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Abstract
We show that the Thurston seminorms of all finite covers of an aspherical 3-manifold deter-

mine whether it is a graph manifold, a mixed 3-manifold or hyperbolic.

1. Introduction

1. Introduction
Let N be a 3-manifold. (Here, and throughout the paper all 3-manifolds are understood to

be compact, orientable, connected, aspherical and with empty or toroidal boundary.) Given
a surface Σ with connected components Σ1, . . . ,Σk its complexity is defined to be

χ−(Σ) :=
k∑

i=1

max{−χ(Σi), 0}.

Given a 3-manifold N and φ ∈ H1(N;Z) the Thurston norm is defined as

xN(φ) := min{χ−(Σ) |Σ ⊂ N is a properly embedded surface, dual to φ}.
Thurston [20] showed that xN is a seminorm on H1(N;Z). It follows from standard argu-
ments that xN extends to a seminorm on H1(N;R). If N is hyperbolic, then N is in particular
atoroidal which implies easily that xN is a norm. On the other hand, the seminorm is de-
generate whenever there is a non-separating torus, e.g. if N = S 1 × Σ where Σ is a surface
of genus g ≥ 1. Given any seminorm x on a vector space V the set {v ∈ V | x(v) = 0} is a
subspace that we refer to as the kernel ker(x) of x.

In this paper we study to which degree the Thurston norm of all finite covers of a 3-
manifold determines the type of the JSJ-decomposition of the 3-manifold. Hereby we
distinguish the following three mutually exclusive types of JSJ-decompositions a prime 3-
manifold N can have:

(1) The 3-manifold N is hyperbolic.
(2) The 3-manifold N is a graph manifold, i.e. all its JSJ-components are Seifert fibered

spaces.
(3) Following [18] we say that N is mixed if it is if the JSJ-decomposition is non-trivial

and if it contains at least one hyperbolic JSJ-component.
This question is related to the general study of properties or invariants of a 3-manifold that
can be determined from its finite covers, see for example [5], [6], [16] [21], [23].

In order to state our first result we introduce a few more definitions. Given a 3-manifold
N we write
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b1(N) := dimR(H1(N;R)),
k(N) := dimR(ker(xN)),

r(N) :=
⎧⎪⎨⎪⎩ 0, if b1(N) = 0,

k(N)
b1(N) , if b1(N) > 0.

Furthermore we write

(N) := the class of all finite regular covers Ñ of N,

and

r̂(N) := sup
Ñ∈(N)

r(Ñ).

The following proposition is well-known to the experts.

Proposition 1.1. Let N be an aspherical 3-manifold with empty or toroidal boundary.
Then N is hyperbolic if and only if r̂(N) = 0.

Proof. If N is hyperbolic, then all its finite covers are hyperbolic, and as we pointed out
above, in this case the seminorm is always a norm. On the other hand, if N is not hyperbolic
and aspherical, then by standard arguments, see e.g. [4, (C.10)-(C.15)] there exists a finite
regular cover Ñ with a homologically essential torus. In particular r (Ñ) > 0. �

It is harder to distinguish graph manifolds from manifolds with a non-trivial JSJ-
decomposition that contain at least one hyperbolic JSJ-component. In order to distinguish
these two classes of 3-manifolds, we need to consider a wider class of finite coverings,
which we call subregular, since they correspond to subnormal subgroups of the fundamental
groups. We say that a covering f : N̂ → N is subregular if the covering f can be written as
a composition of coverings fi : Ni → Ni−1, i = 1, . . . , k with Nk = N̂ and N0 = N, such that
each fi is regular.

For a 3-manifold N we define:


sub(N) := the class of all finite subregular covers N̂ of N,
ρ (N) := inf

N̂∈ sub(N)
r (N̂),

ρ̂ (N) := sup
Ñ∈(N)

ρ (Ñ).

