by ψ(e). Similarly,
there is an induced action on the space of weights on the vertices of τ.

Let and E and V denote the edges and vertices of a ψ-invariant train track τ ⊂ S . Let
(t1, ..., tb, u) be a multiplicative basis for

H1(M;Z)/torsion � Hom(H1(S ;Z)ψ,Z) ⊕ Z.
The action of H on S̃ restricts to an action on the lifts of E and V . Thus, we can think of a lift
ψ̃ of ψ as acting on the free Z[H]-modules generated by the lifts of E and V . Let the action
of ψ̃ on the edge and vertex space of the lifted train track τ̃ (thought of as Z[H]-modules)
be given by the matrices PE(t) and PV(t). Then McMullen’s determinant formula states that
the Teichmüller polynomial for the fibered cone C containing [S ] is given by

ΘC(t, u) =
det(uI − PE(t))
det(uI − PV(t))

,

independently of any choices [16].

3. Alternating-sign Coxeter links

3. Alternating-sign Coxeter links
In this section, we associate fibered alternating links L to trees Γ and we describe the mon-

odromy ψ of their fiber surface S . More precisely, we construct an invariant train track τ ⊂ S
for ψ and describe the dual Hom(H1(S ;Z)ψ,Z) of the ψ-invariant cohomology H1(S ;Z)ψ in
terms of the adjacency matrix of Γ. While we restrict our attention to trees, much of what
we are about to do generalizes to a more general class of bipartite Coxeter graphs. For more
details on this construction and Coxeter links and mapping classes, see [11, 12].

Let Γ be a finite plane tree, that is, a finite tree together with an embedding in the plane.
For every vertex v of Γ, this embedding defines a circular ordering of the edges touching v.
It is possible to draw horizontal and vertical segments in the plane such that their incidence
graph equals Γ and respects the circular ordering of edges at every vertex. We thicken the
union of all segments and attach bands with one full twist to the ends of each segment, as in
Fig.4. The resulting surface S is an iterated Murasugi sum of Hopf bands, hence S is a fiber
surface for the boundary link L = ∂S and the monodromy is given by a product of Dehn
twists along the core curves of the Hopf bands [8]. In the classical case, each Hopf band is
positive. Equivalently, each Dehn twist is positive. In the mixed-sign case [11], the tree Γ
comes equipped with a function s : V(Γ) → {−1, 1}. Each vertex marked with a negative
sign then corresponds to a negative Hopf band and hence a negative Dehn twist. In what
follows, we consider signs s respecting the bipartition of the tree Γ. An alternating-sign
Coxeter link is a link arising from a tree Γ with a bipartition V(Γ) = V1 
 V2, together with
a labeling s so that s(V1) = ±1 and s(V2) = ∓1. We have already seen that alternating-sign
Coxeter links are fibered. Furthermore, one can show they are alternating [12]. We regard
their monodromy ψ : S → S as the product of a positive Dehn twist along all core curves
of the positive Hopf bands and a negative Dehn twist along all core curves of the negative
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Fig.4. A plane tree Γ, horizontal and vertical segments in the plane with Γ
as incidence graph, thickened segments and the fiber surface S obtained by
adding twisted bands.

Hopf bands. Indeed, for any tree Γ, the constructed mapping class does, up to conjugation,
not depend on the order of Dehn twists [18].

Remark 4. It is possible for a given abstract tree Γ to have several non-equivalent planar
embeddings, and for the corresponding diagrams to give mutant but distinct links. Fig.5
shows a sphere cutting a link in four points. Rotating by π exchanges the two vertical bands
shown. Using isotopies and such operations, one can arbitrarily change the circular ordering
of edges at any vertex of Γ. This shows that the alternating-sign Coxeter links associated
to any two planar embeddings of a given abstract tree Γ are mutants. While the single
variable Alexander and Teichmüller polynomial can not distinguish these links, in Section 5
we provide an example where two distinct embeddings of an abstract tree result in a pair of
links that have different Teichmüller polynomials.

