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Abstract
For n ≥ 2 we consider (n − 1)-connected closed manifolds of dimension at most (3n − 2). We

prove that away from a finite set of primes, the p-local homotopy groups of M are determined
by the dimension of the space of indecomposable elements in the cohomology ring H∗(M;Q).
Moreover, we show that these p-local homotopy groups can be expressed as a direct sum of
p-local homotopy groups of spheres. This generalizes some of the results of our earlier work
[1].

1. Introduction

1. Introduction
In this document we compute homotopy groups of (n− 1)-connected closed manifolds of

dimension at most (3n − 2). The main techniques used arise from the theory of quadratic
associative algebras and Lie algebras. These extend the arguments for (n − 1)-connected
2n-manifolds in [1]. Any (n − 1)-connected 2n-manifold has a cell structure obtained by
attaching a single 2n-cell to a wedge of n-spheres, a fact that is crucially used in [1]. For the
more general manifolds in this paper one does not have such a cell structure, yet analogous
results hold after inverting finitely many primes (cf. Theorem 3.6, Theorem 3.8).

Theorem 1.1. Let M be a closed (n − 1)-connected d-manifold with n ≥ 2, d ≤ 3n − 2
and dim H∗(M;Q) > 4. Let r denote the dimension of the space of indecomposables in
H∗(M;Q). Then there is a finite set of primes Γ such that for p � Γ,
(a) the p-local homotopy groups of M can be expressed as a direct sum of p-local homotopy
groups of spheres ;
(b) the number of summands πk(S l)(p) in πk(M)(p) is a function that depends on r, but not on
n or d.

If a generator of Hd(M;Q) is indecomposable then it follows from Poincaré duality that
the rational cohomology of M is that of S n. In this case dim H∗(M;Q) = 2 and r = 1.
Conversely, suppose that r = 1 and M does not have the cohomology of a sphere. It follows
that M is a manifold of dimension 2n with H∗(M;Q) = Q[x]/(x3) and n is even.

By the assumptions on M, the cup product of any three cohomology classes (of positive
degree) is zero. Now we assume that dim H∗(M;Q) > 4. If any class α = a ∪ b ∈ Hi(M;Q)
(with i < d) is reducible then by Poincaré duality there exists β ∈ Hd−i(M;Q) such that α∪β
is a generator of Hd(M;Q). Thus, a ∪ b ∪ β � 0 and this violates our previous observation.
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Therefore, if r > 1 we deduce that

r = dim(⊕0<i<dHi(M;Q)) =
∑

0<i<d

dim Hi(M;Q) = dim H∗(M;Q) − 2.

We note that the condition dim H∗(M;Q) > 4 is equivalent to r ≥ 3. In terms of rational
homotopy groups, M is rationally hyperbolic if and only if r > 2. In this case we have the
following result (cf. Theorem 3.9).

Theorem 1.2. Let M be a closed (n − 1)-connected d-manifold with n ≥ 2, d ≤ 3n − 2
and dim H∗(M;Q) > 4. Then the homotopy groups of M have unbounded p-exponents for
all but finitely many primes.

The above result verifies the Moore conjecture (see the discussion before Theorem 3.9 as
well as [6] pp. 518) for such spaces. The Moore conjecture states that a simply connected
finite CW complex is rationally elliptic if and only if it has a finite homotopy exponent at all
primes. In the examples above the manifolds M are rationally hyperbolic, where the conjec-
ture states that there exists primes p such that M does not have a finite homtopy exponent
at p. The Theorem implies the stronger conclusion that M does not have finite homotopy
exponent at almost all primes. The low rank cases, i.e., when r = 1, 2 are discussed in §3.3
(see Theorem 3.10).

2. Homology of the loop space

2. Homology of the loop space
Let M be a closed (n − 1)-connected d-manifold with d ≤ 3n − 2. The cohomology of M

is finitely generated and has p-torsion only for a finite set of primes p. Let Σ be the set of
primes such that the cohomology of M has p-torsion. Define

RΣ = Z[ 1
p | p ∈ Σ].

Then we may deduce the following facts.
(a) H∗(M; RΣ) is a free RΣ-module.
(b) The natural map H∗(M; RΣ) ⊗RΣ Q→ H∗(M;Q) is an isomorphism.

The first fact follows from Universal Coefficient Theorem for cohomology and the defining
property of RΣ. The second fact is clear.

As noted earlier, the only non-trivial products of positive dimensional classes are given by
the intersection form. Therefore the module of indecomposables in H∗(M; RΣ) is given by
(M) = ⊕0<i<dHi(M; RΣ). Let x1, . . . , xr be a basis of (M). Fix a choice of an orientation
class [M] ∈ Hd(M; RΣ) of M. Let ci j = 〈xix j, [M]〉.