The following is the main result of this paper. It characterizes graph manifolds N in term
of the invariant ρ̂ (N). It also gives a characterization of manifolds with non vanishing sim-
plicial volume (i.e. with at least one hyperbolic JSJ-component). This characterization is
analogous to the one for hyperbolic manifolds in Proposition 1.1, but this time we use the
invariant ρ (N) instead of r (N).

Theorem 1.2. Let N be an aspherical 3-manifold with empty or toroidal boundary.

(1) If N is a graph manifold, then ρ̂ (N) = 1.
(2) If N is not a graph manifold, i.e. if N admits a hyperbolic piece in its JSJ-

decomposition, then ρ̂ (N) = 0.

The proof of Theorem 1.2 relies on the work of Agol [1, 2], Przytycki–Wise [18] and
Wise [24, 25, 26].
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The next corollary is a consequence of the combination of Proposition 1.1 and Theo-
rem 1.2:

Corollary 1.3. Let N be an aspherical 3-manifold with empty or toroidal boundary. Then
the Thurston norms of all finite subregular covers of N determine into which of the following
three categories N falls:

(1) graph manifold if and only if ρ̂ (N) = 1,
(2) mixed manifold if and only if r̂ (N) > ρ̂ (N) = 0,
(3) hyperbolic manifold if and only if r̂ (N) = 0.

Convention. Unless it says specifically otherwise, all 3-manifolds are assumed to be
compact, orientable, connected, and with empty or toroidal boundary. Furthermore all sur-
faces are assumed to be compact and orientable. Finally, all subsurfaces of a 3-manifold are
assumed to be properly embedded.

2. The calculation of ρ for graph manifolds

2. The calculation of ρ for graph manifolds
The following theorem immediately implies Theorem 1.2 (1).

Theorem 2.1. Let N be an aspherical graph manifold. Then given any ε > 0 there exists
a finite regular cover N̂ of N such that for any finite cover N of N̂ we have r (N) > 1 − ε.

The proof of Theorem 2.1 will require the remainder of this section. Given a compact
manifold X we write

c(X) := dimR (coker{H1(∂X;R)→ H1(X;R)}) .
On several occasions we will need the following lemma.

Lemma 2.2. Let p : X̃ → X be a finite covering of a manifold X. Then c(X̃) ≥ c(X).

Proof. We consider the following commutative diagram of exact sequences

H1(∂X̃;R)

p∗
��

�� H1(X̃;R)

p∗
��

�� coker{H1(∂X̃;R)→ H1(X̃;R)}
p∗

��

�� 0

H1(∂X;R) �� H1(X;R) �� coker{H1(∂X;R)→ H1(X;R)} �� 0.

For the left two vertical maps we also have the transfer maps p∗ going from the bottom to
the top. These maps have the property that the compositions p∗ ◦ p∗ are multiplication by
[X : X̃], in particular the transfer maps are injective. Furthermore, the transfer maps give
rise to a commutative diagram on the left. A straightforward diagram chase shows that the
right vertical map also has a transfer map p∗ such that the composition p∗ ◦ p∗ is injective.

�

The next lemma is an immediate consequence of the Künneth Theorem.

Lemma 2.3. For any surface Σ we have c(S 1 × Σ) = c(Σ).

We say that a graph manifold N is of product type if each JSJ-component Nv is a product
S 1 × Σv where Σv is a surface with χ(Σv) < 0 and with at least two boundary components.
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Proposition 2.4. Let N be a graph manifold that is not a Seifert fibered space and that is
not finitely covered by a torus bundle. Let C > 0. Then N is covered by a graph manifold N̂
of product type such that for each JSJ-component Nv of N̂ we have c(Nv) > C.

Proof. Let N be a graph manifold that is not a Seifert fibered space and that is not finitely
covered by a torus bundle. Let C > 0. By [3, Section 4.3] (see also [4, (C.10)] and [15])
there exists a finite cover N′ that is of product type.

