ON RAMIFIED TORSION POINTS ON A CURVE WITH STABLE REDUCTION OVER AN ABSOLUTELY UNRAMIFIED BASE

Yuichiro HOSHI

(Received January 21, 2016, revised September 28, 2016)

Abstract

Let p be an odd prime number, W an absolutely unramified p-adically complete discrete valuation ring with algebraically closed residue field, and X a curve of genus at least two over the field of fractions K of W. In the present paper, we study, under the assumption that X has stable reduction over W, torsion points on X, i.e., torsion points of the Jacobian variety J of X which lie on the image of the Albanese embedding $X \hookrightarrow J$ with respect to a K-rational point of X. A consequence of the main result of the present paper is that if, moreover, J has good reduction over W, then every torsion point on X is K-rational after multiplying p. This result is closely related to a conjecture of R. Coleman concerning the ramification of torsion points. For instance, this result leads us to a solution of the conjecture in the case where a given curve is hyperelliptic and of genus at least p.

Contents

Introduction. 767
0. Notations and Conventions . 770

1. Level and Ramification of Finite Flat Commutative Group Schemes 771
2. Galois Modules of Type S . 775
3. Ramified Torsion Points on Curves . 781

References . 787

Introduction

Throughout the present paper, let p be an odd prime number and k an algebraically closed field of characteristic p. Write $W \stackrel{\text { def }}{=} W(k)$ for the ring of Witt vectors with coefficients in k and K for the field of fractions of W. Let \bar{K} be an algebraic closure of K. Write $K^{\mathrm{tm}} \subseteq \bar{K}$ for the maximal tamely ramified extension of K in \bar{K} and $\Gamma_{K} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{K} / K)$ for the absolute Galois group of K determined by the algebraic closure \bar{K}. Let $g \geq 2$ be an integer and X a curve over K (i.e., a scheme of dimension one which is projective, smooth, and geometrically connected over K) of genus g. Write J for the Jacobian variety of X. In the present paper, suppose that
the curve X over K has stable reduction over W, which thus implies that the abelian variety J over K has semistable reduction over W.
Write, moreover, $X_{\bar{K}} \stackrel{\text { def }}{=} X \times_{K} \bar{K}, J_{\bar{K}} \stackrel{\text { def }}{=} J \times_{K} \bar{K}$, and $X_{\bar{K}}^{\mathrm{cl}}, J_{\bar{K}}^{\mathrm{cl}}$ for the sets of closed points of $X_{\bar{K}}, J_{\bar{K}}$, respectively. Thus, we have natural bijections $X_{\bar{K}}(\bar{K}) \xrightarrow{\sim} X_{\bar{K}}^{\mathrm{cl}}, J_{\bar{K}}(\bar{K}) \xrightarrow{\sim} J_{\bar{K}}^{\mathrm{cl}}$, which thus determine natural actions of Γ_{K} on $X_{\bar{K}}^{\mathrm{cl}}, J_{\bar{K}}^{\mathrm{cl}}$, respectively.

Let $x_{0} \in X(K)$ be a K-rational point of X. Then we have the Albanese embedding $X \hookrightarrow J$ with respect to $x_{0} \in X(K)$, i.e., the closed immersion over K obtained by, roughly speaking, mapping " x " to the invertible sheaf corresponding to the divisor " $[x]-\left[x_{0}\right]$ " - where we write " $[-]$ " for the prime divisor determined by " $(-)$ " - of degree zero. By this embedding, we have an injection

$$
\varphi_{x_{0}}: X_{\bar{K}}^{\mathrm{cl}} \hookrightarrow J_{\bar{K}}^{\mathrm{cl}} .
$$

In the present paper, we study a torsion point on $X_{\bar{K}}$, i.e., a closed point of $X_{\bar{K}}$ whose image, via $\varphi_{x_{0}}$ for some $x_{0} \in X(K)$, is a torsion point in $J_{\bar{K}}^{\mathrm{cl}}$. In particular, in the present paper, we study a ramified torsion point on $X_{\bar{K}}$, i.e., a non- K-rational torsion point on $X_{\bar{K}}$ (cf. Definition 3.5, (i)).

In Introduction, let us consider the following situation:
$(\ddagger): \quad$ Let $x_{0} \in X(K)$ be a K-rational point of X. By means of the above injection $\varphi_{x_{0}}: X_{\bar{K}}^{\mathrm{cl}} \hookrightarrow J_{\bar{K}}^{\mathrm{cl}}$, we regard $X_{\bar{K}}^{\mathrm{cl}}$ as a subset of $J_{\bar{K}}^{\mathrm{cl}}$. Let $x \in X_{\bar{K}}^{\mathrm{cl}}\left(\subseteq J_{\bar{K}}^{\mathrm{cl}}\right)$ be a closed point of $X_{\bar{K}}$. Suppose that $x \in J_{\bar{K}}^{\mathrm{cl}}$ is torsion.
Let us first recall that, in [4], R. Coleman stated a conjecture concerning the ramification of torsion points on a curve which satisfies certain conditions (cf. [4, Conjecture B]). The following is the statement of a slightly stronger version of the conjecture. Note that the original conjecture of Coleman is the following conjecture in the case where the pair (X, x_{0}) can be descended to a subfield of K which is finite over the field of rational numbers.

Conjecture (Coleman). In the situation (\ddagger), suppose, moreover, that the following two conditions are satisfied:
(1) The inequality $p \geq 5$ holds.
(2) The curve X, hence also the abelian variety J, over K has good reduction over W.

Then $x \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational. In other words, there is no ramified torsion point on $X_{\bar{K}}$.
Moreover, Coleman essentially proved the following result concerning the above conjecture (cf. [4, Corollary 20.2]):

Theorem (Coleman). In the situation of Conjecture, suppose, moreover, that one of the following three conditions is satisfied:
(a) The special fiber of the good model of J is an ordinary abelian variety over k.
(b) The special fiber of the good model of J is isomorphic to the direct product of supersingular elliptic curves over k.
(c) The inequality $2 g<p$ holds.

Then $x \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational.

Next, let us recall that A. Tamagawa studied, in [13], the ramification of torsion points in the case where the abelian variety-part of the special fiber of the semistable model of J is an ordinary abelian variety. Tamagawa proved, for instance, the following result (cf. [13, Theorem 0.1]):

Theorem (Tamagawa). In the situation (\ddagger), suppose, moreover, that the following three conditions are satisfied:
(1) The inequality $p \geq 29$ holds.
(2) The abelian variety-part of the special fiber of the semistable model of J is an ordinary abelian variety over k.
(3) The curve X over K is not hyperelliptic.

Then $x \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational.
In the present paper, by combining the idea of Tamagawa that was applied in [13] with the study of the Galois representations associated to finite flat commutative group schemes, we prove the following result (cf. Theorem 3.4). This result concerns the ramification of torsion points after multiplying p without any assumption on the reduction of J.

Theorem A. In the situation (\ddagger), the point $p \cdot x \in J_{\bar{K}}^{\mathrm{cl}}$ is K^{tm}-rational.
In the case where J has good reduction over W, we obtain the following result (cf. Theorem 3.4, (ii)):

Theorem B. In the situation (\ddagger), if, moreover, the abelian variety J over K has good reduction over W, then $p \cdot x \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational.

In $\S 3$ of the present paper, by means of Theorems A and B, we study the geometry of curves which admit ramified torsion points. As one of consequences, we prove the following nonexistence of ramified torsion points (cf. Corollary 3.6):

Theorem C. In the situation (\ddagger), suppose that the following two conditions are satisfied:
(1) The inequality $g \geq p$ holds.
(2) The abelian variety J over K has good reduction over W.

Suppose, moreover, that one of the following three conditions is satisfied:
(a) The curve $X_{\bar{K}}$ over \bar{K} is hyperelliptic (i.e., of gonality 2).
(b) The curve $X_{\bar{K}}$ over \bar{K} is of gonality $>p$.
(c) Every Weierstrass point of $X_{\bar{K}}$ is K-rational.

Then $x \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational. In other words, there is no ramified torsion point on $X_{\bar{K}}$.
Note that Theorem C yields some conditional results of the above conjecture of Coleman. Indeed, by, for instance, Theorem C in the case where the condition (a) is satisfied, we conclude that the conjecture of Coleman holds if X is hyperelliptic and of genus $\geq p$ (cf. also Remark 3.6.1).

The present paper is organized as follows: In §1, we consider the Galois representations associated to finite flat commutative group schemes. In particular, we discuss the relationship between the level of a finite flat commutative group scheme over W (cf. Definition 1.2, (i)) and the ramification of the Galois representation associated to the finite flat commutative group scheme (cf. Proposition 1.8, Lemma 1.9). In §2, we consider a Galois module of type S (cf. Definition 2.3, (i)), i.e., a Γ_{K}-module which is isomorphic to a finite Γ_{K}-submodule of the Γ_{K}-module obtained by considering torsion points of an abelian variety with semistable model over W. In particular, we prove the triviality of the Galois action on a subquotient of a Galois module of type S which satisfies a technical condition (cf. Lemma 2.7). In $\S 3$, we prove the main result of the present paper (cf. Theorem 3.4), which is closely related to the above conjecture due to Coleman (cf. Remark 3.4.1). Moreover, by means of the main result, we study the geometry of curves which admit ramified torsion points (cf. Corollaries 3.6, 3.8 and 3.9).

