COMPACTNESS OF MARKOV AND SCHRÖDINGER SEMI-GROUPS: A PROBABILISTIC APPROACH

Masayoshi TAKEDA, Yoshiniro TAWARA and Kaneharu TSUCHIDA

(Received June 10, 2016, revised July 20, 2016)

Abstract

It is proved if an irreducible, strong Feller symmetric Markov process possesses a tightness property, then its semi-group is an L^{2}-compact operator. In this paper, applying this fact, we prove probabilistically the compactness of Dirichlet-Laplacians and Schrödinger operators.

1. Introduction

Let E be a locally compact separable metric space and m a positive Radon measure on E with full support. Let X be an m-symmetric Markov process on E. We assume that X is irreducible and has strong (resolvent) Feller property. Moreover, we assume that X possesses the tightness property, i.e., for any $\epsilon>0$ there exists a compact set K such that $\sup _{x \in E} R_{1} 1_{K^{c}}(x) \leq \epsilon$. Here R_{1} is the 1 -resolvent of X and $1_{K^{c}}$ is the indicator function of the complement of K. When X has these properties, we say in this paper that X belongs to Class (T). One of the authors proved in [14] that if X belongs to Class (T), its semi-group turns out to be a compact operator on $L^{2}(E ; m)$ (Theorem 2.1). In this paper, we apply this criterion to Dirichlet Laplacians Δ_{D} and Schrödinger operators $\Delta-V$ with positive potential and show probabilistically the compactness of these operators.

Let $X=\left(\mathbb{P}_{x}, B_{t}\right)$ be the Brownian motion on \mathbb{R}^{d} and X^{D} the absorbing Brownian motion on a domain D. We then prove that if $D \subset \mathbb{R}^{d}$ satisfies $\lim _{x \in D,|x| \rightarrow \infty} m(D \cap B(x, 1))=0$, then X^{D} is in Class (T) and consequently its semi-group is compact. Here m denotes the Lebesgue measure and $B(x, R)$ the ball centered at x with radius R. If x is the origin 0 , we write $B(R)$ for $B(0, R)$.

We denote by \mathcal{B}_{0} the set of Borel sets B such that $\lim _{|x| \rightarrow \infty} m(B \cap B(x, 1))=0$. In [8], a Borel set in \mathcal{B}_{0} is said to be thin at infinity. Let V be a positive Borel function on \mathbb{R}^{d} locally in the Kato class. Let $X^{V}=\left(\mathbb{P}_{x}^{V}, B_{t}\right)$ be the subprocess defined by $\mathbb{P}_{x}^{V}(d \omega)=$ $\exp \left(-\int_{0}^{t} V\left(B_{s}(\omega)\right) d s\right) \mathbb{P}_{x}(d \omega)$. We show that if the set $D_{M}:=\left\{x \in \mathbb{R}^{d} \mid V(x) \leq M\right\}$ belongs to \mathcal{B}_{0} for any $M>0$, then X^{V} is in Class (T) and its semi-group, Schrödinger semi-group of $-\Delta+V$, is compact. This fact is proved in [11], [8] analytically, while it is done in this paper probabilistically; the key to the proof of this fact is to show that the condition on V implies the tightness property of X^{V}.

[^0]We apply Theorem 2.1 to time changed processes. Let X be an irreducible symmetric Markov process with strong Feller property. We assume, in addition, that X is transient. We then see that for a Green-tight measure μ with full fine support, the time-changed process \check{X} by A_{t}^{μ}, the positive continuous additive functional in the Revez correspondence to μ, belongs to Class (T). As a results, the space $\left(\breve{\mathcal{F}}, \check{\mathcal{E}}_{1}=\left(\check{\mathcal{E}}+(,)_{\mu}\right)\right)$ is compactly embedded in $L^{2}(E ; \mu)$, where $(\check{\mathcal{E}}, \check{\mathcal{F}})$ is the Dirichlet form generated by \check{X}. Moreover, let $\left(\mathcal{F}_{e}, \mathcal{E}\right)$ be the extended Dirichlet space $\left(\mathcal{F}_{e}, \mathcal{E}\right)$ associated with X, which turns out to be a Hilbert space under the condition for X being transient. We then see that \mathcal{F}_{e} is identical with $\mathscr{\mathcal { F }}, \mathcal{E}$ is equivalent to $\check{\varepsilon}_{1}$ and thus $\left(\mathcal{F}_{e}, \mathcal{E}\right)$ is compactly embedded in $L^{2}(E ; \mu)$. Therefore, we can conclude that for any Green-tight measure μ, the extended Dirichlet space $\left(\mathcal{F}_{e}, \mathcal{E}\right)$ is compactly embedded in $L^{2}(E ; \mu)$. This fact says that if μ is Green-tight with respect to 1 -resolvent, then $\left(\mathcal{F}, \mathcal{E}_{1}=\right.$ $\left.\left(\mathcal{E}+(,)_{m}\right)\right)$ is compactly embedded in $L^{2}(E ; \mu)$.

Applying this result to the Brownian motion, we see that if $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ satisfies that the measure $1_{B} d x$ is Green-tight, then 1 -order Sobolev space $H^{1}\left(\mathbb{R}^{d}\right)$ is compactly embedded in $L^{2}\left(\mathbb{R}^{d} ; 1_{B} d x\right)$. We see from [4, Lemma 6.11] that for a domain B, this is also necessary.

2. Preliminaries

Let E be a locally compact separable metric space, $E_{\Delta}=E \cup\{\Delta\}$ the one point compactification of E, and m a positive Radon measure on E with full support. Let $X=$ $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{\geq 0}, X_{t}, \mathbb{P}_{x}, \zeta\right)$ be an m-symmetric Borel right process having left limits on $(0, \zeta)$. Here ζ is the lifetime $\zeta(\omega)=\inf \left\{s \geq 0 \mid X_{s}(\omega)=\Delta\right\}$ and Ω is specifically taken to be the space of all right continuous functions from $[0, \infty]$ into E_{Δ} with $\omega(t)=\Delta$ for any $t \geq \zeta(\omega)=\inf \{s \geq 0 \mid w(s)=\Delta\}$ and $\omega(\infty)=\Delta$. The random variable ζ is called the lifetime which can be finite and X_{t} is defined by $X_{t}(\omega)=\omega(t)$ for $\omega \in \Omega, t \geq 0$. $\left\{\mathcal{F}_{t}\right\}_{\geq \geq 0}$ is the minimal (augmented) admissible filtration.