In [3], the homology of ΩM is computed for M as above such that Rank(H∗(M;Z)) > 4.
Let us recall it. Consider the homology ring H∗(ΩM;Q) of the based loop space, equipped
with the Pontrjagin product. This ring is freely generated as an associative algebra by classes
u1, . . . , ur whose homology suspensions are dual to the classes x1, . . . , xr (in particular |ui| =
|xi| − 1), modulo the single quadratic relation∑

i, j

(−1)|ui |+1c jiuiu j = 0.

The same argument works for a quotient field of RΣ. We note this in the proposition below
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(cf. [3], Theorem 1.1). We use the following notation for a commutative ring A. If V is a
free A-module then we shall denote by TA(V) (often abbreviated as T (V)) the tensor algebra
generated by V . If the free module V has a basis {v1, v2, . . .}, then we often write TA(V) as
TA(v1, v2, . . .).

Proposition 2.1. For k = Q or a quotient field of RΣ, there is an isomorphism of associa-
tive rings,

H∗(ΩM; k) � Tk(u1, . . . , ur)/
(∑

(−1)|ui |+1c jiuiu j
)
.

This directly leads us to the following integral version.

Proposition 2.2. As associative rings,

H∗(ΩM; RΣ) � TRΣ(u1, . . . , ur)/
(∑

(−1)|ui |+1c jiuiu j
)
.

Proof. Since M is an orientable manifold the homology H∗(M−pt; RΣ) matches H∗(M; RΣ)
in all degrees up to (d− 1). From the conditions on M we deduce that H∗(M − pt; RΣ) is free
on the classes x∗i which are dual to the classes xi and the products are all zero. It follows that
H∗(Ω(M − pt); RΣ) is a tensor algebra on the classes ui. A way to see this is by deducing
from [3, Theorem 4.1] that M − pt is a formal space over RΣ, and then from [3, Theorem
2.1] that for k a quotient field or a fraction field of RΣ, H∗(Ω(M − pt); k) is the Koszul dual
algebra of H∗(M − pt; k). The rest follows from the fact that the Koszul dual algebra of an
algebra with trivial products is the tensor algebra [14, Chapter 1, Section 2]. Therefore we
have a map

φ : TRΣ(u1, . . . , ur)
�−→ H∗(Ω(M − pt); RΣ) −→ H∗(ΩM; RΣ).

In the dimension range 0 ≤ ∗ ≤ d − 1, we may compute H∗(ΩM; RΣ) using the Serre
spectral sequence associated to the path-space fibration ΩM → PM → M. This has the
form

E2
p,q = Hp(M) ⊗ Hq(ΩM) =⇒ H∗(pt)

with coefficients in RΣ. From the multiplicative structure on the dual cohomology spectral
sequence it follows that the indecomposable elements (with basis x∗j) lie in the image of the
transgression. Therefore the classes x j are transgressive and they transgress onto the classes
u j, that is, d(x j) = u j.

The homology of M being torsion-free implies that the cohomology of M is just the
dual. From the dual spectral sequence, we deduce that the classes xk ⊗ u j are mapped
by differentials onto the classes uk ⊗ u j on the vertical 0-line. It follows that in degrees
≤ d − 1, H∗(ΩM; RΣ) are generated by the classes ui, uiu j. The differential on the class
[M] hits a linear combination of xk ⊗ u j. Hence, in this range of degrees H∗(ΩM; RΣ) �
TRΣ(u1, . . . , ur)/(l) for some element l of homogeneous degree 2 in ui.

Let H∗(ΩM; RΣ)(2) denote the free RΣ-submodule generated by the homogeneous degree
2 elements which is isomorphic to RΣ{ui ⊗ u j}/(l). The computations of [3] as quoted above
imply that

RΣ{ui ⊗ u j}/(l) ⊗RΣ k � RΣ{ui ⊗ u j}/(∑(−1)|ui |+1c jiuiu j
) ⊗RΣ k

for k being either the fraction field of RΣ, or RΣ/(π) for primes π in RΣ. The first case implies
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that there are a, b ∈ RΣ such that

al = b
(∑

(−1)|ui |+1c jiuiu j
)

and the second case implies that a and b are non-zero and differ by a unit modulo π for every
prime π. Thus a and b are forced to be units after possible cancellations, and we may take
l =

∑
(−1)|ui |+1c jiuiu j. Thus

H∗(ΩM; RΣ)(2) � RΣ{ui ⊗ u j}/(∑(−1)|ui |+1c jiuiu j
)

so that the element
∑

(−1)|ui |+1c jiuiu j ∈ TRΣ(u1, . . . , ur) goes to 0 under φ above. Thus we
obtain a ring map

TRΣ(u1, . . . , ur)/
(∑

(−1)|ui |+1c jiuiu j)→ H∗(ΩM; RΣ
)

which is an isomorphism after tensoring with the fraction field of RΣ or going modulo a
prime from Proposition 2.1. The result now follows. �

3. Homotopy groups of certain (n − 1)-connected manifolds

3. Homotopy groups of certain (n − 1)-connected manifolds
In this section we deduce results about the homotopy groups of (n − 1)-connected mani-

folds of dimension d ≤ 3n − 2 after inverting finitely many primes. We use the computation
of the homology of the loop space in Section 2. Note from Proposition 2.2 that H∗(ΩM; RΣ)
is a quadratic algebra. We prove that this possesses a nice basis and so does the correspond-
ing quadratic Lie algebra. The basis of the Lie algebra is used to express π∗(M) as a direct
sum of homotopy groups of spheres after inverting finitely many primes.