Fig.5

By a theorem of Penner [17], the mapping class (S , ψ) constructed above is pseudo-
Anosov as soon as Γ has at least two vertices. Furthermore, an orientable ψ-invariant train
track τ ⊂ S is obtained by smoothing the union of core curves of the Hopf bands at their
intersection points, as in Fig.6. An orientation of τ is then given by orienting all horizontal
edges to the left and all vertical edges downwards.

Lemma 5. If the tree Γ has |E| edges, then the ψ-invariant train track τ ⊂ S has 2|E|
edges.
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Fig.6. The local smoothing operation used to build an invariant train track
out of the core curves of the Hopf bands.

Proof. We construct τ from a collection of horizontal and vertical segments, where these
collections of segments correspond to the bipartition of Γ and intersect according to their
adjacency in Γ. Then, the segment corresponding to some vertex v is subdivided into deg(v)
edges. Thus, the train track τ has

∑
v

deg(v) = 2|E| edges. �

In order to construct the covers necessary to compute the Teichmüller polynomial, we
need to know the dual Hom(H1(S ;Z)ψ,Z) of the ψ-invariant cohomology H1(S ;Z)ψ of our
constructed surface S . This is the content of the following lemma. From the construction,
we have H1(S ;Z) � Z|V |, where V is the set of vertices of the original tree Γ.

Lemma 6. Let (S , ψ) be a mapping class constructed from a plane tree Γ as above. Let
A be the adjacency matrix of Γ. If we regard A as a linear map H1(S ;Z) → H1(S ;Z), then
H1(S ;Z)ψ = ker(A).

Proof. By labeling the vertices one set of the bipartition at a time, we can arrange A to
have the form

A =
(

0 X
X� 0

)
.

Then the action of ψ on H1(S ;Z) can be expressed as the product of the two multitwists

Ta =

(
I X
0 I

)
, Tb =

(
I 0

X� I

)
.

Let v ∈ H1(S ;Z) be expressed according to the bipartition as v =
(
v1

v2

)
. Then ψ∗(v) = v holds

if and only if

v1 + XX�v1 + Xv2 = v1,

X�v1 + v2 = v2.

But this is equivalent to (
0 X

X� 0

) (
v1

v2

)
=

(
Xv2

X�v1

)
= 0,

which is what we wanted to show. �

In order to obtain the dual Hom(H1(S ;Z)ψ,Z) of the ψ-invariant cohomology H1(S ;Z)ψ,
we remark that the matrix product TaTb describing the action ψ∗ of ψ induced on the first
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homology is symmetric. In particular, the dual Hom(H1(S ;Z)ψ,Z) of the ψ-invariant coho-
mology H1(S ;Z)ψ is simply the ψ-invariant homology H1(S ;Z)ψ.

4. Algorithm

4. Algorithm
The aim of this section is to present a general way to compute the Teichmüller polynomial

of the fibred cone CΓ corresponding to the alternating-sign Coxeter link for any plane tree Γ.
In order to apply our algorithm in practice and obtain the Teichmüller polynomial, additional
choices have to be made. For explicit calculations, see Section 5.

Let Γ be a plane tree and let S and τ be the surface and the train track, respectively,
constructed from Γ as in Section 3. We denote the generators for the homology H1(M;Z)
and the ψ-invariant homology of S according to the isomorphism

H1(M;Z)/torsion � H1(S ;Z)ψ ⊕ Z �< x0, ..., xn−1 > ⊕ < xn > .

The algorithm is divided into three main steps:
(1) Construct (S , ψ) together with a ψ-invariant train track τ ⊂ S .
(2) Compute H1(S ;Z)ψ, construct the cover S̃ → S corresponding to π1(S )→ H1(S ;Z)ψ

and lift the train track τ to obtain τ̃.
(3) Decompose the action of ψ̃ on the edges and the vertices of τ̃ as a product of two

multitwists on a single fundamental domain of τ̃.
Step 1. We quickly recall the construction from Section 3. Given a plane tree Γ, the