Furthermore, by [3, Proposition 5.22] there exists a prime p ≥ C and a finite cover N′′ of
N′ such that for each JSJ-component N′′v = S 1 × Σ′′v the map H1(N′′v ;Fp) → H1(N′′;Fp) is
injective. We denote by N̂ the finite cover of N′′ that corresponds to the kernel of π1(N′′)→
H1(N′′;Z)→ H1(N′′;Fp). In light of Lemma 2.3 it suffices to prove the following claim.

Claim. Each JSJ-component of N̂ is of the form S 1×Σwhere Σ is a surface with c(Σ) > C.

By Proposition 1.9.2 and Theorem 1.9.3 of [4] the JSJ-decomposition of N̂ is the pull-
back of the JSJ-decomposition of N′′. It follows from this fact and the above discussion
of the chosen group homomorphism that each JSJ-component of N̂ is the finite cover of a
manifold of the form S 1×Σ, where Σ is a surface with at least two boundary components and
with χ(Σ) < 0, and where we consider the cover corresponding to the kernel of the group
homomorphism π1(S 1 × Σ) → H1(S 1 × Σ;Fp). Note that this cover is of the form S 1 × Σ̂
where Σ̂ is the finite cover of Σ corresponding to the kernel of the group homomorphism
π1(Σ)→ H1(Σ;Fp). We write d = |H1(Σ;Fp)|. Since χ(Σ) < 0 we have d ≥ p2. We make the
following observations:

(1) By definition of ‘product type’ the surface Σ has at least two boundary components.
It follows that every boundary component of Σ has image of order precisely p in
H1(Σ;Fp). Therefore

b0(∂Σ̂) =
d
p
· b0(∂Σ).

(2) By the multiplicativity of the Euler characteristic we have

b1(̂Σ) − 1 = d · (b1(Σ) − 1).

(3) For any surface Σ we have

b0(∂Σ) = b1(∂Σ) ≤ b1(Σ) + 1.

We now obtain that

c(̂Σ) = dimR
(

coker{H1(∂Σ̂;R)→ H1(̂Σ;R)}
)

≥ b1(̂Σ) − b1(∂Σ̂)
≥ d(b1(Σ) − 1) + 1 − b0(∂Σ̂)
≥ d(b1(Σ) − 1) + 1 − d

p (b1(Σ) + 1)
= d(b1(Σ) − 1) + 1 − d

p (b1(Σ) − 1) − 2d
p

≥ −(d − d
p )χ(Σ)

≥ d − d
p .

Hereby the first equality is given by definition, the following inequality is obvious, the next
inequality is given by (2) and the fact that the boundary components of a surface are circles,
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the following equality stems from (1) and (3), the next equality is purely algebraic, the
following inequality is a consequence of χ(Σ) = b0(Σ) − b1(Σ) and d ≥ p2, and the final
inequality comes from χ(Σ) ≤ −1.

Summarizing we have shown that c(̂Σ) ≥ d− d
p . But since d ≥ p2 we see that the last term

is at least p ≥ C. Thus we have shown that c(̂Σ) ≥ C. �

For the record we also mention the following elementary lemma.

Lemma 2.5. If f : N̂ → N is a finite covering of a 3-manifold, then there exists a finite
regular covering g : N → N that factors through f .

We are now in a position to prove Theorem 2.1.
Proof of Theorem 2.1. Let N be an aspherical graph manifold and let ε > 0.
If N is covered by a torus bundle, then there exists a finite regular cover Ñ with vanishing

Thurston norm and with b1(Ñ) ≥ 1. In particular there exists a finite regular cover Ñ with
r (Ñ) = 1.

If N is Seifert fibered, then there exists a finite regular cover Ñ that is an S 1-bundle over
a surface Σ. (See [3, Section 4.3] and [15] for details.) Since N is aspherical we know that Σ
is not a sphere. The Thurston norm evidently vanishes if Σ is a disk, or if it is an annulus, or
if it is a torus, i.e. in these cases we have r (Ñ) = 1. Thus we can now suppose that χ(Σ) < 0.

If Ñ is a non-trivial S 1-bundle over Σ, then Σ is closed and it follows from χ(Σ) < 0, that
b1(Ñ) ≥ 1. Furthermore it is straightforward to see that all homology classes are represented
by tori, thus k(Ñ) = b1(Ñ) and we see that r (Ñ) = 1.