3.1. Algebraic preliminaries.
3.1. Algebraic preliminaries. We start by recalling some algebraic preliminaries on qua-

dratic algebras and quadratic Lie algebras. For further details we refer to [1, 14, 13]. Let
A be a commutative ring (usually a principal ideal domain (PID)). If V is a free A-module
then TA(V) denotes the tensor algebra generated by V , and the notation Lie(V) (respectively
Liegr(V)) denotes the free Lie algebra (respectively graded Lie algebra) on the A-module V .

Definition 3.1. For R ⊂ V ⊗A V , the associative algebra A(V,R) = T (V)/(R) is called a
quadratic A-algebra.

If R ⊂ V ⊗A V lies in Lie(V), the Lie algebra L(V,R) = Lie(V)/((R)) is called a quadratic
Lie algebra over A. In the graded case this is denoted Lgr(V,R).

It may be observed that the universal enveloping algebra of L(V,R) is A(V,R) and in the
graded case the universal enveloping algebra of Lgr(V,R) is A(V,R) as graded modules. If
in addition the modules A(V,R) and L(V,R) are free, there is a Poincaré-Birkhoff-Witt theo-
rem which may be stated as E0(A(V,R)) � A[L(V,R)]. The notation A[L(V,R)] denotes the
polynomial A-algebra on the module L(V,R) and E0(A(V,R)) denotes the associated graded
for the filtration of A(V,R) induced by the weight filtration on the tensor algebra. A similar
statement holds for the graded case where one interprets the polynomial algebra as the poly-
nomial algebra on even degree classes tensored with the exterior algebra on the odd degree
classes. Finally from [5], [10] one may deduce that for a PID A, L(V,R) is a free module if
A(V,R) is free and V has finite rank.

Next we recall the Diamond lemma from [4]. Let V be generated by a basis {x1, . . . , xn}.
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Fix an order of xi, say x1 < x2 < · · · < xn, and obtain an induced order on monomials
(ordered by degree, and lexicographically in each degree). Suppose that the free module
R can be given a basis where each element is of the form Wi − fi where Wi is a monomial
and fi is a linear combination of monomials < Wi. Call a monomial R-indecomposable if
it does not possess any submonomial which occurs as Wi in the above chosen basis. The
Diamond lemma [4, Theorem 1.2] states certain sufficient conditions under which the R-
indecomposable monomials form a basis of A(V,R). The following implication of the Dia-
mond lemma suffices for this paper [1, Theorem 2.8].

Proposition 3.2. Suppose that R is generated by a single element of the form

xa ⊗ xβ =
∑

(i, j)�(α,β)

ai, j xi ⊗ x j

with α � β. Then the R-indecomposable elements form a basis for A(V,R).

There is an analogous construction for Lie algebras L(V,R) defined by generators and
relations (see [9]). This is called a Lyndon basis. Start with a basis of V and an order on
the basis set. We call a word in elements of V a Lyndon word if it is lexicographically
smaller than its cyclic rearrangements. For a Lyndon word l there are unique Lyndon words
l1 and l2 so that l = l1l2 and l2 is the largest possible Lyndon word occuring in the right in
l. Inductively we may associate to the Lyndon word l the element b(l) = [b(l1), b(l2)] of the
free Lie algebra on V . One verifies that these elements form a basis of the free Lie algebra
on V . In the case R � 0, we say a Lyndon word is R-standard if it cannot be further reduced
using relations in R (with respect to the chosen order on V). From [9] we recall the following
result (also see [1], Theorem 2.17).

Proposition 3.3. Suppose that A is a localization of Z and R as in Proposition 3.2. Then,
the R-standard Lyndon words give a basis of L(V,R).

3.2. Homotopy groups using loop space homology.
3.2. Homotopy groups using loop space homology. Let us denote by l(M) the sum∑

(−1)|ui |+1c jiuiu j. It is clear that l(M) lies in the free graded Lie algebra on the classes
u1, . . . , ur which we denote by Liegr(u1, . . . , ur). For, if i � j we have

ci j = (−1)(|ui |+1)(|u j |+1)c ji

and hence

(−1)|ui |+1c jiuiu j + (−1)|u j |+1ci ju jui = (−1)|ui |+1c ji[ui, u j]gr,

where the graded Lie bracket is given by

[ui, u j]gr = (ui ⊗ u j − (−1)|ui ||u j |u j ⊗ ui).