surface S is constructed by suitably gluing horizontal and vertical bands, whose core curves
have Γ as incidence graph. The corresponding mapping class (S , ψ) is defined to be a product
of a positive and a negative multitwist along the core curves of the horizontal and vertical
bands, respectively. The ψ-invariant train track τ ⊂ S is then obtained by smoothing the
crossings of the core curves of the bands. The induced action of ψ on the train track τ

can be decomposed as a product TaTb of the induced actions Ta and Tb of the positive and
negative multitwist, respectively. To make this induced action explicit, let the bipartition of
Γ be given by V(Γ) = V1 
 V2, where the vertices of V1 and V2 correspond to vertical and
horizontal bands, respectively. Let s : V1 
 V2 → {1,−1} so that s(V1) = −1 and s(V2) = 1
be our labeling. We choose a basis of the edge space of τ in the following way. First we take
all the edges of the train track τ that correspond to V1, that is, to bands along whose core
curves we twist negatively. Then we take all the edges that correspond to V2. The induced
actions Ta and Tb of the negative and positive multitwist, respectively, now have the form

Ta =

(
I X
0 I

)
, Tb =

(
I 0
Y I

)
.

At this point, it is possible to compute the dilatation of the mapping class (S , ψ) correspond-
ing to the fixed fiber S as the largest root of

det(xI − TaTb).

Step 2. We first explain how to construct S̃ , the cover of S corresponding to
π1(S ) → Hom(H1(S ;Z)ψ,Z). Let A be the adjacency matrix of Γ. In the basis induced
by the vertices of Γ, the ψ-invariant homology H1(S ;Z)ψ is the kernel ker(A) by Lemma 6.
As a submodule of a finitely generated free Z-module, ker(A) is finitely generated and admits
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a basis. Let B be a matrix whose columns form a basis for ker(A). By the correspondence
of ker(A) and H1(S ;Z)ψ, each column of B represents an element of a basis of H1(S ;Z)ψ.
On the other hand, each row of B represents a vertex vi of Γ and hence an annulus Ai in S .
A nonzero entry Bi j � 0 signifies that a loop winding around the core curve of the annulus
Ai should lift to a path in S̃ corresponding to xBi j

j as an element of the deck transformation
group H1(S ;Z)ψ. With this correspondence in mind, we define a function f on the vertices
of Γ as follows:

vi →
∏

j

xBi j

j .

Then the cover S̃ is constructed by cutting copies of S along cohomology classes (thought
of as arcs dual to bands) fixed by ψ and attaching one end of each cut band v with the other
end of the equivalent band moved by what will be the deck transformation f (v). Having
constructed the cover S̃ → S , we also obtain a natural lift τ̃ of τ.

Step 3. Choose a lift ψ̃ of ψ. We can compute the action of ψ̃ on the edge space of τ̃ by
looking at a single fundamental domain of S̃ . For this, recall from Section 2 that we regard
the edge space of τ̃ as a Z[H]-module. Let T̃a and T̃b be the actions of the lifted multitwists
on the edge space of τ̃. Then the matrix product T̃aT̃b equals the action of ψ̃ on the edge
space of τ̃. We now explain how both T̃a and T̃b can be written as a product of two matrices
which in turn can be obtained directly from our given data.

Let U and V be matrices that differ from Ta and Tb only in that they take into account
that when a curve winds around the core of the band corresponding to vi, it moves to the
f (vi)-level of S̃ . More precisely, the image after such a winding of an edge of τ̃ is multiplied
by the coefficient f (vi). In particular, the entries of the matrices U and V are polynomials
in the variables x0, . . . , xn−1, and specializing every xi to 1 yields the original matrices Ta

and Tb. It is important to note that the matrices U and V might still differ from the matrices
T̃a and T̃b, respectively. Indeed, it is possible that the image of an edge of τ̃ under a lifted
multitwist starts at a different level of S̃ . Equivalently, a lifted multitwist does not necessarily
fix the vertices of τ̃ pointwise. However, this can be accounted for by multiplication of the
columns of U and V corresponding to the affected edges by coefficients. This can be done
by right multiplication with diagonal matrices W and T , respectively, yielding T̃a = UW and
T̃b = VT . Note that the correction process which determines the matrices W and T depends
on the choice of a lift ψ̃. Summarizing, we can express PE(x0, ..., xn−1) as a product UWVT .