0. Notations and Conventions

Groups. Let G be a group and S a set on which G acts. Then we shall write $S^{G} \subseteq S$ for the subset of S of G-invariants, $G^{S} \subseteq G$ for the (necessarily normal and uniquely determined) maximal subgroup of G which acts on S trivially, and $G[S] \stackrel{\text { def }}{=} G / G^{S}$. Thus, the action of G on S factors through the natural surjection $G \rightarrow G^{S}$, and, moreover, the resulting action of G^{S} on S is faithful.

Modules. Let M be a module, $n \geq 0$ an integer, and l a prime number. Then we shall write $\operatorname{Aut}(M)$ for the group of automorphisms of the module $M, M[n] \subseteq M$ for the submodule of M obtained by forming the kernel of the endomorphism of M given by multiplication by n, and $M_{l} \stackrel{\text { def }}{=} \bigcup_{i \geq 1} M\left[i^{i}\right] \subseteq M$. If, moreover, M is finite, then we shall write $M_{\neq l} \subseteq M$ for the submodule of M generated by elements of the $M_{l^{\prime}}$'s, where l^{\prime} ranges over the prime numbers such that $l^{\prime} \neq l$. Thus, if M is finite, then we have a natural decomposition $M=M_{l} \oplus M_{\neq l}$.

Let G be a group and M a G-module. Then we shall say that an element $x \in M$ of M is a weak G-invariant if, for every $\gamma, \delta \in G$, the following holds: If $(1-\gamma)^{2}(\delta \cdot x)=0$, then $(1-\gamma)(\delta \cdot x)=0$. (Thus, if $x \in M$ is a G-invariant, then $x \in M$ is a weak G-invariant.)

Varieties. Let k be a field. Then we shall say that a scheme over k is a variety over k if the scheme is separated and of finite type over k.

Let V be a variety over k and \bar{k} an algebraic closure of k. Then we shall write $V_{\bar{k}} \stackrel{\text { def }}{=} V x_{k} \bar{k}$ for the variety over \bar{k} determined by V and $V_{\bar{k}}^{\mathrm{cl}}$ for the set of closed points of $V_{\bar{k}}$. Thus, if k is perfect, then we have a natural bijection $V_{\bar{k}}(\bar{k}) \xrightarrow{\sim} V_{\bar{k}}^{\mathrm{cl}}$, which thus determines a natural action of $\operatorname{Gal}(\bar{k} / k)$ on $V_{\bar{k}}^{\mathrm{cl}}$; moreover, the natural injection $V(k) \hookrightarrow V_{\bar{k}}(\bar{k})$ from the set $V(k)$ of k-rational points of V determines a bijection $V(k) \xrightarrow{\sim}\left(V_{\bar{k}}^{\mathrm{cl}}\right)^{\mathrm{Gal}(\bar{k} / k)}$.

Curves. Let k be a field. Then we shall say that a scheme over k is a curve over k if the scheme is of dimension one and, moreover, projective, smooth, and geometrically connected over k. Thus, a curve over k is a variety over k.

Let C be a curve over k and $g \geq 0$ an integer. We shall say that C is of genus g if $H^{1}\left(C, \mathcal{O}_{C}\right)$
is of dimension g over k. We shall say that C is of gonality g if the minimum among the degrees of finite morphisms from C to curves of genus zero over k is equal to g.

Suppose that the curve C is of genus $g \geq 2$, and that the field k is of characteristic zero. Let \bar{k} be an algebraic closure of $k, c \in C_{\bar{k}}^{\mathrm{cl}}$, and $n \geq 0$ an integer. We shall say that the integer n is a Weierstrass non-gap at $c \in C_{\bar{k}}^{\mathrm{cl}}$ if there exists a section of $\mathcal{O}_{C_{\bar{k}}}$ on $C_{\bar{k}} \backslash\{c\}$ of order $-n$ at c (i.e., the integer n contains the Weierstrass monoid of $C_{\bar{k}}$ at $c \in C_{\bar{k}}^{\mathrm{cl}}$). We shall say that $c \in C_{\bar{k}}^{\mathrm{cl}}$ is a Weierstrass point of $C_{\bar{k}}$ if there exists an integer $1 \leq i \leq g$ such that i is a Weierstrass non-gap at $c \in C_{\bar{k}}^{\mathrm{cl}}$. Note that, as is well-known (cf., e.g., [1, Chapter I, Exercises E-8, (ii), and E-9]), if we write N for the number of Weierstrass points of $C_{\bar{k}}$, then the inequalities $2 g+2 \leq N \leq g^{3}-g$ hold. We shall say that the pair (C, c) is exceptional (cf. [13], Definition in the discussion entitled "Weierstrass points on hyperelliptic curves") if 2 is a Weierstrass non-gap at $c \in C_{\bar{k}}^{\text {cl }}$ (i.e., $C_{\bar{k}}$ is hyperelliptic, and the hyperelliptic involution of $C_{\bar{k}}$ is ramified at $c \in C_{\bar{k}}^{\mathrm{cl}}$).

1. Level and Ramification of Finite Flat Commutative Group Schemes

In the present §1, we consider the Galois representations associated to finite flat commutative group schemes. In particular, we discuss the relationship between the level of a finite flat commutative group scheme (cf. Definition 1.2, (i), below) and the ramification of the Galois representation associated to the finite flat commutative group scheme (cf. Proposition 1.8, Lemma 1.9, below).

In the present $\S 1$, let p be an odd prime number and k an algebraically closed field of characteristic p. Write $W \stackrel{\text { def }}{=} W(k)$ for the ring of Witt vectors with coefficients in k and K for the field of fractions of W. Let \bar{K} be an algebraic closure of K and $L \subseteq \bar{K}$ a(n) (possibly infinite) algebraic extension of K. Write $\Gamma_{L} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{K} / L)$ for the absolute Galois group of L determined by the algebraic closure \bar{K}, v_{0} for the (uniquely determined) p-adic valuation on \bar{K} such that $v_{0}(p)=1$, and $\bar{W} \subseteq \bar{K}, V \subseteq L$ for the rings of integers of \bar{K}, L, respectively.

Defintition 1.1. Suppose that $[L: K]<\infty$.
(i) Let M be a V-module which is annihilated by a power of p. Then we shall write

$$
\operatorname{lv}_{V}(M) \stackrel{\text { def }}{=} v_{0}\left(\operatorname{Ann}_{V}(M)\right)
$$

(ii) We shall write

$$
\operatorname{lv}^{\Omega}(L / K) \stackrel{\text { def }}{=} \operatorname{lv}_{V}\left(\Omega_{V / W}^{1}\right) .
$$

Thus, it follows that

$$
\operatorname{lv}^{\Omega}(L / K)=v_{0}\left(\delta_{L / K}\right),
$$

where we write $\delta_{L / K}$ for the different of the finite extension L / K.
In the remainder of the present $\S 1$, let G be a finite flat commutative group scheme over W which is annihilated by a power of p. Thus, we have an exact sequence of finite flat commutative group schemes over W

$$
0 \longrightarrow G^{\circ} \longrightarrow G \longrightarrow G^{e ́ t} \longrightarrow 0
$$

where $G^{\circ} \subseteq G$ is connected, and $G^{\text {ét }}$ is étale over W. Write $K_{G} \subseteq \bar{K}$ for the (necessarily finite Galois) extension of K corresponding to the kernel of the natural action of Γ_{K} on $G(\bar{K})$, i.e., the finite Galois extension of K corresponding to the quotient $\Gamma_{K} \rightarrow \Gamma_{K}[G(\bar{K})]$ - and $W_{G} \subseteq K_{G}$ for the ring of integers of K_{G}.

Definition 1.2.
(i) We shall write

$$
\operatorname{lv}(G) \stackrel{\text { def }}{=} \operatorname{lv}_{W}\left(G(\bar{K}) \otimes_{\mathbb{Z}_{p}} W\right) \quad(\in \mathbb{Z})
$$

and refer to $\operatorname{lv}(G)$ as the level of G.
(ii) Let M be a W-module. Then we shall write

$$
t_{G}^{*}(M) \stackrel{\text { def }}{=}\left(e_{G}^{*} \Omega_{G / W}^{1}\right) \otimes_{W} M
$$

where we write e_{G} for the identity section of G / W - and

$$
t_{G}(M) \stackrel{\text { def }}{=} \operatorname{Hom}_{W}\left(t_{G}^{*}(W), M\right)
$$

We shall refer to $t_{G}^{*}(M)$ (respectively, $\left.t_{G}(M)\right)$ as the M-valued cotangent (respectively, tangent) space of G / W. Note that since G is étale over K, it follows that $t_{G}^{*}(M)$, hence also $t_{G}(M)$, is annihilated by a power of p.
(iii) We shall write

$$
1 v^{\Omega}(G) \stackrel{\operatorname{def}}{=} \operatorname{lv}_{W}\left(t_{G}^{*}(W)\right)
$$

(iv) Suppose that L is Galois over K, and that $K_{G} \subseteq L$. (So $\left.G(\bar{W})=G(V)\right)$. Then we shall define a homomorphism of \bar{W}-modules

$$
\operatorname{ev}_{L}: G(\bar{W}) \otimes_{\mathbb{Z}_{p}} \bar{W}=G(V) \otimes_{\mathbb{Z}_{p}} \bar{W} \longrightarrow t_{G}\left(\Omega_{V / W}^{1} \otimes_{V} \bar{W}\right)
$$

as follows (cf. [7, §4.7]): Let $x \in G(V)$ be a V-valued point of G. Then, by considering the operation of restricting differential forms on G over W to x, we obtain a homomorphism $t_{G}^{*}(W) \rightarrow \Omega_{V / W}^{1}$, hence also a homomorphism of W-modules

$$
e_{x}: t_{G}^{*}(W) \longrightarrow \Omega_{V / W}^{1} \otimes_{V} \bar{W}
$$

Thus, the assignment " $x \mapsto e_{x}$ " determines a map

$$
G(V) \longrightarrow t_{G}\left(\Omega_{V / W}^{1} \otimes_{V} \bar{W}\right)
$$

Now since (one verifies easily that) this map is a homomorphism of \mathbb{Z}_{p}-modules, this map determines the homomorphism ev_{L} as above.