For the terms ciiu2
i , note that if |ui| is even, the formula 〈x2

i , [M]〉 = cii implies that cii = 0,
while if |ui| is odd, u2

i belongs to the free graded Lie algebra [13, Definition 8.1.1].
Consider the graded Lie Algebra 

gr
r (M) (over RΣ) given by

Liegr(u1, . . . , ur)
(l(M))

where (l(M)) denotes the graded Lie algebra ideal generated by l(M). This is a quadratic
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graded Lie algebra. In this respect we denote

l(M) =
∑
i< j

li, j[ui, u j]gr +
∑
|ui | odd

li,iu2
i =

∑
i< j

li, j(ui ⊗ u j − (−1)|ui ||u j |u j ⊗ ui) +
∑
|ui | odd

li,iu2
i .

We make an analogous ungraded construction. Consider the element

lu(M) =
∑
i< j

li, j[ui, u j] =
∑
i< j

li, j(ui ⊗ u j − u j ⊗ ui).

This element lies in Lie(u1, . . . , ur). We shall make use of the following notation:

Au
r (M) =

TRΣ(u1, . . . , ur)
(lu(M))

, u
r (M) =

Lie(u1, . . . , ur)
(lu(M))

.

The Lie algebra 
u
r (M) and the associative algebra Au

r (M) possess an induced grading.

Proposition 3.4. 
u
r (M) and 

gr
r (M) are free over RΣ. The Lyndon basis gives a basis of


u
r (M).

Proof. From the formulas in Proposition 2.2, it is clear that H∗(ΩM; RΣ) is the universal
enveloping algebra of the Lie algebra 

gr(M) in the graded sense. Analogously, Au
r (M) is

the universal enveloping algebra of u(M). As RΣ is a PID, for the first statement it suffices
to show that H∗(ΩM; RΣ) and Au

r (M) are free RΣ-modules. We verify this last fact by proving
l(M) and lu(M) satisfy the hypothesis of Proposition 3.2. Now Proposition 3.3 implies the
second statement as well.

Since the coefficients of uiu j for i � j in l(M) and lu(M) differ only by a sign, it suffices
to write the element l(M) as

uiu j = combination of other terms not containing uiu j.

This is equivalent to a change of basis of the xi so that some c ji equals 1. For d > 2n note
that n and d−n are not the same. Now pick the basis xi so that the dual classes in Hn(M; RΣ)
are Poincaré dual to those in Hd−n(M; RΣ) (this is possible as n � d

2 ). For example we may
start with a basis of Hn(M; RΣ) and then the dual basis of Hd−n(M; RΣ) and extend to a basis
of H0<∗<d(M; RΣ). Order the basis so that x∗1 ∈ Hn(M; RΣ) and x∗r ∈ Hd−n(M; RΣ) are dual to
each other. Then c1,r = 1 and thus

l(M) =
∑

(−1)|ui |+1c jiuiu j = u1ur + combination of other terms.

This completes the proof.
We have seen that the change of basis is possible for d = 2n in [1, Proposition 2.9].

We repeat the proof here. In this case we need to change basis so that the matrix of the
intersection form has a 1 at a position not on the diagonal. The proof for the n odd case is
easier. The intersection form induces a symplectic inner product on V = Hn(M; RΣ) [12,
Ch 1, Definition 1.3], and we have from [12, Ch 1, Corollary 3.5] that any symplectic inner
product space over a Dedekind Domain possesses a symplectic basis. This implies the result
in the n odd case.

For n even, the intersection form β is a symmetric bilinear form on V = Hn(M; RΣ). From
the assumptions on M, we know that Rank(V) = r ≥ 3. Choose some basis {a1, . . . , ar} of V
over RΣ. Due to dimensional constraints there exists a Q-linear combination v of a2, . . . , ar

such that β(v, a1) = 0. Clear out denominators of v so that v is a primitive combination of
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a2, . . . , ar over RΣ. Hence one may find a basis of RΣ{a2, . . . , ar} of the form {v, b3, . . . , br}.
Thus we may change basis and assume β(a1, a2) = 0. Now as the bilinear form is non-
singular over RΣ there exists w such that β(a1, w) = 1. Note this computation does not
change if we add multiples of a2. Therefore in terms of the basis we may assume that the
coefficient of a2 in w is 1. We may now replace a2 in the basis by w and obtain a new basis
with the property β(a1, a2) = 1. This basis satisfies the required condition. �

Next we enlarge the set of primes so that the classes ui are in the image of the Hurewicz
homomorphism.

Proposition 3.5. There exists a finite set of primes Γ containing Σ such that the classes
ui lie in the image of the Hurewiciz homomorphism π∗(ΩM) ⊗ RΓ → H∗(ΩM; RΓ).