Let $\left\{p_{t}\right\}_{\geq \geq 0}$ be the semi-group of $X, p_{t} f(x)=\mathbb{E}_{x}\left(f\left(X_{t}\right)\right)$. By Lemma 1.4.3 in [5], $\left\{p_{t}\right\}_{\geq \geq 0}$ uniquely determines a strongly continuous Markovian semi-group $\left\{T_{t}\right\}_{\geq 20}$ on $L^{2}(E ; m)$. We define the Dirichlet form $\left(\mathcal{E}, \mathcal{D}(\mathcal{E})\right.$) on $L^{2}(E ; m)$ generated by X :

$$
\left\{\begin{array}{l}
\mathcal{F}=\left\{u \in L^{2}(E ; m) \left\lvert\, \lim _{t \rightarrow 0} \frac{1}{t}\left(u-T_{t} u, u\right)_{m}<\infty\right.\right\} \tag{2.1}\\
\mathcal{E}(u, v)=\lim _{t \rightarrow 0} \frac{1}{t}\left(u-T_{t} u, v\right)_{m} \text { for } u, v \in \mathcal{F} .
\end{array}\right.
$$

We denote by \mathcal{F}_{e} the family of m-measurable functions u on X such that $|u|<\infty m$-a.e. and there exists an \mathcal{E}-Cauchy sequence $\left\{u_{n}\right\}$ of functions in \mathcal{F} such that $\lim _{n \rightarrow \infty} u_{n}=u m$-a.e. We call \mathcal{F}_{e} the extended Dirichlet space of $(\mathcal{E}, \mathcal{F})$. Every $u \in \mathcal{F}_{e}$ has a quasi-continuous version \widetilde{u} ([5, Theorem 2.1.3]). In the sequel, we always assume that every function $u \in \mathcal{F}_{e}$ is represented by its quasi-continuous version.

Let us denote by $\left\{R_{\alpha}\right\}_{\alpha>0}$ the resolvent of X,

$$
R_{\alpha} f(x)=\mathbb{E}_{x}\left(\int_{0}^{\infty} e^{-\alpha t} f\left(X_{t}\right) d t\right), \quad f \in \mathcal{B}_{b}(E)
$$

where $\mathcal{B}_{b}(E)$ is the space of bounded Borel functions on E. We now make three assumptions on X :
I. (Irreducibility) If a Borel set A is p_{t}-invariant, i.e., $\int_{A} p_{t} 1_{A^{c}} d m=0$ for any $t>0$, then A satisfies either $m(A)=0$ or $m\left(A^{c}\right)=0$. Here $1_{A^{c}}$ is the indicator function of the complement of A.
II. (Resolvent Strong Feller Property) $R_{\alpha}\left(\mathcal{B}_{b}(E)\right) \subset C_{b}(E), \alpha>0$, where $C_{b}(E)$ is the space of bounded continuous functions.
III. (Tightness Property) For any $\epsilon>0$, there exists a compact set K such that $\sup _{x \in E} R_{1} 1_{K^{c}}(x) \leq \epsilon$. Here $1_{K^{c}}$ is the indicator function of the complement of K.
We here say that a Markov process belongs to Class (T) if it possess the properties I, II, III.
Remark 2.1. (i) If $R_{1} 1 \in C_{\infty}(E)$, then X is explosive and satisfies the assumption III. In fact, it follows from the maximum property that

$$
\sup _{x \in E} R_{1} 1_{K^{c}}(x)=\sup _{x \in K^{c}} R_{1} 1_{K^{c}}(x) \leq \sup _{x \in K^{c}} R_{1} 1(x) .
$$

Here $C_{\infty}(E)$ is the set of continuous functions vanishing at infinity.
(ii) If $C_{\infty}(E)$ is invariant under $R_{1}, R_{1}\left(C_{\infty}(E)\right) \subset C_{\infty}(E)$, then $R_{1} 1 \in C_{\infty}(E)$ is equivalent to III. In fact, assume III. For a compact set K, take a positive function $g \in$ $C_{\infty}(E)$ such that $1_{K} \leq g$. We then see from the invariance of $C_{\infty}(E)$ that $0 \leq$ $\lim _{x \rightarrow \infty} R_{1} 1_{K}(x) \leq \lim _{x \rightarrow \infty} R_{1} g(x)=0$. Hence for any $\epsilon>0$ there exists a compact set K such that

$$
\limsup _{x \rightarrow \infty} R_{1} 1(x) \leq \limsup _{x \rightarrow \infty} R_{1} 1_{K}(x)+\limsup _{x \rightarrow \infty} R_{1} 1_{K^{c}}(x) \leq \sup _{x \in E} R_{1} 1_{K^{c}}(x) \leq \epsilon
$$

which implies $R_{1} 1 \in C_{\infty}(E)$. Hence, if $C_{\infty}(E)$ is invariant under R_{1} and X is conservative, $R_{1} 1=1$, then X does not have the tightness property, in particular, the Ornstein-Uhlenbeck process does not.
(iii) Assume that m is finite, $m(E)<\infty$ and that $\left\{p_{t}\right\}_{t \geq 0}$ is ultra-contractive, $\left\|p_{t}\right\|_{1, \infty}=$ $c_{t}<\infty$ for any $t>0$. Here $\|\cdot\|_{1, \infty}$ is the operator norm from $L^{1}(E ; m)$ to $L^{\infty}(E ; m)$. Note that c_{t} is non-increasing because $\left\|p_{t}\right\|_{1, \infty} \leq\left\|p_{s}\right\|_{1, \infty} \cdot\left\|p_{t-s}\right\|_{\infty, \infty} \leq\left\|p_{s}\right\|_{1, \infty}$ for $0<s<t$. We then see that X has the tightness property III. Indeed, for any $\delta>0$ and a compact set $K \subset \mathbb{R}^{d}$
$R_{1} 1_{K^{c}}(x) \leq \int_{0}^{\delta} e^{-t} p_{t} 1_{K^{c}}(x) d t+\int_{\delta}^{\infty} e^{-t} p_{t} 1_{K^{c}}(x) d t \leq\left(1-e^{-\delta}\right)+c_{\delta} \cdot m\left(K^{c}\right)$.
Hence for any $\varepsilon>0\left\|R_{1} 1_{K^{c}}\right\|_{\infty}<\varepsilon$, if $\delta>0$ and a compact set K satisfy $1-\exp (-\delta)<$ $\varepsilon / 2$ and $c_{\delta} \cdot m\left(K^{c}\right)<\varepsilon / 2$.