Remark 1.2.1. Thus, by definition, we obtain that $\underline{t}_{G}^{*} \leq \operatorname{lv}^{\Omega}(G)$ and $\underline{t}_{G}^{*} \nless \operatorname{lv}^{\Omega}(G)$ (cf. [9, Definition 1.3, (ii)]). If, moreover, G is of p-rectangle-type (cf. [9, Definition 2.1, (ii)]), then $\operatorname{lv}(G)$ of Definition 1.2, (i), coincides with $\operatorname{lv}(G)$ of [9, Definition 2.1, (ii)].

Theorem 1.3 (Fontaine). The following hold:
(i) The \bar{W}-module $\operatorname{Coker}\left(\mathrm{ev}_{\bar{K}}\right)$ is annihilated by every element $a \in \bar{W}$ such that $v_{0}(a) \geq$ $\frac{1}{p-1}$.
(ii) The inequality

$$
\operatorname{lv}^{\Omega}\left(K_{G} / K\right)<\operatorname{lv}(G)+\frac{1}{p-1}
$$

holds.
Proof. Assertion (i) follows from [7, Corollaire to Théorème 3]. Assertion (ii) follows from [8, Corollaire to Théorème A].

Proposition 1.4. The inequality

$$
\operatorname{lv}^{\Omega}(G) \leq \operatorname{lv}^{\Omega}\left(K_{G} / K\right)+\frac{1}{p-1}
$$

holds.
Proof. Let us first observe that we have a commutative diagram of \bar{W}-modules

where the lower horizontal arrow is injective (cf., e.g., [7, Lemma 4]). Thus, it follows from Theorem 1.3, (i), that the \bar{W}-module

$$
\operatorname{Coker}\left(t_{G}\left(\Omega_{W_{G} / W}^{1} \otimes_{W_{G}} \bar{W}\right) \hookrightarrow t_{G}\left(\Omega_{\bar{W} / W}^{1}\right)\right)
$$

is annihilated by every element $a \in \bar{W}$ such that $v_{0}(a) \geq \frac{1}{p-1}$. In particular, we conclude that the \bar{W}-module $t_{G}\left(\Omega_{\bar{W} / W}^{1}\right)$ is annihilated by every element $b \in \bar{W}$ such that $v_{0}(b) \geq$ $\operatorname{lv}^{\Omega}\left(K_{G} / K\right)+\frac{1}{p-1}$. Thus, it follows immediately from [7, Corollaire 1, (1)], that $\mathrm{lv}^{\Omega}(G) \leq$ $\operatorname{lv}^{\Omega}\left(K_{G} / K\right)+\frac{1}{p-1}$, as desired. This completes the proof of Proposition 1.4.

Theorem 1.5 (Raynaud). Every homomorphism over K between the generic fibers (i.e., the results of base-changing via $W \hookrightarrow K$) of finite flat commutative group schemes over W uniquely extends to a homomorphism between the original finite flat commutative group schemes over W. Moreover, the kernel of the resulting homomorphism between the original finite flat commutative group schemes over W is flat over W.

Proof. This follows from [11, Corollaire 3.3.6, (1)].

Lemma 1.6. Let $n \geq 0$ be an integer. Write $G\left[p^{n}\right] \subseteq G$ for the finite flat commutative group scheme over W obtained by forming the kernel of the endomorphism of G given by multiplication by p^{n} (cf. Theorem 1.5). Then the exact sequence of finite flat commutative group schemes over W

$$
0 \longrightarrow G\left[p^{n}\right] \longrightarrow G \longrightarrow G / G\left[p^{n}\right] \longrightarrow 0
$$

determines a commutative diagram of W-modules

where the horizontal sequences are exact, and the vertical arrows are isomorphisms.
Proof. Let us observe that one verifies immediately that the exact sequence of finite flat commutative group schemes over W

$$
0 \longrightarrow G\left[p^{n}\right] \longrightarrow G \xrightarrow{p^{n}} G
$$

determines an exact sequence

$$
t_{G}^{*}(W) \xrightarrow{p^{n}} t_{G}^{*}(W) \longrightarrow t_{G\left[p^{n}\right]}^{*}(W) \longrightarrow 0,
$$

which thus determines an isomorphism

$$
t_{G}^{*}(W) \otimes_{W} W / p^{n} \xrightarrow{\sim} t_{G\left[p^{n}\right]}^{*}(W) .
$$

Thus, Lemma 1.6 follows from [9, Lemma 1.6]. This completes the proof of Lemma 1.6.

Proposition 1.7. The equality

$$
\operatorname{lv}^{\Omega}(G)=\operatorname{lv}\left(G^{\circ}\right)
$$

holds.
Proof. Write $n \stackrel{\text { def }}{=} \operatorname{lv}\left(G^{\circ}\right)$. Then it follows from a similar conclusion to the conclusion " $t_{G}^{*} \leq \operatorname{lv}(G)$ " of [9, Lemma 2.3] (cf. also Remark 1.2.1 of the present paper), that, to verify Proposition 1.7, it suffices to verify that $p^{n-1} \cdot t_{G}^{*}(W) \neq\{0\}$. To this end, assume that p^{n-1}. $t_{G}^{*}(W)=\{0\}$. Then it follows from Lemma 1.6 that $t_{G / G\left[p^{n-1}\right]}^{*}(W)=\{0\}$, which thus implies that $G / G\left[p^{n-1}\right]$ is étale over W. Thus, the composite $G^{\circ} \hookrightarrow G \rightarrow G / G\left[p^{n-1}\right]$ is trivial, i.e., $G^{\circ} \subseteq G\left[p^{n-1}\right]$ — which contradicts our assumption that $\operatorname{lv}\left(G^{\circ}\right)=n$. This completes the proof of Proposition 1.7.

Proposition 1.8. The inequalities

$$
\operatorname{lv}\left(G^{\circ}\right)-\frac{1}{p-1} \leq \operatorname{lv}^{\Omega}\left(K_{G} / K\right)<\operatorname{lv}(G)+\frac{1}{p-1}
$$

hold.
Proof. This follows from Theorem 1.3, (ii); Proposition 1.4, together with Proposition 1.7.

The following result is the main result of the present $\S 1$:

Lemma 1.9. Let H be a finite flat commutative group scheme over W which is annihilated by a power of p. Suppose that $K_{H} \subseteq K_{G}$ (cf. the notation introduced in the discussion preceding Definition 1.2). Then the inequality

$$
\operatorname{lv}\left(H^{\circ}\right) \leq \operatorname{lv}(G)
$$

holds.
Proof. It follows from Proposition 1.8, together with our assumption, that

$$
\operatorname{lv}\left(H^{\circ}\right)-\frac{1}{p-1} \leq \operatorname{lv}^{\Omega}\left(K_{H} / K\right) \leq \operatorname{lv}^{\Omega}\left(K_{G} / K\right)<\operatorname{lv}(G)+\frac{1}{p-1}
$$

Thus, since (we have assumed that) $p \geq 3$, we obtain that $\operatorname{lv}\left(H^{\circ}\right) \leq \operatorname{lv}(G)$. This completes the proof of Lemma 1.9.

Remark 1.9.1.

(i) One verifies immediately from Theorem 1.5 that the exact sequence $0 \rightarrow G^{\circ}(\bar{K}) \rightarrow$ $G(\bar{K}) \rightarrow G^{\text {et }}(\bar{K}) \rightarrow 0$ of (not Γ_{K}-modules but abstract) modules is split. One also verifies immediately that the action of $\Gamma_{K_{G^{\circ}}}\left(\supseteq \Gamma_{K_{G}}\right)$ on $G(\bar{K})$ determines and is determined by a homomorphism $\Gamma_{K_{G^{\circ}}} \rightarrow \operatorname{Hom}_{\mathbb{Z}_{p}}\left(G^{\text {ét }}(\bar{K}), G^{\circ}(\bar{K})\right)$. By means of these observations, one verifies easily that one may replace the respective " $\operatorname{lv}(G)$ " of the right-hand sides of the displays of Proposition 1.8 and Lemma 1.9 by " $\operatorname{lv}\left(G^{\circ}\right)$ ". We leave the routine details to the interested reader.
(ii) Let us recall that we have worked in a situation of absolute ramification index one, i.e., a situation where the base discrete valuation field is of absolute ramification index one. Now let us observe that Theorem 1.5 may be applied in a situation of absolute ramification index $<p-1$ (cf. [11, Corollaire 3.3.6, (1)]). In particular, even if we are in a situation of absolute ramification index $<p-1$, one may obtain a similar result to Proposition 1.8, as well as a similar result to Lemma 1.9. We leave the routine details to the interested reader.