Since the action of a lifted multitwist on the vertices of the lifted train track τ̃ shifts levels
as does the action on the edges starting at this vertex, we see that PV(x0, ..., xn−1) is the
diagonal matrix given by the upper (or lower) half diagonal block of the matrix product WT .
Finally, according to McMullen’s determinant formula, we have

ΘCΓ(x0, ..., xn) =
det(xnI − PE(x0, ..., xn−1))
det(xnI − PV(x0, ..., xn−1))

.

Proof of Theorem 1. The matrices U,V,W and T described in Theorem 1 are obtained
exactly as described in the algorithm above. We would like to highlight two things about
this description. Firstly, some parts of the description determine choices in the algorithm:
the map a defined in (8) in Section 1.3 determines the choice of a representative of the multi-
twists Ta and Tb twisting to the right and below the core curves in the thickened arrangement
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of vertical and horizontal lines, the choice of a vertex v0 ∈ V(τ) and a path γvi connecting
v0 to any other vertex vi, as in (7), determines a lift of ψ̃, and the map c defined in (4) deter-
mines the choice of a fundamental domain of the lifted train track. Secondly, the matrices
described in Theorem 1 take into account only the invariant homology generated by a single
element of the kernel of the adjacency matrix of Γ. By the isomorphism

H1(M;Z)/torsion � H1(S ;Z)ψ ⊕ Z �< x0, ..., xn−1 > ⊕ < xn >,

this amounts to setting all except one of the coordinates coming from ψ-invariant homology
equal to zero. In other words, the matrices U,V,W, and T described in Theorem 1 determine
the Teichmüller polynomial with all these coordinates specialized to zero. �

We note that given the algorithm described in this section, it is theoretically possible to
describe the full Teichmüller polynomial in the setting of Theorem 1. However, compared
with the statement of Theorem 1, this would come at the cost of more cumbersome notation.

5. Examples

5. Examples
In this section, we perform the computation of the Teichmüller polynomial ΘC for sev-

eral examples. We first give the result for general alternating-sign An diagrams. Then, we
proceed with a detailed account of the computation for the alternating-sign A5 diagram. Fi-
nally, we give the Teichmüller polynomials of two mutant links related by different planar
embeddings of their underlying abstract tree Γ, which distinguishes them.

5.1. Teichmüller polynomial of An.
5.1. Teichmüller polynomial of An. We now describe the Teichmüller polynomial for

Γ = An, where n is odd. As explained in Section 3, we consider the fiber surface of the
associated alternating-sign Coxeter link. It is not hard to check that adding two additional
bands along a tree does not change the number of components of the link. Thus, this is a

Fig.7. The A9 graph with the standard bipartite labeling.

family of two-component links. By picking the standard bipartite vertex labeling of An, as
shown for n = 9 in Fig.7, we can arrange for the adjacency matrix A to have the form

A =
(

0 X
XT 0

)
,

where X is the matrix of size ( n+1
2 ) × ( n−1

2 ) with form (here for n = 9):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since the links we are considering have two components, the kernel of the adjacency



Teichmüller Polynomials of Fibered Alternating Links 799

matrix is always generated by a single vector. With the choice of the standard bipartite basis
of H1(S ;Z), we can write

H1(S ;Z)ψ =
〈 n+1

2∑
i=0

(−1)iei

〉
.

Notice that the invariant homology is contained in a single set of the bipartition. Thus, we
can take T , the correction matrix for the lifted multitwist defined by the other set of the
bipartition, to be the identity matrix I2n−2. In the notation of the previous section,

V = I2n−2 +

(
0 0
P 0

)
, U = I2n−2 +

(
0 Y
0 0

)
,

where P and Y are diagonal block matrices of dimension n − 1 and of the form

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
J

. . .

J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
R1

. . .