It follows from the assumption II that the resolvent kernel is absolutely continuous with respect to m,

$$
R_{\beta}(x, d y)=R_{\beta}(x, y) m(d y), \text { for each } \alpha>0, x \in E
$$

As a result, the transition probability $p_{t}(x, d y)$ is also absolutely continuous with respect to m,

$$
p_{t}(x, d y)=p_{t}(x, y) m(d y) \text { for each } t>0, x \in E
$$

([5, Theorem 4.2.4]). By [5, Lemma 4.2.4] the density $R_{\beta}(x, y)$ is assumed to be a nonnegative Borel function such that $R_{\beta}(x, y)$ is symmetric and β-excessive in x and in y. Under
the absolute continuity condition, "quasi-everywhere" statements are strengthened to "everywhere" ones.

One of the authors proved the next theorem ([14, Theorem 4.1]).
Theorem 2.1 ([14]). If a Markov process X is in Class (T), then its semi-group p_{t} is compact on $L^{2}(E ; m)$.

We denote by S_{00} the set of positive Borel measures μ such that $\mu(E)<\infty$ and $R_{1} \mu(x)(=$ $\left.\int_{E} R_{1}(x, y) \mu(d y)\right)$ is uniformly bounded in $x \in E$. A positive Borel measure μ on E is said to be smooth if there exists a sequence $\left\{E_{n}\right\}_{n=1}^{\infty}$ of Borel sets increasing to E such that $1_{E_{n}} \cdot \mu \in$ S_{00} for each n and

$$
\mathbb{P}_{x}\left(\lim _{n \rightarrow \infty} \sigma_{E \backslash E_{n}} \geq \zeta\right)=1, \quad \forall x \in E
$$

where $\sigma_{E \backslash E_{n}}$ is the first hitting time of $E \backslash E_{n}$. The totality of smooth measures is denoted by S_{1}.

If an additive functional $\left\{A_{t}\right\}_{\geq \geq 0}$ is positive and continuous with respect to t for each $\omega \in \Omega$, it is said to be a positive continuous additive functional (PCAF in abbreviation). By [5, Theorem 5.1.7] ${ }^{1}$, there exists a one-to-one correspondence between positive smooth measures and PCAF's (Revuz correspondence): for each smooth measure μ, there exists a unique $\operatorname{PCAF}\left\{A_{t}\right\}_{\geq \geq 0}$ such that for any positive Borel function f on E and γ-excessive function h $(\gamma \geq 0)$, that is, $e^{-\gamma t} p_{t} h \leq h$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{t} \mathbb{E}_{h \cdot m}\left(\int_{0}^{t} f\left(X_{s}\right) d A_{s}\right)=\int_{E} f(x) h(x) \mu(d x) \tag{2.2}
\end{equation*}
$$

Here $\mathbb{E}_{h \cdot m}(\cdot)=\int_{E} \mathbb{E}_{x}(\cdot) h(x) m(d x)$. We denote by A_{t}^{μ} the PCAF corresponding to the smooth measure μ.

We now introduce two classes of positive smooth measures which play a crucial role.
Definition 2.1. (i) A positive measure $\mu \in S_{1}$ is said to be in the Kato class (in notation, $\mu \in \mathcal{K}$), if

$$
\lim _{\beta \rightarrow \infty} \sup _{x \in E} \int_{E} R_{\beta}(x, y) d \mu(y)=0 .
$$

A positive measure $\mu \in S_{1}$
(ii) Suppose X is transient. A measure $\mu \in \mathcal{K}$ is said to be Green-tight (in notation, $\mu \in \mathcal{K}_{\infty}(R)$), if for any $\epsilon>0$ there exists a compact set K such that

$$
\sup _{x \in E} \int_{K^{c}} R(x, y) d \mu(y) \leq \epsilon .
$$

If the measure $\mu(d x)=V(x) m(d x)$ is in \mathcal{K} (resp. $\left.\mathcal{K}_{\infty}\right)$, we also denote $V \in \mathcal{K}$ (resp. \mathcal{K}_{∞}).
Note that if X is transient, then $\left(\mathcal{F}_{e}, \mathcal{E}\right)$ is a Hilbert space. The next theorem is proved by Stollmann-Voigt [13].

[^1]Theorem 2.2. For $\mu \in \mathcal{K}_{\infty}(R)$

$$
\begin{equation*}
\int_{E} u^{2}(x) \mu(d x) \leq\|R \mu\|_{\infty} \cdot \mathcal{E}(u, u), \quad u \in \mathcal{F}_{e} . \tag{2.3}
\end{equation*}
$$

Here, $R \mu(x)=\int_{E} R(x, y) d \mu(y)$.
Note that $\|R \mu\|_{\infty}$ is finite by [2, Proposition 2.2]. Let $\check{X}=\left(\check{P}^{M}, \check{X}_{t}\right)$ be the time-changed process, that is, $\breve{\mathbb{P}}_{x}=\mathbb{P}_{x}, \check{X}_{t}=X_{\tau_{t}}, \tau_{t}=\inf \left\{s>0: A_{s}^{\mu}>t\right\}$. Define

$$
F=\left\{x \in X: \mathbb{P}_{x}\left(\tau_{0}=0\right)=1\right\} .
$$

We call F the fine support of μ. Note that the 0 -resolvent \check{R} of \check{X} is written as

$$
\check{R} f(x)=\int_{F} R(x, y) f(x) d \mu(x), \quad f \in L^{2}(F ; \mu),
$$

We then see from (2.3) that for $\mu \in \mathcal{K}_{\infty}(R),\left(\mathcal{F}_{e}, \mathcal{E}\right)$ is continuously embedded in $L^{2}(E ; \mu)$ and so \check{R} is a bounded operator on $L^{2}(F ; \mu)$.

Theorem 2.3 ([14]). Assume that a Markov process X satisfies I and II. If X is transient, then for $\mu \in \mathcal{K}_{\infty}(R),\left(\mathcal{F}_{e}, \mathcal{E}\right)$ is compactly embedded in $L^{2}(E ; \mu)$.