2. Galois Modules of Type S

In the present §2, we consider a Galois module of type S (cf. Definition 2.3, (i), below), i.e., a Γ_{K}-module which is isomorphic to a finite Γ_{K}-submodule of the Γ_{K}-module obtained by considering torsion points of an abelian variety with semistable model over W. In particular, we prove the triviality of the Galois action on a subquotient of a Galois module of type S which satisfies a technical condition (cf. Lemma 2.7 below).

In the present $\S 2$, we maintain the notation introduced at the beginning of $\S 1$. Write, moreover, $K^{\mathrm{tm}} \subseteq \bar{K}$ for the maximal tamely ramified extension of K in \bar{K}.

Lemma 2.1. Let M be a finite module, $\Gamma \subseteq \operatorname{Aut}(M)$ a subgroup of $\operatorname{Aut}(M)$, and $x \in M$ an element of M. Write $x=x_{p}+x_{\neq p}$ for the representation of $x \in M$ with respect to the natural direct decomposition $M=M_{p} \oplus M_{\neq p}$ and $S_{x} \subseteq M$ for the subset of M consisting of the elements $y \in M$ which satisfy one of the following three conditions:
(1) There exist elements $\gamma_{1}, \gamma_{2} \in \Gamma$ of Γ and an integer $i \geq 0$ such that $y=p^{i}\left(\gamma_{1}-\gamma_{2}\right) x \in$ M.
(2) There exist elements $\gamma_{1}, \gamma_{2} \in \Gamma$ of Γ and an integer $i \geq 0$ such that $y=p^{i}\left(\gamma_{1}-\gamma_{2}\right) x_{p} \in$ M.
(3) There exist elements $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4} \in \Gamma$ of Γ and an integer $i \geq 0$ such that $y=$ $p^{i}\left(\gamma_{1}-\gamma_{2}\right)\left(\gamma_{3}-\gamma_{4}\right) x \in M$.
Note that one verifies immediately that the subset $S_{x} \subseteq M$, hence also the subset $S_{x}[p] \stackrel{\text { def }}{=}$ $S_{x} \cap M[p]$, of M is stable under the action of Γ on M. Suppose that following two conditions are satisfied:
(a) The element $x \in M$ is a weak Γ-invariant.
(b) For every $\gamma \in \Gamma$, the module $M_{\neq p}$ is annihilated by $(1-\gamma)^{2}$.

Then the following hold:
(i) The element x_{p} is contained in $M^{\Gamma^{S_{x}[p]}}$.
(ii) Suppose, moreover, that the following condition is satisfied:
(c) The Γ-module M is generated by $x \in M$.

Then $\Gamma^{S_{x}[p]}=\{1\}$.
Proof. To verify assertion (i), assume that $x_{p} \notin M^{\Gamma^{S_{x}[p]}}$. Write n for the smallest (necessarily positive) integer such that $p^{n} x_{p} \in M^{\Gamma_{x}[p]}$. Now since $p^{n-1} x_{p} \notin M^{\Gamma^{S_{x}[p]}}$, there exists a(n) (necessarily nontrivial) element $\gamma \in \Gamma^{S_{x}[p]}$ of $\Gamma^{S_{x}[p]}$ such that $p^{n-1}(1-\gamma) x_{p} \neq 0$. For $1 \leq i \leq n$, write

$$
y_{i} \stackrel{\text { def }}{=} p^{n-i}\left(1-\gamma^{p^{i-1}}\right) x_{p} \in M
$$

Now I claim that the following assertion holds:

Claim 2.1.A: The element y_{1} is contained in $S_{x}[p] \backslash\{0\}$.

Indeed, the fact that $y_{1}\left(=p^{n-1}(1-\gamma) x_{p}\right) \neq 0$ has already been verified. It follows from (2), together with the definition of y_{i}, that $y_{i} \in S_{x}$. Moreover, since $p^{n} x_{p} \in M^{\Gamma^{S_{x}[p]}}$, and $\gamma \in \Gamma^{S_{x}[p]}$, we obtain that $p y_{1}=p^{n}(1-\gamma) x_{p}=0$, i.e., that $y_{1} \in M[p]$. This completes the proof of Claim 2.1.A.

Next, I claim that the following assertion holds:
Claim 2.1.B: The element y_{i} coincides with the element y_{1} for every $1 \leq i \leq$ n.

We prove Claim 2.1.B by induction on i. Suppose that $y_{i}=y_{1}$ for $1 \leq i \leq n-1$. Then it follows from Claim 2.1.A, together with the induction hypothesis, that $p^{2} \cdot p^{n-i-1}(1-$ $\left.\gamma^{p^{i-1}}\right) x_{p}=p y_{i}=p y_{1}=0$, which thus implies that $p \cdot p^{n-i-1}\left(1-\gamma^{p^{i-1}}\right) x_{p} \in S_{x}[p]$ (cf. (2)). In particular, since $\gamma \in \Gamma^{S_{x}[p]}$, we obtain that

$$
\begin{equation*}
p \cdot p^{n-i-1}\left(1-\gamma^{p^{i-1}}\right)^{2} x_{p}=0 \tag{*}
\end{equation*}
$$

Thus, since $\left(1-\gamma^{p^{i-1}}\right)^{2} x_{\neq p}=0$ (cf. (b)), we obtain that $p \cdot p^{n-i-1}\left(1-\gamma^{p^{i-1}}\right)^{2} x=0$, which thus implies that $p^{n-i-1}\left(1-\gamma^{p^{i-1}}\right)^{2} x_{p}=p^{n-i-1}\left(1-\gamma^{p^{i-1}}\right)^{2} x \in S_{x}[p]$ (cf. (3)). Thus, since
$\gamma \in \Gamma^{S_{x}[p]}$, we obtain that
(**)

$$
p^{n-i-1}\left(1-\gamma^{p^{p-1}}\right)^{3} x_{p}=0 .
$$

It follows from (*), (**), together with Lemma 2.2 below, that

$$
\left(1-\left(\gamma^{p^{i-1}}\right)^{p}\right) p^{n-i-1} x_{p}=p\left(1-\gamma^{p^{i-1}}\right) p^{n-i-1} x_{p},
$$

i.e., that $y_{i+1}=y_{i}$, as desired. This completes the proof of Claim 2.1.B.

Next, let us observe that it follows from Claim 2.1.A and Claim 2.1.B that

$$
\left(1-\gamma^{p^{n-1}}\right) x_{p}=y_{n}=y_{1} \in S_{x}[p] \backslash\{0\} .
$$

Thus, since $\gamma^{p^{p-1}} \in \Gamma^{S_{x}[p]}$, and $\left(1-\gamma^{p^{n-1}}\right)^{2} x_{\neq p}=0$ (cf. (b)), we obtain that

$$
\left(1-\gamma^{p^{n-1}}\right)^{2} x=\left(1-\gamma^{p^{n-1}}\right)^{2} x_{p}=\left(1-\gamma^{p^{n-1}}\right) y_{n}=0
$$

which thus implies (cf. (a)) that $\left(1-\gamma^{p^{n-1}}\right) x=0$. In particular, we conclude that

$$
y_{n}=\left(1-\gamma^{p^{n-1}}\right) x_{p}=0
$$

which contradicts Claim 2.1.A and Claim 2.1.B. This completes the proof of assertion (i).
Finally, we verify assertion (ii). Let $\gamma \in \Gamma^{S_{x}[p]}$ be an element of $\Gamma^{S_{x}[p]}$. Then since $x_{p} \in M^{\Gamma^{S_{x}[p]}}$ (cf. assertion (i)), and $\Gamma^{S_{x}[p]} \subseteq \Gamma$ is normal, we obtain that $\delta \cdot x_{p} \in M^{\Gamma^{S_{x}[p]}}$ for every $\delta \in \Gamma$. Thus, we conclude that $(1-\gamma)(\delta \cdot x)=(1-\gamma)\left(\delta \cdot x_{\neq p}\right)$, which thus implies that $(1-\gamma)^{2}(\delta \cdot x)=(1-\gamma)^{2}\left(\delta \cdot x_{\neq p}\right)=0$ (cf. (b)). In particular, it follows from (a) that $(1-\gamma)(\delta \cdot x)=0$. Thus, it follows from (c) that the action of γ on M is trivial. This completes the proof of assertion (ii), hence also of Lemma 2.1.

Lemma 2.2. In the ring $\mathbb{Z}[T]$ of polynomials in T with coefficients in \mathbb{Z}, the congruence

$$
1-T^{p} \equiv p(1-T) \quad \bmod \left(p(1-T)^{2},(1-T)^{3}\right)
$$

holds.
Proof. By " $\bmod (1-T)^{3}$ ", we obtain that

$$
\begin{gathered}
1-T^{p}=1-(1-(1-T))^{p} \equiv 1-\left(1-p(1-T)+p(p-1)(1-T)^{2} / 2\right) \\
=p(1-T)-p(p-1)(1-T)^{2} / 2 .
\end{gathered}
$$

Thus, since (we have assumed that) $p \neq 2$, Lemma 2.2 holds. This completes the proof of Lemma 2.2.