On the other hand, if Ñ is a trivial S 1-bundle over Σ, then Ñ = S 1 × Σ. In that case it is
well-known that k(S 1 × Σ) = b1(Σ). Since χ(Σ) < 0 there exists a cover S 1 × Σ of S 1 × Σ
with r (S 1 × Σ) > 1− ε. Furthermore, using Lemma 2.5 we can arrange that S 1 × Σ is in fact
a regular cover of N.

For the remainder of the proof we can now assume that N is neither covered by a torus
bundle nor is it Seifert fibered. It follows from Proposition 2.4 and Lemmas 2.2 and 2.5
that there exists a finite regular cover N̂ of N such that N̂ is of product type and such such
that for each JSJ-component Nv of N̂ we have c(Nv) > 1

ε
. Now let N be a finite cover of N̂.

As above, the JSJ-decomposition of N is induced by the JSJ-decomposition of N̂. It is thus
again of product type.

We denote the JSJ-components of N by Nv = S 1 × Σv, v ∈ V . It follows from Lemma 2.2
and from the above that for each JSJ-component Nv we have c(Nv) > 1

ε
. For each v we

denote by fv ∈ H1(N;Z) the element determined by the S 1-factor.
It follows from [8, Proposition 3.5] and the standard calculation of the Thurston norm for

products S 1 × Σ that for any φ ∈ H1(N;R) the Thurston norm is given by

xN(φ) =
∑
v∈V
| φ( fv) | · χ−(Σv).

In particular, the Thurston norm vanishes if φ vanishes on all elements fv, v ∈ V . We thus
see that

k(N) ≥ b1(N) − |V |.
On the other hand, it follows from the Mayer–Vietoris sequence corresponding to the de-
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composition of N along the JSJ-tori into the JSJ-components that

b1(N) ≥
∑
v∈V

dimR
(

coker{H1(∂Nv;R)→ H1(Nv;R)}) > 1
ε
· |V |.

Putting the last two inequalities together we see that

1 − r (N) ≤ b1(N) − k(N)

b1(N)
≤ |V |1

ε
|V | = ε.

�

3. The calculation of ρ for non-graph manifolds

3. The calculation of ρ for non-graph manifolds
The goal of this section is to prove the following theorem, which together with Theo-

rem 2.1 implies Theorem 1.2, since the property of being aspherical and not being a graph
manifold is preserved by going to finite covers.

Theorem 3.1. Let N be an aspherical 3-manifold with empty or toroidal boundary that
is not a graph manifold. Then given any ε > 0, there exists a finite subregular cover N of N
such that r (N) < ε. In particular ρ (N) = 0.

We introduce the following definitions:
(1) Let N be a 3-manifold. An integral class φ ∈ H1(N;Z) = Hom(π1(N),Z) is called

fibered if there exists a fibration p : N → S 1 with φ = p∗ : π1(N) → Z. We say N is
fibered if N admits a fibered class.

(2) We say that a homomorphism φ : π → Z is large if φ is non-trivial and if it factors
through an epimorphism from π onto a non-cyclic free group.

In the following proofs we will several times make use of the followings facts:
(A) If p : M̃ → M is a finite cover and φ ∈ H1(M;Z) is a fibered class, then p∗φ ∈

H1(M̃;Z) is also fibered. In particular, if M is fibered, then M̃ is also fibered.
(B) If p : M̃ → M is a finite cover and φ : π1(M) → Z is large, then the composition

φ ◦ p∗ : π1(M̃)→ Z is also large.
Here the first statement is obvious and the second statement follows from the fact that any
finite-index subgroup of a non-cyclic free group is again a non-cyclic free group.

One key ingredient in the proof of Theorem 3.1 is the Virtual Fibering theorem for non-
graph manifolds that is due to Agol [1, 2], Przytycki–Wise [18] and Wise [24, 25, 26]. We
refer to [4] for precise references. (See also [11, 13] and [9] for alternative proofs.)