Theorem 2.3 is an extension of Theorem 2.1. Indeed, $\left(\mathcal{F}, \mathcal{E}_{1}\right)$ is a transient regular Dirichlet space and its extended Dirichlet space equals $\left(\mathcal{F}, \mathcal{E}_{1}\right)$. Notice that the 1 -resolvent R_{1} is identical with the 0 -resolvent of $\left(\mathcal{F}, \mathcal{E}_{1}\right)$. We then see from Theorem 2.3 that if μ is Greentight with respect to the 1 -resolvent R_{1} (in notation, $\mu \in \mathcal{K}_{\infty}\left(R_{1}\right)$), then $\left(\mathcal{F}, \mathcal{E}_{1}\right)$ is compactly embedded in $L^{2}(E ; \mu)$. It is known in [2, Theorem 4.2] that if X is in Class (T), then m belongs to $\mathcal{K}_{\infty}\left(R_{1}\right)$. We then obtain Theorem 2.1 because the semi-group p_{t} is compact if and only if $\left(\mathcal{F}, \mathcal{E}_{1}\right)$ is compactly embedded in $L^{2}(E ; m)$.

Corollary 2.1. Assume that a Markov process X satisfies I and II. If μ is a smooth measure in $\mathcal{K}_{\infty}\left(R_{1}\right)$, then $\left(\mathcal{F}, \mathcal{E}_{1}\right)$ is compactly embedded in $L^{2}(E ; \mu)$. In particular, if X is in Class (T), $\left(\mathcal{F}, \mathcal{E}_{1}\right)$ is compactly embedded in $L^{2}(E ; m)$.

Theorem 2.3 and Corollary 2.1 tell us that the 0 -resolvent and 1-resolvent of \check{X} define compact operators on $L^{2}(F ; \mu)$ respectively.

3. Dirichlet Laplacian

In this section, we deal with the Brownian motion $X=\left(\mathbb{P}_{x}, B_{t}\right)$ on \mathbb{R}^{d} and give, as an application of Theorem 2.1, a sufficient condition for the compactness of semi-groups of Dirichlet-Laplacians.

Lemma 3.1. Let p_{t} be the semi-group of the Brownian motion. Then

$$
\left\|p_{t}\right\|_{p, \infty} \leq \frac{C}{t^{d /(2 p)}}, \quad p \geq 1,
$$

where $\|\cdot\|_{p, \infty}$ is the operator norm from $L^{p}\left(\mathbb{R}^{d}\right)$ to $L^{\infty}\left(\mathbb{R}^{d}\right)$.
Proof. Note that for $f \in L^{p}\left(\mathbb{R}^{d}\right)$,

$$
\left|p_{t} f(x)\right| \leq\left(p_{t}|f|^{p}(x)\right)^{1 / p}
$$

Hence we have, on account of $\left\|p_{t}\right\|_{1, \infty} \leq C / t^{d / 2}$

$$
\left\|p_{t} f\right\|_{\infty} \leq\left\|p_{t}|f|^{p}\right\|_{\infty}^{1 / p} \leq\left.\left\|p_{t}\right\|_{1, \infty}^{1 / p} \cdot\| \| f\right|^{p}\left\|_{1}^{1 / p}=\right\| p_{t}\left\|_{1, \infty}^{1 / p} \cdot\right\| f\left\|_{p} \leq \frac{C}{t^{d /(2 p)}} \cdot\right\| f \|_{p} .
$$

Let \mathcal{D} the set of domains in \mathbb{R}^{d}. We set

$$
\mathcal{D}_{0}=\left\{D \in \mathcal{D} \mid \lim _{x \in D,|x| \rightarrow \infty} m(D \cap B(x, 1))=0\right\},
$$

where m denotes the Lebesgue measure on \mathbb{R}^{d}.
Denote by τ_{B} be the first exit time from a Borel set $B, \tau_{B}=\inf \left\{t>0 \mid B_{t} \notin B\right\}$.
Lemma 3.2. If a domain D belongs to \mathcal{D}_{0}, then $\lim _{x \in D,|x| \rightarrow \infty} p_{t}^{D} 1(x)=0$ for any $t>0$.
Proof. Note that for $t>0$

$$
\int_{0}^{t} 1_{D \cap B(x, 1)^{c}\left(B_{s}\right) d s} \leq \int_{0}^{t} 1_{B(x, 1)^{c}}\left(B_{s}\right) d s \leq\left(t-\tau_{B(x, 1)}\right)^{+}
$$

$\left(a^{+}=a \vee 0\right)$ and that

$$
\left\{\tau_{D}>t\right\} \subset\left\{\int_{0}^{t} 1_{D}\left(B_{s}\right) d s=t\right\} .
$$

We then have for any $0<\varepsilon<t$

$$
\begin{aligned}
\mathbb{P}_{x}\left(\tau_{D}>t\right) & \leq \mathbb{P}_{x}\left(\int_{0}^{t} 1_{D \cap B(x, 1)}\left(B_{s}\right) d s \geq \varepsilon\right)+\mathbb{P}_{x}\left(\int_{0}^{t} 1_{D \cap B(x, 1)^{c}}\left(B_{s}\right) d s \geq t-\varepsilon\right) \\
& \leq \mathbb{P}_{x}\left(\int_{0}^{t} 1_{D \cap B(x, 1)}\left(B_{s}\right) d s \geq \varepsilon\right)+\mathbb{P}_{x}\left(\left(t-\tau_{\left.B(x, 1))^{+} \geq t-\varepsilon\right)} .\right.\right.
\end{aligned}
$$

By Lemma 3.1

$$
\mathbb{E}_{x}\left(\int_{0}^{t} 1_{D \cap B(x, 1)}\left(B_{s}\right) d s\right) \leq \int_{0}^{t} \frac{C}{s^{d /(2 p)}} d s \cdot m(D \cap B(x, 1))^{1 / p}
$$

and $\int_{0}^{t} 1 / s^{d /(2 p)} d s<\infty$ for $p>d / 2$. Hence the right-hand side above tends to 0 as $|x| \rightarrow \infty$ in D by the assumption on D, and thus

$$
\lim _{x \in D,|x| \rightarrow \infty} \mathbb{P}_{x}\left(\int_{0}^{t} 1_{D \cap B(x, 1)}\left(B_{s}\right) d s \geq \varepsilon\right)=0
$$

Noting that $\mathbb{P}_{x}\left(\left(t-\tau_{B(x, 1)}\right)^{+} \geq t-\varepsilon\right)=\mathbb{P}_{0}\left(\tau_{B(1)} \leq \varepsilon\right)$, we have

$$
\limsup _{x \in D,|x| \rightarrow \infty} p_{t}^{D} 1(x)=\limsup _{x \in D,|x| \rightarrow \infty} \mathbb{P}_{x}\left(\tau_{D}>t\right) \leq \mathbb{P}_{0}\left(\tau_{B(1)} \leq \varepsilon\right) \rightarrow 0
$$

as $\varepsilon \rightarrow 0$.
From Lemma 3.2, we immediately obtain the next corollary.
Corollary 3.1. If a domain D belongs to \mathcal{D}_{0}, then $\lim _{x \in D,|x| \rightarrow \infty} R_{1}^{D} 1(x)=0$.
Lemma 3.3. If a domain D belongs to \mathcal{D}_{0}, then the absorbing $B M$ on D is in Class (T).