R n−3
2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with blocks

J =
(
1 1
1 1

)
, Ri =

⎛⎜⎜⎜⎜⎝ 1 1
x(−1)i+1

0 1

⎞⎟⎟⎟⎟⎠ .
Furthermore, the diagonal correction matrix W can be written as

W =
(
S 0
0 N

)
,

where S and N are diagonal matrices

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
L

. . .

L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
M

. . .

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
If n ≡ 3 mod 4, we have blocks

M = L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and if n ≡ 1 mod 4, then

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 x0 0 0
0 0 x0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and dim(S ) = dim(N). Then we have PE(x0) = UWVT , PV(x0) equals the upper left
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diagonal block of W of dimension n − 1, and

ΘCAn
(x0, x1) =

det(x1I − PE(x0))
det(x1I − PV(x0))

.

Remark 7. The tree Γ′ = A2n+1 is a vertex extension of Γ, where Γ consists of two disjoint
copies of An. Hence, the spectra of the adjacency matrices A(Γ) and A(Γ′) interlace, see, for
example, [2]. In particular, each eigenvalue of A(Γ) is also an eigenvalue of A(Γ′), since A(Γ)
has no simple eigenvalue. It follows that the single-variable Alexander polynomial of the
link associated to An divides the single-variable Alexander polynomial of the link associated
to A2n+1. Indeed, these polynomials equal the characteristic polynomial of homological ac-
tion of the alternating-sign Coxeter mapping class associated to An and A2n+1, respectively.
Furthermore, each eigenvalues of the adjacency matrix determines an eigenvalue of the ho-
mological action [12]. Interestingly, the same pattern of divisibility seems to hold among
Teichmüller polynomials associated to the trees An:

ΘA3 = (x0x1 − 2x0 − 2x1 + 1),

ΘA5 = (x2
0x2

1 − 4x2
0x1 − 4x0x2

1 + 4x2
0 + 9x0x1 + 4x2

1 − 4x0 − 4x1 + 1),

ΘA7 = (x0x1 − 2x0 − 2x1 + 1)(x2
0x2

1 − 4x2
0x1 − 4x0x2

1 + 4x2
0 + 8x0x1

+ 4x2
1 − 4x0 − 4x1 + 1),

ΘA11 = (x0x1 − 2x0 − 2x1 + 1)(x2
0x2

1 − 4x2
0x1 − 4x0x2

1 + 4x2
0 + 7x0x1

+ 4x2
1 − 4x0 − 4x1 + 1)(x2

0x2
1 − 4x2

0x1 − 4x0x2
1 + 4x2

0 + 9x0x1 + 4x2
1

− 4x0 − 4x1 + 1).

These Teichmüller polynomials can be calculated using the matrices given above. Further-
more, we changed variables so that the polynomials are given in coordinates of the first
homology corresponding to the meridians of the link, as described in detail for A5 in Sec-
tion 5.2.

5.2. Computation of the Teichmüller polynomial for A5.
5.2. Computation of the Teichmüller polynomial for A5. Let Γ = A5 and recall the

construction of the surface S , the monodromy ψ and the ψ-invariant train track τ associated
to Γ, as in Section 3. The result of this construction is depicted in Fig.8.

Fig.8. The abstract surface S and the ψ-invariant train track τ associated to
Γ = A5.

In order to have a cleaner picture, we consider the graph below as the core of the train
track τ. Note that we omitted the smoothings at the vertices and the edges on the ends
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should be identified with the edge on the opposite side, and that this graph can be naturally
embedded into the surface S . The surface S actually deformation retracts to τ. We take
the core curves of the Hopf bands {a1, a2, a3, b1, b2} as a generating set for H1(S ;Z) and
subdivide them at the intersection points to obtain a basis {e0, . . . , e7} of the edge space of τ,
as indicated in Fig.9.

Fig.9. Homology generators for the surface S and our edge labeling of the
train track τ.