Theorem 3.2 (Virtual Fibering Theorem). Any aspherical 3-manifold that is not a graph
manifold admits a finite regular cover that is fibered.

Before we continue we want to clarify our language for the JSJ-decomposition. Let N be
an aspherical 3-manifold.

(1) We refer to the collection of the JSJ-tori together with the boundary tori as the
characteristic tori of N.

(2) Given an aspherical 3-manifold N with boundary tori S 1, . . . , S k and JSJ-tori T1, . . . ,

Tl we pick disjoint tubular neighborhoods S i × [−1, 0], i = 1, . . . , k and Ti × [−1, 1],
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i = 1, . . . , l and we refer to the components of

N \ k⋃
i=1

S i × (− 1
2 , 0] \ l⋃

i=1
Ti × (− 1

2 ,
1
2 )

as the JSJ-components of N. In particular, the complement of the union of the JSJ-
components consists of tubular neighborhoods of all the characteristic tori.

On two occasions we will make use of the following lemma.

Lemma 3.3. Let N be a 3-manifold and let Nv be a JSJ-component of N. If Ñv is a finite
cover of Nv, then there exists a finite regular covering p : N′ → N such that each component
of p−1(Nv) is a finite covering of Ñv.

For closed 3-manifolds this is a result of Wilton–Zalesskii [22, Theorem A]. The case of
3-manifolds with non-trivial boundary can easily be reduced to the closed case (see e.g. [4,
(C.35)] for details).

We continue with the following lemma.

Lemma 3.4. Let N be a 3-manifold that is not a graph manifold. Then N admits a finite
regular cover N′ such that there exists a hyperbolic JSJ-component N′h with c(N′h) > 0.

Proof. Let Nh be a a hyperbolic JSJ-component of N. It follows from the work of Agol [2]
and Wise [24, 25, 26] (see also [4, Flowchart 4] for details) that π1(Nh) is large, i.e. π1(Nh)
admits a finite index subgroup that surjects onto a non-cyclic free subgroup. This implies,
see e.g. [4, (C.17)], that Nh admits a finite-index cover Ñh with c(Ñh) > 0. Thus the lemma
is an immediate consequence of Lemmas 2.2 and 3.3. �

We also have the following lemma which might be of independent interest.

Lemma 3.5. Let N be a 3-manifold and let φ ∈ H1(N;Z) be a non-trivial non-fibered
class. Then there exists a finite regular covering p : N′ → N such that the composition
φ ◦ p∗ : π1(N′)→ Z is large.

The proof of the lemma is closely related to the proof of the main theorems of [10] and
of [7] and to [17, Proof of Theorem 3.2.4].

Proof. We start out with a simple observation. Let Σ be a surface (not necessarily con-
nected) in a 3-manifold dual to a class ψ ∈ H1(M;Z) = Hom(π1(M),Z). We denote by Γ(Σ)
the graph whose vertices are precisely the components of M cut along Σ and whose edges
are the components of Σ with the obvious maps from the edges to the vertices. Then the map
ψ : π1(M)→ Z factors through the canonical epimorphism π1(M)→ π1(Γ(Σ)).

Now we turn to the proof of the lemma. It is clear that it suffices to prove the lemma
for primitive classes. We pick a Thurston norm minimizing surface Σ dual to φ that has the
minimal number of components among all Thurston norm minimizing surfaces dual to φ.
In particular Σ has no components that are separating. It follows easily that χ(Γ(Σ)) ≤ 0. If
χ(Γ(Σ)) < 0, then we are done by the above observation.