Proof. The irreducibility I and the resolvent strong Feller property II follow from [5, Exercise 4.6.3] and [3, Theorem 2.2] respectively.

Note that for a compact subset K of D

$$
R_{1}^{D} 1_{K^{c}}=R_{1}^{D} 1_{B(R)^{c} \cap K^{c}}+R_{1}^{D} 1_{B(R) \cap K^{c}} \leq R_{1}^{D} 1_{B(R)^{c} \cap K^{c}}+R_{1} 1_{D \cap B(R) \cap K^{c}} .
$$

We see that by the maximum principle

$$
\sup _{x \in D} R_{1}^{D} 1_{B(R)^{c} \cap K^{c}}(x)=\sup _{x \in D \cap B(R)^{c}} R_{1}^{D} 1_{B(R)^{c} \cap K^{c}}(x) \leq \sup _{x \in D \cap B(R)^{c}} R_{1}^{D} 1(x)
$$

and that by Corollary 3.1 the right-hand side above tends to 0 as $R \rightarrow \infty$. Hence, for any $\epsilon>0$ there exists $R>0$ such that $\sup _{x \in D} R_{1}^{D} 1_{B(R)^{c} \cap K^{c}}(x) \leq \epsilon / 2$ for any compact subset $K \subset D$.

Let $\left\{K_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of compact subsets of $D \cap B(R)$ such that $\lim _{n \rightarrow \infty} m\left(D \cap B(R) \cap K_{n}^{c}\right)=0$. Then by using the maximum principle again

$$
\lim _{n \rightarrow \infty} \sup _{x \in D} R_{1} 1_{D \cap B(R) \cap K_{n}^{c}}(x)=\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} R_{1} 1_{D \cap B(R) \cap K_{n}^{c}}(x)=0 .
$$

Hence, $\sup _{x \in D} R_{1} 1_{D \cap B(R) \cap K_{n}^{c}}(x) \leq \epsilon / 2$ for a large n. Therefore, the tightness property III of the absorbing BM on D is proved.

We now obtain the next corollary as an application of Theorem 2.1.
Corollary 3.2. If a domain D belongs to \mathcal{D}_{0}, then the semi-group of the Dirichlet Laplacian on D is compact.

4. Compact Embedding of the Sobolev Spaces

At the first part of this section, the 1 -resolvent is associated with the d-dimensional Brownian motion.

We set

$$
\mathcal{B}_{0}=\left\{B \in \mathcal{B}\left(\mathbb{R}^{d}\right) \mid \lim _{|x| \rightarrow \infty} m(B \cap B(x, 1))=0\right\} .
$$

Note that for $B \in \mathcal{B}_{0}$

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} m(B \cap B(x, R))=0, \quad \forall R>0 \tag{4.1}
\end{equation*}
$$

The 1-resolvent kernel of the d-dimensional Brownian motion $(d \geq 3)$ has the following bound ([9, Theorem 6.23]) ${ }^{2}$:

$$
R_{1}(x, y) \simeq \begin{cases}\frac{1}{|x-y|^{d-2}}, & |x-y| \leq 1 \\ \frac{e^{-\sqrt{2}|x-y|}}{|x-y|^{(d-1) / 2}}, & |x-y| \geq 1\end{cases}
$$

Lemma 4.1. B belongs to \mathcal{B}_{0} if and only if $m^{B}(\bullet)(=m(B \cap \bullet))$ is in $\mathcal{K}_{\infty}\left(R_{1}\right)$.

[^2]Proof. Suppose $B \in \mathcal{B}_{0}$. For $R>l>1$

$$
B_{1}=B(R)^{c} \cap B(x, l) \cap B, \quad B_{2}=B(R)^{c} \cap B(x, l)^{c} \cap B
$$

Since $B(R)^{c} \cap B(x, l)=\emptyset$ for $x \in B(R-l)$, we have

$$
\begin{aligned}
R_{1} 1_{B(R)^{c} \cap B}(x) & \leq C_{1} \int_{B_{1}} \frac{1}{|x-y|^{d-2}} d y+C_{2} \int_{B_{2}} \frac{e^{-\sqrt{2}|x-y|}}{|x-y|^{(d-1) / 2}} d y \\
& \leq C_{1} \sup _{x \in B(R-l)^{c}} \int_{B(x, l) \cap B} \frac{1}{|x-y|^{\mid d-2}} d y+C_{2} \int_{B(x, l)^{c}} \frac{e^{-\sqrt{2}|x-y|}}{|x-y|^{(d-1) / 2}} d y
\end{aligned}
$$

For any $\varepsilon>0$, the second term of the right-hand side is less than $\varepsilon / 2$ for a large l, and the first term is less than $\varepsilon / 2$ for a large R because $B \in \mathcal{B}_{0}$. Hence m^{B} belongs to $\mathcal{K}_{\infty}\left(R_{1}\right)$.

Suppose $m^{B} \in \mathcal{K}_{\infty}\left(R_{1}\right)$. Then for $x \in B(R+1)^{c}$

$$
\begin{aligned}
\int_{B(R)^{c}} R_{1}(x, y) m^{B}(d y) & \geq \int_{B(R) \wedge B \cap B(x, 1)} R_{1}(x, y) d y \geq c_{1} \int_{B \cap B(x, 1)} \frac{1}{|x-y|^{d-2}} d y \\
& \geq c_{1} m(B \cap B(x, 1))
\end{aligned}
$$

and thus

$$
\limsup \sup _{R \rightarrow \infty} m(B \cap B(x, 1)) \leq \lim _{R \rightarrow \infty} \sup _{\mid x \in R+1} \int_{B(R)^{c}} R_{1}(x, y) m^{B}(d y)=0
$$

We obtain the next corollary from Corollary 2.1.
Corollary 4.1. If $B \in \mathcal{B}_{0}$, then $H^{1}\left(\mathbb{R}^{d}\right)$ is compactly embedded in $L^{2}(B)$.
Corollary 4.1 is known (cf. [4, Chapter X, Lemma 6.11, Lemma 6.12]). Moreover, it is shown in [4, Lemma 6.11] that the condition for an open set D being in \mathcal{B}_{0} is a necessary and sufficient one for $H^{1}\left(\mathbb{R}^{d}\right)$ being compactly embedded in $L^{2}(D)$. Hence we can summarize as follows:

Theorem 4.1. Let D be a domain of \mathbb{R}^{d}. The following statements are equivalent.
(i) $D \in \mathcal{B}_{0}$;
(ii) $m^{D} \in \mathcal{K}_{\infty}\left(R_{1}\right)$;
(iii) $H^{1}\left(\mathbb{R}^{d}\right)$ is compactly embedded in $L^{2}(D)$.
4.1. Existence of Ground States. In the sequel, let us consider the symmetric α-stable process on \mathbb{R}^{d}, the Lévy process with generator $-(-\Delta)^{\alpha / 2}, 0<\alpha \leq 2$, and denote it by $X^{\alpha}=\left(\mathbb{P}_{x}, X_{t}\right)$. We suppose, in addition, the transience of $X^{\alpha}, d>\alpha$. The Dirichlet form $(\mathcal{E}, \mathcal{F})$ of X^{α} on $L^{2}\left(\mathbb{R}^{d}\right)$ is expressed by

$$
\mathcal{E}^{\alpha}(u, v)=\frac{1}{2} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}}(u(y)-u(x))(v(y)-v(x)) \frac{A_{d, \alpha}}{|x-y|^{d+\alpha}} d x d y, \quad \mathcal{F}=H^{\alpha / 2}\left(\mathbb{R}^{d}\right)
$$

where $H^{\alpha / 2}\left(\mathbb{R}^{d}\right)$ is the Sobolev space of order $\alpha / 2$ and

$$
A_{d, \alpha}=\frac{\alpha \cdot 2^{\alpha-1} \Gamma\left(\frac{\alpha+d}{2}\right)}{\pi^{\frac{d}{2}} \Gamma\left(1-\frac{\alpha}{2}\right)}, \quad \Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

The transition density of $X^{\alpha}, p(t, x, y)$, satisfies

$$
\begin{equation*}
p(t, x, y) \simeq t^{-\frac{d}{\alpha}} \wedge \frac{t}{|x-y|^{d+\alpha}} \tag{4.2}
\end{equation*}
$$

and the 1 -resolvent density $R_{1}(x, y)$

$$
R_{1}(x, y) \simeq \int_{0}^{|x-y|^{\alpha}} e^{-t} \frac{t}{|x-y|^{d+\alpha}} d t+\int_{|x-y|^{\alpha}}^{\infty} e^{-t} t^{-\frac{d}{\alpha}} d t
$$

The first trem of the right-hand side above equals

$$
\frac{1-\left(1+|x-y|^{\alpha}\right) e^{-|x-y|^{\alpha}}}{|x-y|^{d+\alpha}} \simeq \begin{cases}\frac{1}{|x-y|^{d-\alpha}}, & |x-y| \leq 1 \\ \frac{1}{|x-y|^{d+\alpha}}, & |x-y| \geq 1\end{cases}
$$

and the second term is less than

$$
e^{-|x-y|^{\alpha}} \int_{|x-y|^{\alpha}}^{\infty} t^{-\frac{d}{\alpha}} d t=\frac{\alpha}{d-\alpha} \frac{e^{-|x-y|^{\alpha}}}{|x-y|^{d-\alpha}}
$$

We then see that

$$
R_{1}(x, y) \simeq \begin{cases}\frac{1}{|x-y|^{d-\alpha}}, & |x-y| \leq 1 \tag{4.3}\\ \frac{1}{|x-y|^{d+\alpha}}, & |x-y| \geq 1\end{cases}
$$

For $V \in \mathcal{B}_{+}\left(\mathbb{R}^{d}\right)$ let

$$
M(r)=\underset{x \in B(r)^{c}}{\operatorname{ess} \sup ^{c}} V(x)
$$

and set

$$
\mathcal{V}=\left\{V \in \mathcal{B}_{+}\left(\mathbb{R}^{d}\right) \mid \lim _{|x| \rightarrow \infty}\left\|V 1_{B(x, 1)}\right\|_{1}=0, \exists r_{0}>0 \text { s.t. } M\left(r_{0}\right)<\infty\right\}
$$

Corollary 4.2. If V is in $\mathcal{V} \cap \mathcal{K}$, then V belongs to $\mathcal{K}_{\infty}\left(R_{1}\right)$. In particular, if $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ is in \mathcal{B}_{0}, then $H^{\beta}\left(\mathbb{R}^{d}\right), 0<\beta \leq 1$ is compactly embedded in $L^{2}(B)$.

Let

$$
V_{\gamma}(x)=\frac{1}{|x|^{\gamma}} \wedge 1, \quad \gamma>0
$$

Lemma 4.2. Let R be the Green function of the transient symmetric α-stable process, $R(x, y) \simeq 1 /|x-y|^{d-\alpha}$. Then V_{γ} belongs to $\mathcal{K}_{\infty}(R)$ if and only if $\gamma>\alpha$.

Proof. If $\gamma>\alpha$, then $V_{\gamma} \in \mathcal{K}_{\infty}(R)$. Indeed, take p so that $d / \alpha>p>d / \gamma$ and let $q=p /(p-1)$. For $R>1>\varepsilon>0$

$$
\begin{aligned}
\int_{\{|y| \geq R\} \cap\{|y-x| \geq \varepsilon\}} \frac{1}{|x-y|^{d-\alpha}} \frac{1}{|y|^{\gamma}} d y & \leq\left(\int_{\{|y-x| \geq \varepsilon\}} \frac{1}{|x-y|^{(d-\alpha) q}}\right)^{1 / q}\left(\int_{\{|y| \geq R\}} \frac{1}{|y|^{\gamma p}} d y\right)^{1 / p} \\
& =\omega_{1}\left(\int_{\varepsilon}^{\infty} \frac{1}{r^{(d-\alpha) q-d+1}} d r\right)^{1 / q}\left(\int_{R}^{\infty} \frac{1}{r^{\gamma p-d+1}} d r\right)^{1 / p}
\end{aligned}
$$