Recall that the monodromy ψ : S → S is the product of a positive multitwist along the
bi and a negative multitwist along the a j. We also write the map PE : τ → τ as a product
of the actions induced by these two multitwists. Let Tb be the action on the edge space of τ
induced by the positive multitwist around the loops {b1, b2}. Similarly, let Ta be the action
induced by the negative multitwist around the loops {a1, a2, a3}. We adopt the convention
that if a curve is to wind around another, it does so to the right or below the curve. Then,
using the edge labels as in Fig.9, we arrive at the following matrices for Ta and Tb.

Tb =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
0 0 1 1 0 0 1 0
0 0 1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ta =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 1 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In order to compute the Teichmüller polynomial, we need to find the induced map on the
edges of the train track lifted to the cover defined by π1(S ) → H1(S ;Z)ψ. Since the surface
in this example has two boundary components, we have H1(S ;Z)ψ � Z. The cover is then
constructed by cutting the surface along the cohomology classes that are invariant under
the monodromy ψ and attaching them to form a Z-covering. It is verified directly that the
invariant homology for this example is generated by a1−a2+a3, for example, by calculating
the kernel of the adjacency matrix for A5. Thus, winding around a1 or a3 leads one layer
higher in the cover. Winding around a3 leads one layer lower. The covering surface S̃ is
visualized in Fig.10.

We are interested in the induced action of ψ̃ on the edge space of the lifted train track τ̃,
regarded as a Z[H]-module. We factor this action as PE = T̃aT̃b where T̃a = UW and T̃b = V ,
as in Section 4: the matrices U and V are obtained by analyzing a single fundamental domain
in the cover S̃ and W is a diagonal matrix that corrects some columns to their proper levels.
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Fig. 10. Two copies of a fundamental domain of the covering surface S̃
corresponding to H1(S ;Z)ψ.

Note that no correction matrix T is needed to correct V to T̃b, since the ψ-invariant homology
H1(S ;Z)ψ is supported entirely in the subspace of H1(S ;Z) generated by the curves ai. A
fundamental domain of τ̃ well suited to our purposes is drawn in Fig.11. We caluclate U and
V as

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
0 0 1 1 0 0 1 0
0 0 1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 1 0
0 0 1 0 0 x−1

0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The map on the train track τ induced by the negative multitwist along the ai sends the edge
e5 to the edge path e5e1e2. Tracing the lift of this edge path starting from the corresponding
edge e5 in the chosen fundamental domain, we see that we leave the fundamental domain
and pass in the downward (x−1

0 ) direction when tracing the lift of the edge e2. This accounts
for the entry x−1

0 in the matrix U.
The last thing to account for is the fact that when lifting the negative multitwist along

the ai to the train track τ̃, the starting point of the image of an edge from the fundamental
domain might not lie in the fundamental domain. We decide to use the intersection of the
curves b1 and a2 as basepoint for the lifts. In this case, the lift of the negative multitwist
along the ai sends the edges e0, e3, e5, and e6 to edge paths starting one level shifted by x0 in
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Fig.11. The lifted train track τ̃ and the fundamental domain we use in our
calculations, drawn thickly.

the lifted train track τ̃. The images of the other edges start in the fundamental domain, and
so does the image of every edge under the lifted positive multitwist along the β j. This gives
the matrix W, with which we have to correct U in order to obtain T̃a:

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 x0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 x0 0 0
0 0 0 0 0 0 x0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The determinant formula stated in Section 2 also requires the action of the lifted monodromy
on the vertices τ̃. Since the action on vertices is the same as on starting points of edges, this
action is given by

PV =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
the upper diagonal block of W. All of our calculations so far have been in coordinates
H1(M) � H1(S )ψ⊕Z � 〈x0, x1〉. The usual basis for the homology of link exteriors is the set
of meridians of the link. If we push a1,−a2, or a3 off the embedded fiber surface S as shown
in Fig.12, we can find the isomorphism needed the move to the usual coordinates. We can
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Fig.12. The pushoffs a�1, −a�2 and a�3 of a1, −a2 and a3, respectively.

see that the isomorphism is

x0 → y0y
−1
1 ,

x1 → y1.