Now suppose that χ(Γ(Σ)) = 0. Since φ is primitive and since Σ has the minimal number
of components it follows from the argument on [7, p. 73] that Σ is connected. By Przytycki–
Wise [19, Theorem 1.1] the subgroup π1(Σ) ⊂ π1(M) is separable, i.e. given any g � π1(Σ)
there exists a homomorphism α : π1(M) → G onto a finite group such that α(g) � α(π1(Σ)).
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Since Σ is not a fiber there exists by [14, Theorem 10.5] a g ∈ π1(M \ Σ × (0, 1)) that does
not come from π1(Σ × {0}). It now follows from a standard argument, see e.g. [4, (C.15)] or
[17, Proof of Theorem 3.2.4], that applying subgroup separability to this g allows to build
an epimorphism of π1(M) onto a free product with amalgamation of finite groups. The fact
that the target group is virtually a free group of rank two gives the desired statement. �

Lemma 3.6. Let N be a hyperbolic 3-manifold and let α, β ∈ H1(N;Z) be linearly inde-
pendent. Then there exist p, q ∈ Z \ {0} such that pα + qβ is not fibered.

Proof. We say that a rational class φ ∈ H1(N;Q) is fibered if some integral multiple
nφ ∈ H1(N;Z), n ∈ N is fibered. We denote by

B := {φ ∈ H1(N;Q) | xN(φ) ≤ 1}
the norm ball of the Thurston seminorm. Since xN is a seminorm the set B is convex and
non-degenerate, the latter meaning that it is not contained in a lower-dimensional subspace
of H1(N;Q). By assumption N is hyperbolic, this implies that the Thurston seminorm on
H1(N;Q) is in fact a norm, i.e. B is compact. Thurston [20] showed that B is a polyhedron
with rational vertices. Furthermore he showed that the set of fibered classes is given by the
union of cones on certain open top-dimensional faces of the polyhedron B.

Now we denote by V the subspace of H1(N;Q) spanned by α and β. By assumption V
is 2-dimensional. The intersection B ∩ V is a compact polytope in V with rational vertices.
Since the polytope B∩V is compact and non-degenerate it has at least three vertices. By the
aforementioned result of Thurston any class in the cone of any of the vertices is not fibered.
Since α and β are linearly independent and since there are at least three vertices, and since
the vertices are rational we can find non-zero p, q ∈ Z \ {0} such that pα+ qβ lies in the cone
of one of the vertices, in particular it is not fibered. �

In the following we will on several occasions make use of the following lemma which is
a straightforward consequence of Proposition 1.9.2 and Theorem 1.9.3 in [4].

Lemma 3.7. Let N be a prime 3-manifold and let Nh be a hyperbolic JSJ-component of
N. Then for each finite cover p : N′ → N all the components of p−1(Nh) are hyperbolic
JSJ-components of N′.

Lemma 3.8. Let N be a mixed 3-manifold. Then there exists a finite regular cover N′ of
N, a hyperbolic JSJ-component N′h and a class φ ∈ H1(N′;Z) such the restriction of φ to N′h
is non-fibered but such that the restriction of φ to N \ N′h is fibered.

Proof. By Theorem 3.2, Lemmas 2.5 and 3.4 and Observation (A) there exists a finite
regular cover N′ of N that admits a fibered class φ ∈ H1(N′;Z) and that admits a hyperbolic
JSJ-component N′h with the property that c(N′h) > 0. This implies that there exists a non-
trivial homomorphism ψh : H1(N′h;Z) → Z that is trivial on the image of any boundary
component of N′h. In particular ψh factors through H1(N′, ∂N′;Z). We denote the resulting
homomorphism

H1(N′;Z)→ H1(N′,N′ \ N′h;Z) � H1(N′h, ∂N′h;Z)
ψh−−→ Z

by ψ.
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We denote by φh the restriction of φ to N′h. The classes φh and ψh in H1(N′h;Z) are linearly
independent since the former, as a fibered class is non-trivial on each boundary component of
N′h whereas the latter is by construction trivial on each boundary component. By Lemma 3.6
there exist p, q ∈ Z\ {0} such that pφh+qψh is a non-fibered class in H1(N′h;Z). On the other
hand, the restriction of pφh + qψh to N \ N′h equals the restriction of pφh to N \ N′h. Since
p � 0 this is a fibered class. �

Lemma 3.9. Let N be a mixed 3-manifold. Then there exists a finite subregular cover
N′ of N, hyperbolic JSJ-components N′1, . . . ,N

′
k, k ≥ 1 of N′, and a homomorphism φ ∈

Hom(H1(N′;Z),Z) = H1(N′;Z) such that the restriction of φ to each N′i is large but such
that the restriction of φ to N′ \ (N′1 ∪ · · · ∪ N′k) is fibered.