Since $(d-\alpha) q-d+1=(d-\alpha p) /(p-1)+1>1$ and $\gamma p-d+1>1$, the right hand side tends to 0 as $R \rightarrow \infty$. Hence

$$
\limsup _{R \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \int_{\{|y| \geq R\}} \frac{1}{|x-y|^{d-\alpha}} V_{\gamma}(y) d y \leq \sup _{x \in \mathbb{R}^{d}} \int_{\{|y| \geq R\} \cap\{|y-x| \leq \varepsilon\}} \frac{1}{|x-y|^{d-\alpha}} V_{\gamma}(y) d y .
$$

Since

$$
\lim _{\varepsilon \rightarrow 0} \sup _{x \in \mathbb{R}^{d}} \int_{\{||y| \geq R| \cap| | y-x \mid \leq \varepsilon\}} \frac{1}{|x-y|^{d-\alpha}} V_{\gamma}(y) d y \leq \lim _{\varepsilon \rightarrow 0} \sup _{x \in \mathbb{R}^{d}} \int_{\{|y-x| \leq \varepsilon\}} \frac{1}{|x-y|^{d-\alpha}} d y=0,
$$

we have

$$
\lim _{R \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \int_{\{|y| \geq R\}} \frac{1}{|x-y|^{d-\alpha}} V_{\gamma}(y) d y=0 .
$$

For $\gamma \leq \alpha$

$$
\begin{aligned}
\sup _{x \in \mathbb{R}^{d}} \int_{\{|| | \geq R\}} \frac{1}{|x-y|^{d-\alpha}} V_{\gamma}(y) d y & \geq \int_{\{||y| \geq R\}} \frac{1}{\mid y y^{d-\alpha}} \frac{1}{|y|^{\mid}} d y \\
& =\omega_{1} \int_{R}^{\infty} \frac{1}{r^{\gamma-\alpha+1}} d r=\infty,
\end{aligned}
$$

and thus $V_{\gamma} \notin \mathcal{K}_{\infty}(R)$.
For any $\gamma>0, V_{\gamma}$ belongs to $\mathcal{K} \cap \mathcal{V}$ and so to $\mathcal{K}_{\infty}\left(R_{1}\right)$ by Corollary 4.2. The lemma above tells us that $\mathcal{K}_{\infty}(R)$ is strictly included in $\mathcal{K}_{\infty}\left(R_{1}\right)$.

We see that for $\alpha<\gamma \leq d, V_{\gamma}$ is in $\mathcal{K}_{\infty}(R)$ with $\int_{\mathbb{R}^{d}} V_{\gamma}(x) d x=\infty$. Combining Theorem 2.3 with Lemma 4.2, we see that if $\gamma>\alpha$, then the extended Dirichlet space $H_{e}^{\alpha / 2}\left(\mathbb{R}^{d}\right)$ is compactly embedded in $L^{2}\left(\mathbb{R}^{d} ; V_{\gamma} d x\right)$. However, we see that the embedding is not compact if $\gamma=\alpha$. Indeed, we see from Hardy's inequality,

$$
\int_{\mathbb{R}^{d}} u^{2}(x) \frac{1}{|x|^{\alpha}} d x \leq C \mathcal{E}^{\alpha}(u, u)
$$

that $H_{e}^{\alpha / 2}\left(\mathbb{R}^{d}\right)$ is continuously embedded in $L^{2}\left(\mathbb{R}^{d} ; V_{\alpha} d x\right)$. In other words, the 0 -order resolvent operator \check{R} of the time-changed process by $\int_{0}^{t} V_{\alpha}\left(X_{s}\right) d s$,

$$
\check{R}^{\alpha} f(x)=R\left(V_{\alpha} f\right)(x)
$$

is a bounded operator on $L^{2}\left(\mathbb{R}^{d} ; V_{\alpha} d x\right)$ and so is

$$
T^{\alpha} f(x):=\int_{\mathbb{R}^{d}} K^{\alpha}(x, y) f(y) d y, \quad K^{\alpha}(x, y)=\frac{\sqrt{V_{\alpha}(x) V_{\alpha}(y)}}{|x-y|^{d-\alpha}}
$$

on $L^{2}\left(\mathbb{R}^{d}\right)$ because of the unitary equivalence between \check{R}^{α} and T^{α}. Moreover, the compact embedding of $H_{e}^{\alpha / 2}\left(\mathbb{R}^{d}\right)$ into $L^{2}\left(\mathbb{R}^{d} ; V_{\alpha} d x\right)$ is equivalent to the compactness of the operator T^{α} on $L^{2}\left(\mathbb{R}^{d}\right)$. The kernel K^{α} is called the Birman-Schwinger Kernel (cf. [12, Section 7.9]). Note that the time changed operator \check{R} can be defined for a smooth measure μ by $R^{\alpha}(f \mu)$; however, T^{α} cannot be defined because the root of measure μ has no meaning.

Let $\varphi_{0}=1_{B(2) \backslash(1)}$ and define

$$
\varphi_{n}(x)=2^{-\frac{d(d-\alpha)}{2} n} \varphi_{0}\left(2^{-(d-\alpha) n} x\right)
$$

Then we can check that $\left\|\varphi_{n}\right\|_{2}=\left\|\varphi_{0}\right\|_{2}, \varphi_{n}$ converges L^{2}-weakly to 0 , and

$$
\left(\varphi_{n}, T^{\alpha} \varphi_{n}\right)=\iint_{1 \leq|x| \leq 2,1 \leq|y| \leq 2} \frac{1}{|x|^{\alpha / 2}|x-y|^{d-\alpha}|y|^{\alpha / 2}} d x d y
$$

If T^{α} is compact, then $T^{\alpha} \varphi_{n}$ converges L^{2}-strongly to 0 and $\left(\varphi_{n}, T^{\alpha} \varphi_{n}\right)$ converges to 0 as $n \rightarrow \infty$, which is contradictory. Hence, we have the next proposition.

Proposition 4.1. Suppose $d>\alpha$. The extended Dirichlet space $H_{e}^{\alpha / 2}\left(\mathbb{R}^{d}\right)$ is compactly embedded in $L^{2}\left(\mathbb{R}^{d} ; V_{\gamma} d x\right)$ if and only if $\gamma>\alpha$.