Defintion 2.3. Let M be a finite module equipped with an action of Γ_{K}.
(i) We shall say that the Γ_{K}-module M is of type G (respectively, of type S) if there exist an abelian variety A over K which has good (respectively, semistable) reduction over W and a Γ_{K}-equivariant injection $M \hookrightarrow A(\bar{K})$.
(ii) We shall say that a Γ_{K}-submodule $N \subseteq M$ of M is a G-part of M if the following three conditions are satisfied:
(1) The Γ_{K}-module N is of type G (which thus implies that the action of Γ_{K} on $N_{\neq p}$
is trivial — cf. Remark 2.3.1, (i), (ii), below).
(2) The action of Γ_{K} on M / N is trivial.
(3) The action of Γ_{K} on every nontrivial Γ_{K}-stable subquotient of N_{p} is nontrivial (cf. Lemma 2.4, (ii), below).
(iii) We shall say that the action of Γ_{K} on M is tame if the (necessarily finite) quotient $\Gamma_{K}[M]$ of Γ_{K} is of order prime to p, i.e., the natural surjection $\Gamma_{K} \rightarrow \Gamma_{K}[M]$ factors through the quotient of Γ_{K} corresponding to the Galois extension $K^{\mathrm{tm}}(\subseteq \bar{K})$ of K.

Remark 2.3.1.
(i) One verifies immediately from the various definitions involved that a Γ_{K}-module obtained by forming a subquotient of a finite Γ_{K}-module of type G (respectively, of type S) is of type G (respectively, of type S).
(ii) Let M be a finite Γ_{K}-module of type G such that $M=M_{\neq p}$. Then one verifies immediately that the action of Γ_{K} on M is trivial (cf., e.g., Lemma 2.4, (i), below).
(iii) It is well-known (cf., e.g., [10, Appendix A, Theorem A.6]) that, for a finite $\Gamma_{K^{-}}$ module M : The Γ_{K}-module M is of type G if and only if there exist a finite flat commutative group scheme G over W and a Γ_{K}-equivariant isomorphism $M \xrightarrow{\sim} G(\bar{K})$.

Lemma 2.4. Let M be a finite Γ_{K}-module of type G. Thus, by Remark 2.3.1, (iii), there exist a finite flat commutative group scheme G over W and a Γ_{K}-equivariant isomorphism $M \xrightarrow{\sim} G(\bar{K})$. Then the following hold:
(i) The action of Γ_{K} on M is trivial if and only if G is étale over W.
(ii) The action of Γ_{K} on every nontrivial Γ_{K}-stable subquotient of M is nontrivial if and only if G is connected.

Proof. These assertions follow immediately from Theorem 1.5.

Now let us recall the following well-known lemma:
Proposition 2.5. Let M be a finite Γ_{K}-module of type S. Then the following hold:
(i) The Γ_{K}-module M has a G-part.
(ii) If $M=M_{\neq p}$, then the action of Γ_{K} on M is tame.

Proof. Assertion (ii) follows immediately from assertion (i), together with conditions (1) and (2) of Definition 2.3, (ii). Thus, to complete the verification of Proposition 2.5, it suffices to verify assertion (i). On the other hand, assertion (i) follows from basic facts concerning Galois actions on torsion points of semi-abelian schemes (cf., e.g., [6, Chapter III], or [10, Appendix C], the discussion entitled "The Raynaud group") as follows.

To verify assertion (i), let us first review some consequences of the discussions of [6, Chapter III]. Let A be an abelian variety over K which has semistable reduction over W and n an integer such that $M \subseteq A(\bar{K})[n]$. Write A^{D} for the dual abelian variety of A. Then it follows from the discussions of [6, Chapter III], that there exist semi-abelian schemes \widetilde{A}, $\widetilde{A_{D}}$ over W; abelian schemes B, B_{D} over W; split tori T, T_{D} over W; free \mathbb{Z} / n-modules P,
P_{D} of finite rank equipped with the trivial actions of Γ_{K} which satisfy the following three conditions:
(a) The semi-abelian scheme \widetilde{A} (respectively, \widetilde{A}_{D}) is an extension of B (respectively, B_{D}) by T (respectively, T_{D}). In particular, we have exact sequences of Γ_{K}-modules

$$
\begin{gathered}
0 \longrightarrow T(\bar{K})[n] \longrightarrow \widetilde{A}(\bar{K})[n] \longrightarrow B(\bar{K})[n] \longrightarrow 0 \\
0 \longrightarrow T_{D}(\bar{K})[n] \longrightarrow \widetilde{A}_{D}(\bar{K})[n] \longrightarrow B_{D}(\bar{K})[n] \longrightarrow 0
\end{gathered}
$$

(b) The Γ_{K}-modules of n-torsion points of $A, \widetilde{A}, A^{D}, \widetilde{A}_{D}$ fit into exact sequences of Γ_{K}-modules

$$
\begin{gathered}
0 \longrightarrow \widetilde{A}(\bar{K})[n] \longrightarrow A(\bar{K})[n] \longrightarrow P \longrightarrow 0 \\
0 \longrightarrow \widetilde{A}_{D}(\bar{K})[n] \longrightarrow A^{D}(\bar{K})[n] \longrightarrow P_{D} \longrightarrow 0
\end{gathered}
$$

(c) The natural pairing $A(\bar{K})[n] \times A^{D}(\bar{K})[n] \rightarrow \mu_{n}(\bar{K})$ - where we write $\mu_{n}(\bar{K}) \subseteq \bar{K}^{\times}$for the group of n-th roots of unity in \bar{K} - determines a Γ_{K}-equivariant isomorphism (cf. [6, Chapter III, Corollary 7.4])

$$
A(\bar{K})[n] / T(\bar{K})[n] \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{Z}}\left(\widetilde{A}_{D}(\bar{K})[n], \mu_{n}(\bar{K})\right) .
$$

Moreover, by (a), the quasi-finite flat commutative group schemes $G \stackrel{\text { def }}{=} \widetilde{A}[n], \widetilde{A}_{D}[n]$ over W obtained by forming the respective kernels of the endomorphisms of $\widetilde{A}, \widetilde{A}_{D}$ given by multiplication by n is in fact finite over W. Thus, it follows from Remark 2.3.1, (iii), that the following holds:
(d) The finite Γ_{K}-modules $\widetilde{A}(\bar{K})[n], \widetilde{A}_{D}(\bar{K})[n]$ are of type G. In particular, by (c), the finite Γ_{K}-module $A(\bar{K})[n] / T(\bar{K})[n]$ is of type G.

If $M=M_{\neq p}$, then it follows immediately —in light of Remark 2.3.1, (ii) — from (d), together with the various definitions involved, that the Γ_{K}-submodule of M determined by $T(\bar{K})[n] \subseteq A(\bar{K})[n]$ in the above discussion is a G-part. Thus, to complete the verification of assertion (i), we may assume without loss of generality that $M=M_{p}$, and that n is a power of p.

Since $G=\widetilde{A}[n]$ is a finite flat commutative group scheme over W (cf. the discussion preceding (d)), we have an exact sequence of finite flat commutative group schemes over W

$$
0 \longrightarrow G^{\circ} \longrightarrow G \longrightarrow G^{\mathrm{et}} \longrightarrow 0
$$

where $G^{\circ} \subseteq G$ is connected, and $G^{e t}$ is étale over W. Now I claim that the following assertion holds:

Claim 2.5.A: The finite Γ_{K}-module $A(\bar{K})[n] / G^{\circ}(\bar{K})$ is of type G.
Indeed, by (d), to verify Claim 2.5.A, it suffices to verify that the inclusion $T(\bar{K})[n] \subseteq G^{\circ}(\bar{K})$ holds. On the other hand, this follows from the (easily verified) fact that the action of Γ_{K} on every nontrivial Γ_{K}-stable subquotient of $T(\bar{K})[n]$ is nontrivial. This completes the proof of

Claim 2.5.A.
Next, I claim that the following assertion holds:
Claim 2.5.B: The Γ_{K}-submodule $N \subseteq M$ of M determined by $G^{\circ}(\bar{K}) \subseteq A(\bar{K})$ is a G-part.

Indeed, it follows from the various definitions involved, together with Lemma 2.4, (ii), that N satisfies conditions (1) and (3) of Definition 2.3, (ii). Next, to verify the assertion that N satisfies condition (2) of Definition 2.3, (ii), let us consider the following exact sequence of Γ_{K}-modules (which arises from the first exact sequence of (b))

$$
0 \longrightarrow G^{\mathrm{t} t}(\bar{K}) \longrightarrow A(\bar{K})[n] / G^{\circ}(\bar{K}) \longrightarrow P \longrightarrow 0 .
$$

Since the actions of Γ_{K} on $G^{\text {et }}(\bar{K})$ and P are trivial, it follows immediately from Claim 2.5.A (cf. also Remark 2.3.1, (iii)) that the action of Γ_{K} on $A(\bar{K})[n] / G^{\circ}(\bar{K})$ is trivial. Thus, since M / N is a Γ_{K}-submodule of $A(\bar{K})[n] / G^{\circ}(\bar{K})$, it follows that N satisfies condition (2) of Definition 2.3, (ii). This completes the proof of Claim 2.5.B, hence also of assertion (i).