Proof. In light of Lemma 3.8 we can without loss of generality assume that there exists a
hyperbolic JSJ-component Nh of N and a class φ ∈ H1(N′;Z) such the restriction of φ to Nh

is non-fibered but such that the restriction of φ to N \ Nh is fibered.
By Lemmas 3.5 and 3.3 and Observation (B) there exists a finite regular cover p : N′ → N

such that for one (and hence all) components N′1, . . . ,N
′
k of p−1(Nh) the map p◦φ : π1(N′i )→

π1(Nh)→ Z factors through an epimorphism onto a non-cyclic free group.
On the other hand it follows from Observation (A) that the restriction of p∗φ to

N′ \ (N′1 ∪ · · · ∪ N′k) = p−1(N \ Nh) is fibered. �

Let N be a 3-manifold. We have the following notations:
(1) Given φ ∈ H1(N;Z) = Hom(π1(N),Z) and n ∈ N we denote by φn : π1(N) → Zn

the homomorphism that is given by the composition of φ with the projection map
Z→ Zn.

(2) Given a homomorphism α : π1(N) → G we denote by Nα the corresponding cover.
If α is not surjective, then Nα consists of | coker(α)| copies of the finite cover of N
corresponding to ker(α).

We recall the following well-known lemma.

Lemma 3.10. Let N be a 3-manifold and let φ ∈ H1(N;Z) = Hom(π1(N),Z) be a fibered
class. Then for all but finitely many primes p we have

b1(Nφp) ≤ 3 + xN(φ).

Proof. Let φ be a fibered class. We write φ = dψ where ψ is a primitive class and d ∈ N.
It is well-known that ψ is again fibered with xN(φ) = dxN(ψ). We denote by S the fiber
of the surface bundle corresponding to ψ. Surthermore we denote by ϕ : π1(S ) → π1(S )
the corresponding monodromy. Also, given any automorphism γ of π1(S ) we denote by
Z �γ π1(S ) the corresponding semidirect product.

Now let n ∈ N. It is straightforward to see that

H1(Nψn ;Z) � H1(nZ �ϕ π1(S );Z)
� H1(Z �ϕn π1(S );Z) � Z ⊕ H1(S ;Z)/(ϕn − id).

It follows that

b1(Nψn) ≤ rankZ(Z ⊕ H1(S ;Z)/(ϕn − id)) ≤ 1 + b1(S ) ≤ 3 + xN(ψ).
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Now let p be a prime that is coprime to d. It follows that the map

π1(N)
d·ψ=φ−−−−→ dZ→ Zp

is surjective. In particular Nφp = Nψp , and we thus see from the above that

b1(Nφp) = b1(Nψp) ≤ 3 + xN(ψ) ≤ 3 + xN(φ).

�

The following is the last lemma that we will need for the proof of Theorem 3.1.

Lemma 3.11. Let N be a 3-manifold and let φ : π1(N) → Z be a large homomorphism
such that the restriction of φ to all boundary-components of N is non-trivial. Then for all
but finitely many primes p we have

c(Nφp) ≥ p − 1 − 2b0(∂N).

Proof. Let N be a 3-manifold and let φ : π1(N) → Z be a non-trivial homomorphism that
factors through an epimorphism α : π1(N) → F onto a non-cyclic free group F and such
that the restriction of φ to all boundary-components of N is non-trivial. By a slight abuse of
notation we denote the induced homomorphism F → Z by φ as well.

We denote the boundary components of N by T1, . . . , Tk. For each i ∈ {1, . . . , k} we define
di ∈ N by the condition that φ(π1(Ti)) = diZ. Similarly we define d by φ(π1(N)) = dZ. By
our hypothesis we know that d and all the di are non-zero.