Proof. Consider the commutative diagram

π∗(ΩM) ⊗ RΣ
Hur ��

��

H∗(ΩM; RΣ)

��

π∗(ΩM) ⊗ Q Hur �� H∗(ΩM;Q).

Since H∗(ΩM; RΣ) is a free RΣ-module, the right vertical arrow is injective; it takes ui to the
corresponding element ui. We know from the Milnor-Moore theorem that H∗(ΩM;Q) is the
universal enveloping algebra on the rational homotopy Lie algebra π∗(M)⊗Q. It follows by
standard methods [6, Theorem 15.11] that xi’s are dual to non-trivial elements in the rational
homotopy groups in the appropriate degrees. This is because from [3], it follows that M is
formal so that the xi may be used in a minimal model for M.

As a consequence, the element ui lies in the Hurewicz homomorphism for Q coefficients.
It follows that for every i there is an integer di so that diui lies in the image of the Hurewicz
homorphism. Define Γ as Σ plus all the prime factors of di for 1 ≤ i ≤ r. Consequently, over
RΓ, all the ui are in the image of the Hurewicz homomorphism. �

Our goal is to compute the homotopy groups π∗(M) ⊗ RΓ. We work in the RΓ-local
category: that is, the category obtained from spaces by localizing with respect to H∗(−; RΓ)-
equivalences. Let S n

Γ
denote the RΓ-local sphere. We know that if a map between simply

connected spaces (or, more generally, simple spaces) is an H∗(−; RΓ)-equivalence then it
induces an isomorphism on π∗(−) ⊗ RΓ.

From Proposition 3.5, there are elements in π∗(M) ⊗ RΓ whose adjoints have Hurewicz
image ui. By iterated Whitehead products we may map spheres into M corresponding to
chosen elements of the Lie algebra 

u(M). We describe this in a precise fashion below.
We denote the degree of ui by |ui|. We fix a map S |ui | → ΩM with Hurewicz image ui.

By adjunction we have a map αi : S |ui |+1 → M with the property that after looping αi the
generator of the Pontrjagin ring maps to ui.

There exists a Lyndon basis for u(M) by Proposition 3.4. List these elements in order
as l1 < l2 < . . . and define the height of a basis element by hi = h(li) = k + 1 if b(li) ∈
(u(M))k the kth-graded piece. Then h(li) ≤ h(li+1). Note that b(li) represents an element of
Lie(u1, . . . , ur) and is thus represented by an iterated Lie bracket of ui. Define λi : S hi

Γ
→ M

as the Whitehead product replacing each ui in the bracket by αi.
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Theorem 3.6. There is an isomorphism

π∗(M) ⊗ RΓ �
∑
i≥1

π∗S hi ⊗ RΓ

and the inclusion of each summand is given by λi.

Observe that the right hand side is a finite sum in each degree.
Proof. The maps Ωλi : ΩS hi

Γ
→ ΩM for i = 1, . . . , n can be multiplied using the H-space

structure on ΩM to obtain a map from S (n) =
∏n

i=1ΩS hi
Γ
→ ΩM. Letting n vary S (n)

gives a directed system arising from the inclusion of subfactors using the basepoint. Fix
an associative model for ΩM (for example using Moore loops) and observe that the various
maps from S (n) induces a map on the homotopy colimit

Λ : S := hocolimn S (n) −→ ΩM.

Note that homotopy groups of S is the right hand side of the expression in the Theorem
shifted in degree by 1. Hence it suffices to prove that Λ is a weak equivalence after inverting
the primes in Γ. As both the domain and codomain are simple spaces, it suffices to show that
this is an RΓ-homology isomorphism.

The homology of S is a polynomial algebra with a generator for each copy of ΩS hi
Γ

H∗(S ; RΓ) � TRΓ(ch1−1) ⊗ TRΓ(ch2−1) . . . � RΓ[ch1−1, ch2−1, . . .]

and Λ∗chi−1 ∈ Hhi−1(ΩM; RΓ) is the Hurewicz image of λi ∈ πhi−1(ΩM). Denote ρ as

ρ : πn(X) � πn−1(ΩX)
Hur−−−→ Hn−1(ΩX;Z)→ Hn−1(ΩX; RΓ).

We know from [8] that

(1) ρ([a, b]) = ρ(a)ρ(b) − (−1)|a||b|ρ(b)ρ(a).

Now from Proposition 2.2 we have the isomorphism H∗(ΩM; RΓ) � TRΓ(u1, . . . , ur)/
(l(M)) where the right hand side is the universal enveloping algebra of grr (M) (in the graded
sense). From the Poincaré-Birkhoff-Witt theorem for graded Lie algebras we have

E0TRΓ(u1, . . . , ur)/(l(M)) � E(grr (M)odd) ⊗ P(grr (M)even).