Lemma 2.6. Let M be a finite Γ_{K}-module of type S. Suppose that there exists a weak Γ_{K}-invariant $x \in M$ of M such that the Γ_{K}-module M is generated by $x \in M$. Then there exists a Γ_{K}-submodule $N \subseteq M$ of M which satisfies the following two conditions:
(1) The Γ_{K}-module N is of type G and annihilated by p.
(2) The natural surjection $\Gamma_{K}[M] \rightarrow \Gamma_{K}[N]$ is an isomorphism.

Proof. Let $F \subseteq M$ be a G-part of M (cf. Proposition 2.5, (i)). Write $S_{x}[p] \subseteq M$ for the " $S_{x}[p]$ " of Lemma 2.1 in the case where we take the " (M, Γ, x) " of Lemma 2.1 to be $\left(M, \Gamma_{K}[M], x\right)$. Then it follows from condition (2) of Definition 2.3, (ii), together with the definition of S_{x}, that $S_{x}[p] \subseteq F[p]$. Write $N \subseteq(F[p] \subseteq) M$ for the Γ_{K}-submodule of M generated by $S_{x}[p]$. Then it follows immediately from condition (1) of Definition 2.3, (ii), that N satisfies condition (1) of Lemma 2.6. Moreover, since (it follows from conditions (1) and (2) of Definition 2.3, (ii) that) (b) of Lemma 2.1 (in the case where we take the " (M, Γ, x) " of Lemma 2.1 to be ($\left.M, \Gamma_{K}[M], x\right)$) holds, it follows from Lemma 2.1, (ii), that N satisfies condition (2) of Lemma 2.6. This completes the proof of Lemma 2.6.

The following result is the main result of the present $\S 2$:
Lemma 2.7. Let M be a finite Γ_{K}-module of type S. Suppose that there exists a weak Γ_{K}-invariant of M which generates the Γ_{K}-module M. Then the action of Γ_{K} on $p \cdot M_{p}$ is trivial.

Proof. Let $F \subseteq M$ be a G-part of M (cf. Proposition 2.5, (i)) and $N \subseteq M$ a Γ_{K}-submodule of M which satisfies two conditions (1), (2) of Lemma 2.6. Then let us observe that both F_{p} and N are of type G and annihilated by a power of p. In particular, it follows from Remark 2.3.1, (iii), that there exist a finite flat commutative group scheme $G_{F_{p}}$ (respectively, G_{N}) over W which is annihilated by a power of p and a Γ_{K}-equivariant isomorphism $F_{p} \xrightarrow{\sim}$ $G_{F_{p}}(\bar{K})$ (respectively, $N \xrightarrow{\sim} G_{N}(\bar{K})$).

Now I claim that the following assertion holds:

Claim 2.7.A: The inclusion $K_{G_{F_{p}}} \subseteq K_{G_{N}}$ (cf. the notation introduced in the discussion preceding Definition 1.2) holds. (In other words, the natural surjection $\Gamma_{K} \rightarrow \Gamma_{K}\left[F_{p}\right]$ factors through $\Gamma_{K} \rightarrow \Gamma_{K}[N]$.)

Indeed, since $F_{p} \subseteq M$, it is immediate that the natural surjection $\Gamma_{K} \rightarrow \Gamma_{K}\left[F_{p}\right]$ factors through $\Gamma_{K} \rightarrow \Gamma_{K}[M]$. Thus, it follows from condition (2) of Lemma 2.6 that Claim 2.7.A holds. This completes the proof of Claim 2.7.A.

Next, I claim that the following assertion holds:
Claim 2.7.B: The module F_{p} is annihilated by p.
Indeed, let us first observe that it follows from Lemma 2.4, (ii), together with condition (3) of Definition 2.3, (ii), that $G_{F_{p}}$ is connected, i.e., that $G_{F_{p}}=G_{F_{p}}^{\circ}$. Thus, it follows from Lemma 1.9, together with Claim 2.7.A, that

$$
\operatorname{lv}_{W}\left(F_{p} \otimes_{\mathbb{Z}_{p}} W\right)=\operatorname{lv}\left(G_{F_{p}}\right)=\operatorname{lv}\left(G_{F_{p}}^{\circ}\right) \leq \operatorname{lv}\left(G_{N}\right)=\operatorname{lv}_{W}\left(N \otimes_{\mathbb{Z}_{p}} W\right) .
$$

Thus, since $\operatorname{lv}_{W}\left(N \otimes_{\mathbb{Z}_{p}} W\right)=1$ (cf. condition (1) of Lemma 2.6), Claim 2.7.B holds. This completes the proof of Claim 2.7.B.

It follows from Claim 2.7.B that the natural surjection $M_{p} \rightarrow p \cdot M_{p}$ factors through $M_{p} \rightarrow M_{p} / F_{p}$. On the other hand, it follows from condition (2) of Definition 2.3, (ii), that the action of Γ_{K} on M_{p} / F_{p} is trivial. Thus, we conclude that the action of Γ_{K} on $p \cdot M_{p}$ is trivial, as desired. This completes the proof of Lemma 2.7.

3. Ramified Torsion Points on Curves

In the present $\S 3$, we prove the main result of the present paper (cf. Theorem 3.4 below), which is closely related to a conjecture due to R. Coleman concerning the ramification of torsion points (cf. Remark 3.4.1 below). Moreover, by means of the main result, we study the geometry of curves which admit ramified torsion points (cf. Corollaries 3.6, 3.8 and 3.9 below).

In the present $\S 3$, we maintain the notation of $\S 2$. Let $g \geq 2$ be an integer and X a curve of genus g over K which has stable reduction over W. Write J for the Jacobian variety of X.

Let us first recall the following well-known result:
Proposition 3.1. The abelian variety J over K has semistable reduction over W. Moreover, the abelian variety J over K has good reduction over W if and only if the dual graph of the special fiber of the stable model of X over W is a tree.

Proof. This follows from, for instance, [3, §9.2, Example 8], and [3, §9.7, Corollary 2].

Definition 3.2. Let $x \in X_{\bar{K}}^{\mathrm{cl}}$ be a closed point of $X_{\bar{K}}$. Then we shall write $\varphi_{x}: X_{\bar{K}}^{\mathrm{cl}} \hookrightarrow J_{\bar{K}}^{\mathrm{cl}}$ for the injection between the sets of closed points determined by the Albanese embedding of X with respect to $x \in X_{\bar{K}}^{\mathrm{cl}}$.

Lemma 3.3. Let $x_{0} \in X(K)$ be a K-rational point of X and $x \in X_{\bar{K}}^{\mathrm{cl}}$ a closed point of $X_{\bar{K}}$. Suppose that $\varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$ is torsion. Write $M \subseteq J_{\bar{K}}^{\mathrm{cl}}$ for the (necessarily finite) Γ_{K}-submodule
of $J_{\bar{K}}^{\mathrm{cl}}$ generated by $\varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$. Then the following hold:
(i) The Γ_{K}-module M is of type S . If, moreover, the abelian variety J over K has good reduction over W, then the Γ_{K}-module M is of type G.
(ii) If (X, x) is not exceptional, then the element $\varphi_{x_{0}}(x) \in M$ is a weak Γ_{K}-invariant.
(iii) The action of Γ_{K} on $p \cdot M_{p}$ is trivial.

Proof. Assertion (i) follows from Proposition 3.1, together with the various definitions involved. Next, we verify assertion (ii). Let $\gamma, \delta \in \Gamma_{K}$ be such that $(1-\gamma)^{2} \delta \cdot \varphi_{x_{0}}(x)=0$. Then since x_{0} is K-rational, our assumption $(1-\gamma)^{2} \delta \cdot \varphi_{x_{0}}(x)=0$ implies that $[\delta \cdot x]+\left[\gamma^{2} \cdot \delta \cdot x\right]=$ $2[\gamma \cdot \delta \cdot x]$, where we write "[-]" for the prime divisor determined by "(-)". In particular, since (X, x), hence also $(X, \delta \cdot x)$, is not exceptional, we obtain that $\delta \cdot x=\gamma \cdot \delta \cdot x$, i.e., that $(1-\gamma) \delta \cdot \varphi_{x_{0}}(x)=0$. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). If (X, x) is not exceptional, then assertion (iii) follows from Lemma 2.7, together with assertions (i), (ii). If (X, x) is exceptional, then it follows from [13, Proposition 3.1, (i)], that the action of Γ_{K} on $2 \cdot M$ is trivial. Thus, the action of Γ_{K} on $M_{p} \subseteq 2 \cdot M$, hence also on $p \cdot M_{p}$, is trivial. This completes the proof of assertion (iii), hence also of Lemma 3.3.

The following result is the main result of the present paper:
Theorem 3.4. In the notation introduced at the beginning of $\S 3$, let $x_{0} \in X(K)$ be a K rational point of X and $x \in X_{\bar{K}}^{\mathrm{cl}}$ a closed point of $X_{\bar{K}}$. Suppose that $\varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$ is torsion. Then the following hold:
(i) The residue field of J at $p \cdot \varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$ is at most tamely ramified over K.
(ii) Suppose, moreover, that one of the following two conditions is satisfied:
(a) There exists an integer $n \geq 1$ such that $p^{n} \cdot \varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational.
(b) The abelian variety J over K has good reduction over W (cf. Proposition 3.1).

Then $p \cdot \varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational.
Proof. Assertion (i) follows immediately from Lemma 3.3, (i), (iii), together with Proposition 2.5 , (ii). Assertion (ii) in the case where the condition (a) is satisfied follows immediately from Lemma 3.3, (iii). Assertion (ii) in the case where the condition (b) is satisfied follows immediately from Lemma 3.3, (i), (iii), together with Remark 2.3.1, (i), (ii). This completes the proof of Theorem 3.4.