Now let p be any prime that is coprime to d and to d1, . . . , dk. This choice of p im-
plies that the restriction of φp to each boundary component is surjective. Furthermore the
homomorphism φp : F → Zp is surjective. We deduce that

b1(Nφp) ≥ rank(ker(φp : F → Zp)) ≥ p − 1.

Since the restriction of φp to each boundary component is surjective we see that the induced
covering of each boundary component is connected. Put differently, Nφp has precisely k
boundary components, each of which is a torus. We conclude that

c(Nφp) = rank
(
coker{H1(∂Nφp ;Z)→ H1(Nφp ;Z)}

)
≥ b1(Nφp) − b1(∂Nφp) ≥ p − 1 − 2b0(∂N).

�

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. Let N be an aspherical 3-manifold that is not a graph manifold.

We need to show that given any ε > 0, there exists a finite subregular cover N of N such that
r (N) < ε.

So let N be an aspherical 3-manifold that is not a graph manifold and let ε > 0. If N is
hyperbolic then it follows from Proposition 1.1 that already r (N) = 0. Thus henceforth we
can restrict ourselves to the case that N is not hyperbolic, i.e. N is a mixed manifold.

By Lemma 3.9 we can without loss of generality assume that there exists k ≥ 1 hyperbolic
JSJ-components N1, . . . ,Nk of N and a homomorphism φ ∈ H1(N;Z) = Hom(H1(N;Z),Z)
such the restriction of φ to each Ni, i = 1, . . . , k is large but such that the restriction of φ to
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M := N \ (N1 ∪ · · · ∪ Nk) is fibered.
By our definition of JSJ-components we see that M contains all characteristic tori of

N. Since φ|M is fibered it follows from [8, Section 4] that the restriction of φ to a tubular
neighborhood of each characteristic torus is a fibered class. It follows in particular that the
restriction of φ to each characteristic torus is non-zero. This in turn implies that for almost
all primes p the restriction of φp to each characteristic torus is an epimorphism.

We write C := 3 + xM(φ|M). We denote by j the number of JSJ-tori of N and we denote
by b the number of boundary tori of N. By the above and by Lemmas 3.10 and 3.11 there
exists a prime p such that the covering map f : N → N corresponding to the homomorphism
φp : π1(N)→ Zp has the following properties:

(1) The restriction of φp to each characteristic torus and to each JSJ-component is an
epimorphism. In particular the preimages of the JSJ-tori and the JSJ-components
under f are connected.

(2) For each i ∈ {1, . . . , k} we have c( f −1(Ni)) >
C+6 j+2b

kε .
(3) We have b1( f −1(M)) ≤ C.

We claim that N has the desired property.
It follows from the Mayer–Vietoris sequence applied to the decomposition of N along the

j tori that are given by the preimages of the JSJ-tori of N and from (3) that

k∑
i=1

c( f −1(Ni)) ≤ b1(N) ≤ C + 2 j +
k∑

i=1

b1( f −1(Ni)).

The union of the f −1(Ni), i = 1, . . . , k has at most 2 j+ b boundary tori. It follows easily that

k∑
i=1

b1( f −1(Ni)) ≤ 4 j + 2b +
k∑

i=1

c( f −1(Ni)).

Putting the above two inequalities together we obtain that

k∑
i=1

c( f −1(Ni)) ≤ b1(N) ≤ C + 6 j + 2b +
k∑

i=1

c( f −1(Ni)).

On the other hand, it follows from the same Mayer–Vietoris sequence together with the fact
that the Thurston seminorm is in fact a norm on hyperbolic 3-manifolds that

k(N) ≤ b1(N) −
k∑

i=1

c( f −1(Ni)).

The combination of the last two inequalities together with (2) shows that

r (N) =
k(N)

b1(N)
≤ C + 6 j + 2b∑k

i=1 c( f −1(Ni))
< ε.

�
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