The map ρ carries each αi to ui. The element b(li) is mapped inside H∗(ΩM; RΓ) to the
element corresponding to the graded Lie algebra element by equation (1). We prove that
TRΓ(a1, . . . , ar)/(l(M)) has a basis given by monomials on ρ(b(l1)), ρ(b(l2)), · · · .

Observe inductively that all the elements in 
gr
r (M) can be expressed as linear combina-

tions of monomials in ρ(b(li)). It is clear for elements of weight 1. For the weight 2 elements
note that they are generated by [ui, u j]gr for i < j, (i, j) � (1, 2) and u2

i if |ui| is odd. The
former are the Lyndon words and the latter is the square of a monomial. In the general case,
a graded Lie algebra element is either a monomial or the square of a lower odd degree class;
from one of the conditions in the definition of a graded Lie algebra the bracket with a square
can be expressed as a bracket. Such a monomial may be obtained by applying ρ on the cor-
responding ungraded element. This is a linear combination of certain b(li) and something in
the ideal generated by lu(M). Applying ρ we obtain a combination of ρ(b(li)) and something
in the ideal generated by l(M) as ρ(lu(M)) = l(M) which verifies the induction step. As an
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application of the Poincaré-Birkhoff-Witt Theorem, we know that Λ∗ is surjective.
Hence we have that the graded map

(2) RΓ[ρ(b(l1)), ρ(b(l2)), . . .]→ TRΓ(u1, . . . , ur)/(l(M))

is surjective. We also know

RΓ[b(l1), b(l2), . . .]→ TRΓ(u1, . . . , ur)/(lu(M))

is an isomorphism. Now both TRΓ(u1, . . . , ur)/(l(M)) and TRΓ(u1, . . . , ur)/(lu(M)) have bases
given by the Diamond lemma and thus are of the same graded dimension. It follows that
the graded pieces of RΓ[ρ(b(l1)), ρ(b(l2)), . . .] and TRΓ(u1, . . . , ur)/(l(M)) have the same rank
which is finite. Thus on graded pieces one has a surjective map between free RΓ-modules of
the same rank which must be an isomorphism. �

The proof of Theorem 3.6 implies a stronger result about the loop space of the manifold
M. We denote the RΓ-localization of M by MΓ. For a sequence of based spaces Yi, we use
the notation Π̂i≥0Yi for the homotopy colimit of finite products of Yi.

Theorem 3.7. With notations as above,

ΩMΓ � Π̂i≥0ΩS hi
Γ
.

We may now compute the number of copies of S k in the expression of Theorem 3.6 from
the rational cohomology groups of M. Let

qM(t) = 1 −
∑

n−1<i<d

bi(M)ti + td.

Then 1
qM(t) is the generating series for ΩM (see [11], Theorem 3.5.1) from the fact that

H∗(ΩM; RΓ) is Koszul as an associative algebra (see [3]). Let

ηm := coefficient of tm in log(qM(t)).

We may repeat the proof of Theorem 5.7 of [1] to deduce the following result.

Theorem 3.8. The number of groups πsS m ⊗ RΓ in πs(M) ⊗ RΓ is

lm−1 = −
∑
j|m−1

μ( j)
η(m−1)/ j

j

where μ is the Möbius function.

Proof. It is enough to compute the dimension l j of the jth-graded part of the Lie algebra


u
r (M). We use the generating series to compute this from the universal enveloping algebra

H∗(ΩM) as in [2].
The generating series for H∗(ΩM) is p(t) = 1

qM(t) . From (2), the symmetric algebra on


u
r (M) is H∗(ΩM). Hence we have the equation

1∏
j(1 − t j)l j

=
1

1 −∑
n−1<i<d bi(M)ti + td .

Take log of both sides :
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log(1 −
∑

n−1<i<d

bi(M)ti + td) =
∑

j

l j log(1 − t j)

= −
∑

j

l j

(
t j +

t2 j

2
+

t3 j

3
+ · · ·

)
.

Expanding this and equating coefficients, we see that

ηm := coefficient of tm in log(1 −
∑

n−1<i<d

bi(M)ti + td) = − 1
m

(∑
j|m

jl j

)
.

We use the Möbius inversion formula; it gives us

lm = −
∑
j|m
μ( j)
ηm/ j

j
.

This completes the proof. �

Recall that simply connected, finite cell complexes either have finite dimensional rational
homotopy groups or exponential growth of ranks of rational homotopy groups (cf. [6], §33).
The former are called rationally elliptic while the latter are called rationally hyperbolic.
From [3] we note that the (n − 1)-connected manifolds of dimension at most (3n − 2) with
H∗(M) having rank at least 4 are all rationally hyperbolic. One may also verify this directly.
Since the rank of H∗(M) is at least 4 the number of generating ui is at least 3. Then one
observes that after switching the ordering appropriately the word

u1u2u1u2u1u3

is a Lyndon word in degree > 2d as each ui has degree > d
3 . So these manifolds cannot be

rationally elliptic. This forces by the Milnor-Moore Theorem, that gr(M) ⊗ Q has infinite
rank. Hence, u(M) also has infinite rank.