Remark 3.4.1.

(i) R. Coleman stated, in [4], a conjecture concerning the ramification of torsion points on a curve which satisfies certain conditions. Let us recall the statement of (a slightly stronger version of) the conjecture as follows (cf. [4, Conjecture B]):

In the notation introduced at the beginning of $\S 3$, let $x_{0} \in X(K)$ be a K rational point of X and $x \in X_{\bar{K}}^{\mathrm{cl}}$ a closed point of $X_{\bar{K}}$. Suppose that $\varphi_{x_{0}}(x) \in$ $J_{\bar{K}}^{\mathrm{cl}}$ is torsion. Suppose, moreover, that the following two conditions are
satisfied:
(1) The inequality $p \geq 5$ holds.
(2) The curve X, hence also the abelian variety J, over K has good reduction over W.
Then $\varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational.
As we discussed in Introduction of the present paper, Coleman himself proved the conjecture in the case where the given curve X satisfies a further assumption.
(ii) Observe that, in the situation of the conjecture of (i), we conclude from Theorem 3.4 that
at least $p \cdot \varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$ is K-rational
(cf. Theorem 3.4, (ii), in the case where the condition (b) is satisfied). Unfortunately, however, at the time of this writing, the author cannot derive a solution of the conjecture of (i) from Theorem 3.4.

Remark 3.4.2. One may give a relatively simple alternative proof of Theorem 3.4, (ii), in the case where the condition (b) is satisfied which does not rely on the main result of §2, i.e., Lemma 2.7. Such a proof is as follows:

Let us start with the notation of Lemma 3.3. Suppose that the condition (b) in the statement of Theorem 3.4, (ii), is satisfied (which thus implies that the finite Γ_{K}-modules $M_{p} \subseteq M$ and $A \stackrel{\text { def }}{=} J(\bar{K})[p]$ are of type $G)$. Let $G_{M_{p}}$ (respectively, G_{A}) be a finite flat commutative group scheme over W which (is necessarily annihilated by a power of p and) admits a $\Gamma_{K^{-}}$ equivariant isomorphism $M_{p} \xrightarrow{\sim} G_{M_{p}}(\bar{K})$ (respectively, $A \xrightarrow{\sim} G_{A}(\bar{K})$) (cf. Remark 2.3.1, (iii)). Thus, we have an exact sequence of finite flat commutative group schemes over W

$$
0 \longrightarrow G_{M_{p}}^{\circ} \longrightarrow G_{M_{p}} \longrightarrow G_{M_{p}}^{\mathrm{et}} \longrightarrow 0
$$

where $G_{M_{p}}^{\circ} \subseteq G_{M_{p}}$ is connected, and $G_{M_{p}}^{\text {et }}$ is étale over W - and two finite Galois extensions $K_{G_{M_{p}}}$ and $K_{G_{A}}$ of K contained in \bar{K} (cf. the notation introduced in the discussion preceding Definition 1.2).

If (X, x) is exceptional, then it follows from [13], Proposition 3.1, (i) (cf. also the proof of Lemma 3.3, (iii), in the case where (X, x) is exceptional), that the action of Γ_{K} on $p \cdot M_{p}$ is trivial. In particular, we conclude from Remark 2.3.1, (i), (ii), that $p \cdot \phi_{x_{0}}(x)$ is K-rational, as desired.

Suppose that (X, x) is not exceptional. Write $\phi_{x_{0}}(x)=a_{p}+a_{\neq p}$ for the representation of $\phi_{x_{0}}(x) \in M$ with respect to the natural direct decomposition $M=M_{p} \oplus M_{\neq p}$. Now let us prove the assertion that
the element $a_{p} \in M_{p}$ is fixed by the action of $\Gamma_{K_{G_{A}}} \stackrel{\text { def }}{=} \operatorname{Gal}\left(\bar{K} / K_{G_{A}}\right) \subseteq \Gamma_{K}$.
To this end, assume that $a_{p} \notin M^{\Gamma_{K_{C_{A}}}}$. Then it follows from [12, Lemma 2.4], that there exists $\gamma \in \Gamma_{K_{G_{A}}}$ such that $(1-\gamma) a_{p} \in A \backslash\{0\}$, which thus implies that $(1-\gamma)^{2} a_{p}=0$. Thus, since $(1-\gamma) a_{\neq p}=0$ (cf. Remark 2.3.1, (i), (ii)), we obtain that $(1-\gamma)^{2} \phi_{x_{0}}(x)=0$. In particular, it follows from Lemma 3.3, (ii), that $(1-\gamma) \phi_{x_{0}}(x)=0$, which thus implies that $(1-\gamma) a_{p}=0$. This contradicts the above fact that $(1-\gamma) a_{p} \in A \backslash\{0\}$. This completes the proof of the above assertion.

It follows immediately from the above assertion that $K_{G_{M_{p}}} \subseteq K_{G_{A}}$. Thus, it follows from Lemma 1.9 that $\operatorname{lv}\left(G_{M_{p}}^{\circ}\right) \leq \operatorname{lv}\left(G_{A}\right)=1$. In particular, the natural surjection $M_{p} \rightarrow p \cdot M_{p}$ factors through $M_{p} \rightarrow M_{p} / G_{M_{p}}^{\circ}(\bar{K}) \xrightarrow{\sim} G_{M_{p}}^{\text {ét }}(\bar{K})$. In particular, since the action of Γ_{K} on $G_{M_{p}}^{\text {et }}(\bar{K})$ is trivial (cf. Lemma 2.4, (i)), the action of Γ_{K} on $p \cdot M_{p}$ is trivial. Thus, we conclude from Remark 2.3.1, (i), (ii), that $p \cdot \phi_{x_{0}}(x)$ is K-rational, as desired.

Remark 3.4.3. Note that the proof of the main result of the present paper may be regarded as a refinement (in the absolutely unramified case) of an argument of [12] given by D. Rössler.

Definition 3.5.
(i) We shall say that a closed point $x \in X_{\bar{K}}^{\mathrm{cl}}$ of $X_{\bar{K}}$ is a ramified torsion point (respectively, wildly ramified torsion point) if the closed point $x \in X_{\bar{K}}^{\mathrm{cl}}$ is not K-rational (respectively, not K^{tm}-rational), and, moreover, there exists a K-rational point $x_{0} \in X(K)$ of X such that $\varphi_{x_{0}}(x) \in J_{\bar{K}}^{\mathrm{cl}}$ is torsion.
(ii) We shall refer to an equivalence class with respect to the following equivalence relation " \sim " on $X_{\bar{K}}^{\mathrm{cl}}$ as a torsion packet on X : For $x, y \in X_{\bar{K}}^{\mathrm{cl}}$, write $x \sim y$ if $\varphi_{x}(y)\left(=-\varphi_{y}(x)\right)$ $\in J_{\bar{K}}^{\mathrm{cl}}$ is torsion.
(iii) We shall say that a torsion packet is a ramified torsion packet (respectively, wildly ramified torsion packet) if the torsion packet contains a ramified (respectively, wildly ramified) torsion point.

Remark 3.5.1. Thus, the conjecture of Coleman discussed in Remark 3.4.1, (i), is equivalent to the following assertion:

In the notation introduced at the beginning of $\S 3$, suppose that the following two conditions are satisfied:
(1) The inequality $p \geq 5$ holds.
(2) The curve X, hence also the abelian variety J, over K has good reduction over W.

Then there is no ramified torsion point (cf. Definition 3.5, (i)) on $X_{\bar{K}}$, or, equivalently, there is no ramified torsion packet (cf. Definition 3.5, (iii)) on X.

Corollary 3.6. In the notation introduced at the beginning of $\S 3$, let $x \in X_{\bar{K}}^{\mathrm{cl}}$ be a ramified torsion point on $X_{\bar{K}}$. Suppose that one of the following two conditions is satisfied:
(1) The abelian variety J over K has good reduction over W.
(2) The closed point $x \in X_{\bar{K}}^{\mathrm{cl}}$ is a wildly ramified torsion point.

Then the following hold:
(i) Suppose that condition (1) (respectively, (2)) is satisfied. Let γ be an element of Γ_{K} (respectively, of the uniquely determined p-Sylow subgroup of Γ_{K}). Then the element $\varphi_{\gamma \cdot x}(x)$ is annihilated by p.
(ii) The prime number p is a Weierstrass non-gap at $x \in X_{\bar{K}}^{\mathrm{cl}}$. In particular, if $g \geq p$, then $x \in X_{\bar{K}}^{\mathrm{cl}}$ is a Weierstrass point of $X_{\bar{K}}$.
(iii) There is a finite morphism $X_{\bar{K}} \rightarrow \mathbb{P}_{\bar{K}}^{1}$ of degree p over \bar{K} which is totally ramified at $x \in X_{\bar{K}}^{\mathrm{cl}}$. In particular, the curve $X_{\bar{K}}$ over \bar{K} is of gonality $\leq p$.
(iv) If $g \geq p$, then the curve $X_{\bar{K}}$ over \bar{K} is not hyperelliptic.