If we compute

ΘA5 (x0, x1) =
det(x1I − PE(x0))
det(x1I − PV(x0))

and then change variables as described, we obtain

ΘA5 (y0, y1) = (y2
0y

2
1 − 4y2

0y1 − 4y0y
2
1 + 4y2

0 + 9y0y1 + 4y2
1 − 4y0 − 4y1 + 1).

Notice this is also (up to units) the Alexander polynomial for this link. The polynomial
is associated to the face of the Thurston norm ball whose cone contains the homology
class of S . This face is described by the hyperplane 2x0 + 2x1 = 1 in the first quadrant
of H2(M, ∂M;R) � R2.

5.3. Mutant links.
5.3. Mutant links. The links obtained from distinct planar embeddings of an abstract

tree Γ might be different. For example, in the classical case where all the signs are posi-
tive, this is true for a large class of trees by a theorem of Gerber [9]. In any case, different
embeddings can not be distinguished by the single variable Alexander or Teichmüller poly-
nomial. Indeed, these polynomials only depend on the abstract tree Γ and not the chosen
embedding. While the train tracks corresponding to two distinct embeddings have the same
incidence matrix, and the invariant homology of the monodromy maps are defined in terms
of A(Γ), the distribution of the invariant homology throughout the varying train tracks can
be very different. With this in mind, it is not surprising that in some cases the multivariable
Teichmüller polynomial distinguishes such links.

Example 8. Consider the two embeddings Γ1 and Γ2 of the tree Γ shown in Fig.13. By
Remark 4, the two alternating-sign Coxeter links associated to Γ1 and Γ2 are mutant. We now
give their Teichmüller polynomials and see that they are distinct. We consider the ambient
manifolds of the alternating Coxeter links defined by these plane trees. In a basis of the first
homology consisting of meridians of the corresponding links, the Teichmüller polynomials
Θ1 and Θ2 of the fibered cones associated to Γ1 and Γ2 are given by
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Fig. 13. Two different plane trees Γ1 and Γ2 with the same underlying ab-
stract tree.

Θ1 = (x2
1 − 3x1 + 1)(x0x3

1 − 7x0x2
1 − 2x3

1 + 9x0x1 + 9x2
1 − 2x0 + 7x1 + 1),

Θ2 = x3
0x3

1 − 6x3
0x2

1 − 6x2
0x3

1 + 8x3
0x1 + 30x2

0x2
1 + 8x0x3

1 − 2x3
0 − 34x2

0x1

− 34x0x2
1 − 2x3

1 + 8x2
0 + 30x0x1 + 8x2

1 − 6x0 − 6x1 + 1,

which are distinct. The Teichmüller polynomials Θ1 and Θ2 can be calculated, for example,
by using Theorem 1 and changing to the bases consisting of meridians. Note that since
both links have two components, Theorem 1 can be used to compute the whole Teichmüller
polynomial. The change of base is calculated explicitly. However, it does not change the
fact that Θ1 factors as a product of two polynomials while Θ2 does not factor. In particular,
the change of base is not needed to show that Θ1 and Θ2 are distinct.
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Ann. Sci. École Norm. Sup. (4) 33 (2000), 519–560.
[17] R.C. Penner: A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988),

179–197.
[18] R. Steinberg: Finite reflection groups, Trans. Amer. Math. Soc. 91 (1959), 493–504.
[19] H. Sun: A transcendental invariant of pseudo-Anosov maps, J. Topol. 8 (2015), 711–743.
[20] W.P. Thurston: A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986), i–vi and

99–130.
[21] W.P. Thurston: On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc. 19

(1988), 417–431.
[22] W.P. Thurston: Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over

the circle, arXiv:math/9801045.
[23] S. Wehrli: Khovanov homology and Conway mutation, arXiv:math/0301312.
[24] C. Zibrowius: Kauffman states and Heegaard diagrams for tangles, arXiv:math/1601.04915.

Robert Billet
Mathematical institute
Florida State University
600 W College Ave, Tallahassee
FL 32306
USA
e-mail: rbillet@math.fsu.edu

Livio Liechti
Sorbonne Université
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