There are many conjectures that lie in the dichotomy between rationally elliptic and hy-
perbolic spaces. We verify such a conjecture by Moore ([6], pp. 518) below. For a rationally
hyperbolic space X the Moore conjecture states that there are primes p for which the ho-
motopy groups do not have any exponent at p, that is, for any power pr there is an element
α ∈ π∗(X) of order pr. We verify the following version.

Theorem 3.9. If p � Γ, the homotopy groups of M do not have any exponent at p.

Proof. We have noted above that u(M) has infinite rank. Thus there are elements of
the Lyndon basis of arbitrarily large degree. Hence for arbitrarily large l, π∗S l occurs as a
summand of π∗M. The proof is complete by observing that any ps may occur as the order
of an element in π∗S l for arbitrarily large l. This follows from [7]. This also follows from
the fact that the same is true for the stable homotopy groups and these can be realized as
πs

k � πk+lS l for l > k + 1. Now torsion of order ps for any s occurs in the image of the
J-homomorphism (cf. [15], Theorem 1.1.13). �

3.3. The low rank cases.
3.3. The low rank cases. We end by demonstrating the above computations when the

rank of H∗(M;Q) is at most 4. Since H0 and Hd are always Q, we have to consider three
possibilities: rank 2, 3, 4. Our main techniques involve determining the rational homotopy
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type of M, of dimension d, and using it to compute the homotopy type at all but finitely
many primes.

In the rank 2 case we know that rationally M is a sphere so that MQ � S d
Q

. Let Σ denote the
finite set of primes which occur as torsion in the homology of M. With RΣ-coefficients, the
RΣ localization MΣ of M is a homology d-sphere. Thus H∗(M; R) � H∗(S d; R) for any ring
R lying between RΣ and Q. Let α stand for the common notation for a generator of H∗(M; R)
for any such R. As MQ � S d

Q
, α lies in the image of the rational Hurewicz homomorphism.

It follows that with RΣ-coefficients, there is an integer k so that kα lies in the image of the
Hurewicz homomorphism. Let Γ denote the union of Σ and the prime divisors of k. Then Γ
is a finite set and α lies in the image of the RΓ Hurewicz homomorphism. It is now clear that
there is a map S d

Γ
→ M which is an isomorphism with RΓ-coefficients. Therefore, we have a

homotopy equivalence MΓ � S d
Γ
. Note that the torsion in the homology can be quite varied.

So this is precisely the sort of result we are looking for.
For the next case, let J2S n be the second stage of the James construction which is ob-

tained as the mapping cone of the Whitehead product [id, id]. If H∗(M;Q) has rank 3, by
Poincaré duality the cohomology ring is forced to be Q[xs]/(x3

s) where d = 2s. By graded
commutativity s is forced to be even. The rational homotopy of such a space may be com-
puted directly from the cohomology ring structure as the ring structure forces the space to
be formal. The minimal model is given by Λ(xs, y3s−1) with d(xs) = 0 and d(y3s−1) = x3

s .
Thus the rational homotopy groups of M are given by

πQk (M) =
{
Q if k = s, 3s − 1,
0 otherwise.

It follows that on rationalizations we have a map S s
Q
→ MQ which is an isomorphism on

πQ∗ for ∗ ≤ 2s − 2. In degree 2s − 1 the homotopy groups are πQ2s−1S s � Q{[id, id]} and
πQ2s−1(M) = 0. Therefore the composite

S 2s−1
Q

[id,id]−−−−→ S s
Q −→ MQ

is null-homotopic and thus factors through the cofibre (J2S s)Q. Therefore we obtain a map
(J2S s)Q → MQ which is an isomorphism on Hs and by cup products also on Hd. As a result,
one obtains that MQ � J2S s

Q
.

Next we upgrade the rational homotopy result to one which is valid after inverting finitely
many primes, that is, over a set Γ of finitely many primes that the Γ-localizations of the
above two spaces are weakly equivalent. Let Σ denote all the primes which appear as torsion
in the homology of M. As M is a simply connected compact CW-complex, the homotopy
groups of M are finitely generated in each degree. Let Γ denote the primes in Σ together
with the finite list of primes which appear as torsion in π2s−1(M) and those which need to
be inverted so that xs lies in the image of the Hurewicz homomorphism. We consider the
following commutative diagram:

S 2s−1
Γ

[id,id]
��

��

S s
Γ

��

�� MΓ

��

S 2s−1
Q

[id,id]
�� S s
Q

�� MQ.
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The composite in the bottom row is 0. The composite in the top row gives an element in
π2s−1(M)⊗RΓ which injects into π2s−1(M)⊗Q by our choice of Γ. The latter group is 0 from
our choices. It follows that the composite of the top row is 0 and thus we obtain a map from
the mapping cone J2S s

Γ
→ MΓ which is an isomorphism in cohomology with RΓ coefficients

by the same argument as that for Q. Thus we deduce that

MΓ � (J2S s)Γ.