Proof. First, we verify assertion (i). It follows immediately from the various definitions involved that there exists a K-rational point $x_{0} \in X(K)$ of X such that $\varphi_{x_{0}}(x) \in J_{\bar{K}}^{\text {cl }}$ is torsion. Thus, since (one verifies immediately that) $(1-\gamma) \varphi_{x_{0}}(x)=\varphi_{\gamma \cdot x}(x)$, assertion (i) follows from Theorem 3.4. This completes the proof of assertion (i).

Next, we verify assertion (ii). Suppose that condition (1) (respectively, (2)) is satisfied. Then it follows immediately from the various definitions involved that there exists an element γ of Γ_{K} (respectively, of the uniquely determined p-Sylow subgroup of Γ_{K}) such that $\varphi_{\gamma \cdot x}(x) \neq 0$, which thus implies (cf. assertion (i)) that $\varphi_{\gamma \cdot x}(x)$ is of order p. Thus, we conclude immediately from the various definitions involved that p is a Weierstrass non-gap at $x \in X_{\bar{K}}^{\mathrm{cl}}$. This completes the proof of assertion (ii). Assertion (iii) follows immediately from assertion (ii).

Finally, we verify assertion (iv). It follows from assertion (iii) that there exists a finite morphism $X_{\bar{K}} \rightarrow \mathbb{P}_{\bar{K}}^{1}$ of degree p over \bar{K}. Thus, since (we have assumed that) $g \geq p \geq 3$, it follows from Lemma 3.7, (i), below that there is no finite morphism $X_{\bar{K}} \rightarrow \mathbb{P}_{\bar{K}}^{1}$ of degree 2 over \bar{K}. This completes the proof of assertion (iv), hence also of Corollary 3.6.

Remark 3.6.1. Note that, in Corollary 3.6, (iv), one cannot remove the hypothesis " $g \geq$ p ". Indeed, if $p=3$, then the hyperelliptic modular curve " $X_{1}(13)$ " (of genus 2) over K has good reduction over W and admits a ramified torsion point (cf. [2, Appendix], the discussion following Conjecture 6.4).

Lemma 3.7. Let $d \geq 1$ be an integer and $\phi, \psi: X_{\bar{K}} \rightarrow \mathbb{P}_{\bar{K}}^{1}$ finite morphisms over \bar{K}. Suppose that ϕ is of degree p, that ψ is of degree d, and that $g>(p-1)(d-1)$. Then the following hold:
(i) The integer d is contained in $p \mathbb{Z}$. In particular, we obtain that $d \geq p$.
(ii) Suppose that $d=p$. Then the invertible sheaf $\phi^{*} \mathcal{O}_{\mathbb{P}_{\bar{K}}^{1}}(1)$ on $X_{\bar{K}}$ is isomorphic to the invertible sheaf $\psi^{*} \mathcal{O}_{\mathbb{P} \frac{1}{\bar{K}}}(1)$ on $X_{\bar{K}}$.

Proof. These assertions follow immediately from the Castelnuovo-Severi inequality (cf., e.g., [1, Chapter VIII, Exercise C-1]).

Corollary 3.8. In the situation of Corollary 3.6, suppose, moreover, that $g>(p-1)^{2}$. Then the following hold:
(i) The curve $X_{\bar{K}}$ over \bar{K} is of gonality p.
(ii) Let $\phi: X_{\bar{K}} \rightarrow \mathbb{P}_{\bar{K}}^{1}$ be a finite morphism of degree p over \bar{K} (cf. (i)). Then ϕ is totally ramified at $x \in X_{\bar{K}}^{\mathrm{cl}}$.
(iii) If condition (1) (respectively, (2)) in the statement of Corollary 3.6 is satisfied, then the curve X has exactly one ramified (respectively, wildly ramified) torsion packet.

Proof. Assertion (i) (respectively, (ii)) follows immediately from Corollary 3.6, (iii), together with Lemma 3.7, (i) (respectively, (ii)). Assertion (iii) follows immediately from assertions (i), (ii). This completes the proof of Corollary 3.8.

Corollary 3.9. In the situation of Corollary 3.6, let us suppose that condition (1) (respectively, (2)) in the statement of Corollary 3.6 is satisfied. Write $d_{x}(>1)$ for the extension degree over K of the residue field of X at $x \in X_{\bar{K}}^{\mathrm{cl}}, d_{x, p}$ for the "p-part" of d_{x}, i.e., $d_{x, p} \stackrel{\text { def }}{=} \sharp\left(\mathbb{Z}_{p} / d_{x}\right)$, and $D_{x} \stackrel{\text { def }}{=} d_{x}$ (respectively, $\left.\stackrel{\text { def }}{=} d_{x, p}\right)$. Then the following hold:
(i) The inequality $D_{x} \leq g(p-1)^{2}$ holds.
(ii) Suppose, moreover, that $g>(p-1)^{2}$. If condition (1) (respectively, (2)) in the statement of Corollary 3.6 is satisfied, then the number of ramified (respectively, wildly ramified) torsion points on $X_{\bar{K}}$ is $\leq 2+2 g /(p-1)$. In particular, the inequality $D_{x} \leq$ $2+2 g /(p-1)$ holds.

Proof. First, we verify assertion (i). Write $(x \in)\left\{x_{1}, x_{2}, \ldots, x_{D_{x}}\right\} \subseteq X_{\bar{K}}^{\mathrm{cl}}$ for the orbit of $x \in X_{\bar{K}}^{\mathrm{cl}}$ by the action of Γ_{K} (respectively, the uniquely determined p-Sylow subgroup of Γ_{K}). Then it follows from Corollary 3.6, (i), that, for every $i \in\left\{2, \ldots, D_{x}\right\}$, the element $\varphi_{x_{1}}\left(x_{i}\right) \in J_{\bar{K}}^{\mathrm{cl}}$ is of order p, which thus implies that $(1-p) \cdot \varphi_{x_{1}}\left(x_{i}\right)=\varphi_{x_{1}}\left(x_{i}\right)$. In particular, we conclude that

$$
\left\{\varphi_{x_{1}}\left(x_{1}\right), \varphi_{x_{1}}\left(x_{2}\right), \ldots, \varphi_{x_{1}}\left(x_{D_{x}}\right)\right\} \subseteq \varphi_{x_{1}}(X) \cap(1-p) \cdot \varphi_{x_{1}}(X)
$$

Thus, it follows from [5, Lemma 4.1], that $D_{x} \leq g(1-p)^{2}$. This completes the proof of assertion (i).

Next, we verify assertion (ii). If condition (1) (respectively, (2)) in the statement of Corollary 3.6 is satisfied, then write N for the number of ramified (respectively, wildly ramified) torsion points on $X_{\bar{K}}$. Let $\phi: X_{\bar{K}} \rightarrow \mathbb{P}_{\bar{K}}^{1}$ be a finite morphism of degree p over \bar{K} (cf. Corollary 3.8 , (i)). Then, by applying Corollary 3.8 , (ii), and the Riemann-Hurwitz formula to ϕ, we conclude that $2 g-2 \geq-2 p+(p-1) N$, which thus implies that $N \leq 2+2 g /(p-1)$. This completes the proof of Corollary 3.9.

Acknowledgements. The author would like to thank Akio Tamagawa for comments concerning the content of Remark 1.9.1, (i), and a refinement of an earlier version of Corollary 3.9 , (i) (i.e., the content of the present version of Corollary 3.9, (i)). The author also would like to thank the referee for comments concerning the content of Remark 3.4.2. This research was supported by JSPS KAKENHI Grant Number 15K04780.

References

[1] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris: Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften 267. Springer-Verlag, New York, 1985.
[2] M. Baker: Torsion points on modular curves, Ph.D. thesis, University of California, Berkeley, 1999.
[3] S. Bosch, W. Lütkebohmert and M. Raynaud: Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21. Springer-Verlag, Berlin, 1990.
[4] R.F. Coleman: Ramified torsion points on curves, Duke Math. J. 54 (1987), 615-640.
[5] R.F. Coleman, B. Kaskel and K.A. Ribet: Torsion points on $X_{0}(N)$, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), 27-49, Proc. Sympos. Pure Math., 66, Part 1, Amer. Math. Soc., Providence, RI, 1999.
[6] G. Faltings and C.-L. Chai: Degeneration of abelian varieties. With an appendix by David Mumford, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 22. Springer-Verlag, Berlin, 1990.
[7] J.-M. Fontaine: Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux, Invent. Math. 65 (1981/82), 379-409.
[8] J.-M. Fontaine: Il n'y a pas de variété abélienne sur \mathbb{Z}, Invent. Math. 81 (1985), 515-538.
[9] Y. Hoshi: Tame-blind extension of morphisms of truncated Barsotti-Tate group schemes, J. Math. Sci. Univ. Tokyo 16 (2009), 23-54.
[10] J.S. Milne: Arithmetic duality theorems, Second edition. BookSurge, LLC, Charleston, SC, 2006.
[11] M. Raynaud: Schémas en groupes de type (p, \ldots, p), Bull. Soc. Math. France 102 (1974), 241-280.
[12] D. Rössler: A note on the ramification of torsion points lying on curves of genus at least two, J. Théor. Nombres Bordeaux 22 (2010), 475-481.
[13] A. Tamagawa: Ramification of torsion points on curves with ordinary semistable Jacobian varieties, Duke Math. J. 106 (2001), 281-319.

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606-8502
JAPAN
e-mail: yuichiro@kurims.kyoto-u.ac.jp