It remains to consider the last case when total rank is 4. Let #2J2(n) denote the mapping
cone of

[id1, id1] + [id2, id2] : S 2n−1 → S n ∨ S n.

Then,

H∗(#2J2(n);Q) � Q[xn, yn]/(x3
n, y

3
n, xnyn, x2

n = y
2
n).

If H∗(M;Q) has rank 4, then by Poincaré duality the rational cohomology ring is forced to
be one of the following:
(a) {1, xs, ys, x2

s = y
2
s} (where d = 2s with s even),

(b) {1, xk, yd−k, xk · yd−k}.
Notice that (a) is the rational cohomology ring of #2J2(s) while (b) is the rational cohomol-
ogy ring of S k × S d−k. We now deduce that the rational homotopy type of M must indeed be
one of these.

The rational homotopy groups may be computed directly as the ring structure forces the
space to be formal. The minimal model for type (a) is given by

Λ(xs, ys, u2s−1, v2s−1), d(xs) = d(ys) = 0, d(u2s−1) = x2
s − y2

s , d(v2s−1) = xsys.

Thus the rational homotopy groups of M are given by

πQk (M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q if k = 0,
Q2 if k = s, 2s − 1,

0 otherwise.

Therefore, on rationalizations we have a map S s
Q
∨ S s

Q
→ MQ representing xs and ys which

is an isomorphism on πQ∗ for ∗ ≤ 2s − 2. In degree 2s − 1 the homotopy group

πQ2s−1(S s ∨ S s) � Q{[id1, id1], [id1, id2], [id2, id2]}.
In the computation of homotopy groups using minimal models one knows that the quadratic
part of the differential represents the Whitehead product, and so it follows that the element
[id1, id1] + [id2, id2] goes to 0 in M. Therefore the composite

S 2s−1
Q

[id1,id1]+[id2,id2]−−−−−−−−−−−−→ S s
Q −→ MQ

is null-homotopic and thus factors through the cofibre (#2J2(s))Q. Therefore we obtain a
map (#2J2(s))Q → MQ which is an isomorphism on Hs and by cup products also on Hd. It
follows that MQ � #2J2(s)Q.

If the cohomology algebra is of type (b), the minimal model matches that for the product
S k × S d−k. Thus, on rationalizations we have a map S k

Q
∨ S d−k

Q
→ MQ which is an isomor-
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phism on πQ∗ for ∗ ≤ 2s − 2. In degree 2s − 1 the class [idk, idd−k] generates a copy of Q
in πQ2s−1(S k ∨ S d−k). As in the argument above, one shows that [idk, idd−k] goes to 0 in M.
Therefore we obtain a map (S k × S d−k)Q → MQ which is an isomorphism on H≤d−1 and by
cup products also on Hd. It follows that MQ � (S k × S d−k)Q.

As in the r = 3 case we upgrade the rational homotopy result to one which is valid after
inverting finitely many primes. Let Σ denote all the primes which appear as torsion in the
homology of M and Γ denote the primes in Σ together with the finite primes which appear as
torsion in π2s−1(M), and so that the generators of H≤d−1 lie in the image of the RΓ-Hurewicz
homomorphism. Let φ denote [id1, id1] + [id2, id2] or [id1, id2] accordingly as H∗(M;Q) is
of type (a) or (b). We consider the following commutative diagram

S 2s−1
Γ

φ
��

��

S s
Γ
∨ S s

Γ

��

�� MΓ

��

S 2s−1
Q

φ
�� S s
Q
∨ S s

Q
�� MQ.

The composite in the bottom row is 0. The composite in the top row gives an element in
π2s−1(M) ⊗ RΓ which injects into π2s−1(M) ⊗Q by our choice of Γ. The class φ maps to 0 in
the latter group as proved above. It follows that the composite of the top row is 0 and thus
we obtain a map from the mapping cone

Cone(φ)Γ → MΓ

which is an isomorphism in cohomology with RΓ coefficients by the same argument as that
for Q. Thus we deduce that

MΓ � Cone(φ)Γ.

We summarize all the above computations and observations in the result below.

Theorem 3.10. Let M be a (n − 1)-connected d-manifold with d ≤ 3n − 2. Suppose that
the total rank of H∗(M;Q) is at most 4.
(i) If the rank is 2, then there is a finite set of primes Γ such that MΓ � S d

Γ
.

(ii) If the rank is 3, then there is a finite set of primes Γ such that MΓ � J2S d/2
Γ

.
(iii) If the rank is 4, then there is a finite set of primes Γ such that MΓ � (#2J2( d

2 ))Γ or
MΓ � (S k × S d−k)Γ.
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