Using Corollary 2.1, we show existence of ground states of Schrödinger operators. There exists a decreasing function g on $[0, \infty)$ and $R_{1}(x, y)$ is written as

$$
R_{1}(x, y)=g(|x-y|)
$$

and for $V \in \mathcal{K} \cap L^{1}\left(\mathbb{R}^{d}\right)$

$$
\begin{align*}
\int_{\mathbb{R}^{d}} R_{1}(x, y) V(y) d y & =\int_{|x-y| \leq \varepsilon} g(|x-y|) V(y) d y+\int_{|x-y|>\varepsilon} g(|x-y|) V(y) d y \tag{4.4}\\
& \leq k(\varepsilon)+g(\varepsilon)\|V\|_{1}
\end{align*}
$$

where

$$
k(\varepsilon)=\sup _{x \in \mathbb{R}^{d}} \int_{|x-y| \leq \varepsilon} g(|x-y|) V(y) d y
$$

It is known in [1] that

$$
\begin{equation*}
V \in \mathcal{K} \Longleftrightarrow \lim _{\varepsilon \downarrow 0} k(\varepsilon)=0 \tag{4.5}
\end{equation*}
$$

Lemma 4.1 can be extended as follows:
Proposition 4.2. If V is in $\mathcal{V} \cap \mathcal{K}$, then V belongs to $\mathcal{K}_{\infty}\left(R_{1}\right)$.
Proof. For $R>l>r_{0}$,

$$
\begin{aligned}
\int_{B(R)^{c}} R_{1}(x, y) V(y) d y & =\int_{B(R)^{c} \cap B(x, l)^{c}} g(|x-y|) V(y) d y+\int_{B(R)^{c} \cap B(x, l)} g(|x-y|) V(y) d y \\
& \leq M\left(r_{0}\right) \omega_{1} \int_{l}^{\infty} g(r) r^{d-1} d r+\int_{B(R)^{c}} g(|x-y|)\left(V 1_{B(x, l)}\right)(y) d y
\end{aligned}
$$

where ω_{1} is the surface area of the unit sphere. By (4.4) the second term of the right-hand side is less than

$$
\sup _{x \in B(R-l)^{c}} \int_{\mathbb{R}^{d}} g(|x-y|)\left(V 1_{B(x, l)}\right)(y) d y \leq \sup _{x \in B(R-l)^{c}}\left(k(\varepsilon)+g(\varepsilon)\left\|V 1_{B(x, l)}\right\|_{1}\right)
$$

By the assumption $V \in \mathcal{V}$,

$$
\limsup _{R \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \int_{B(R)^{c}} R_{1}(x, y) V(y) d y \leq M\left(r_{0}\right) \omega_{1} \int_{l}^{\infty} g(r) r^{d-1} d r+k(\varepsilon)
$$

and by (4.5) the second term of the right-hand side tends to 0 as $\varepsilon \downarrow 0$. Letting $l \uparrow \infty$ leads us to $V \in \mathcal{K}_{\infty}\left(R_{1}\right)$.

Note that the equivalence (4.5) is valid for X^{α} (cf. [7]). Then the estimate (4.3) of R_{1} leads us to Proposition 4.2 for X^{α} by the same argument.

Proposition 4.3. If $V \in \mathcal{K}$ satisfies $V 1_{\{V \geq \varepsilon\}} \in L^{1}\left(\mathbb{R}^{d}\right)$ for any $\varepsilon>0$, then $V \in \mathcal{K}_{\infty}\left(R_{1}\right)$.
Proof. Since the 1-resolvent kernel $R_{1}(x, y)$ can be written as $g(|x-y|)$,

$$
\begin{aligned}
\int_{B(R)^{c}} R_{1}(x, y) V(y) d y & =\int_{B(R)^{c} \cap\{V \geq \varepsilon\}} g(|x-y|) V(y) d y+\int_{B(R)^{c} \cap\{V<\varepsilon\}} g(|x-y|) V(y) d y \\
& \leq \int_{B(R)^{c} \cap\{V \geq \varepsilon\}} g(|x-y|) V(y) d y+\varepsilon \omega_{1} \int_{0}^{\infty} g(r) r^{d-1} d r
\end{aligned}
$$

Noting $\mathcal{K} \cap L^{1}\left(\mathbb{R}^{d}\right) \subset \mathcal{K}_{\infty}(R)$ by [16, Proposition 1], we have

$$
\limsup _{R \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \int_{B(R)^{c}} R_{1}(x, y) V(y) d y \leq \varepsilon \omega_{1} \int_{0}^{\infty} g(r) r^{d-1} d r \longrightarrow 0, \varepsilon \downarrow 0
$$

For $V=V^{+}-V^{-} \in \mathcal{K}_{\text {loc }}-\mathcal{K}$ we define

$$
\mathcal{E}^{V}(u, u)=\frac{1}{2} \mathbb{D}(u, u)+\int_{\mathbb{R}^{d}} u^{2} V d x, u \in H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d} ; V^{+} d x\right)
$$

where \mathbb{D} denotes the Dirichlet integral.
Corollary 4.3. Let $V=V^{+}-V^{-} \in \mathcal{K}_{l o c}-\mathcal{K} \cap \mathcal{V}$. If

$$
\begin{equation*}
\lambda_{0}:=\inf \left\{\mathcal{E}^{V}(u, u) \mid u \in H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}: V^{+} d x\right), \int_{\mathbb{R}^{d}} u^{2} d x=1\right\}<0 \tag{4.6}
\end{equation*}
$$

then a minimizer for λ_{0} exists.
Proof. Let γ_{0} be the positive constant such that

$$
\begin{equation*}
\inf \left\{\mathcal{E}^{V^{+}}(u, u)+\gamma_{0}(u, u)_{m} \mid \int_{\mathbb{R}^{d}} u^{2} V^{-} d x=1, u \in H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d} ; V^{+} d x\right)\right\}=1 \tag{4.7}
\end{equation*}
$$

V^{-}belongs to $\mathcal{K}_{\infty}\left(R_{1}\right) \subset \mathcal{K}_{\infty}\left(R_{1}^{V^{+}}\right)$by Proposition 4.2 and a minimizer, φ_{0}, in (4.7) exists by Corollary 2.1. Put $\phi_{0}=\varphi_{0} /\left\|\varphi_{0}\right\|_{2}$. Then $\left\|\phi_{0}\right\|_{2}=1, \mathcal{E}^{V}\left(\phi_{0}, \phi_{0}\right)+\gamma_{0}\left(\phi_{0}, \phi_{0}\right)_{m}=0$ and thus

$$
\begin{equation*}
\inf \left\{\mathcal{E}^{V}(u, u)+\gamma_{0}(u, u)_{m} \mid \int_{\mathbb{R}^{d}} u^{2} d x=1, u \in H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d} ; V^{+} d x\right)\right\} \leq 0 \tag{4.8}
\end{equation*}
$$

We see from the same argument as in [15, Lemma 2.2] that

$$
\inf \left\{\mathcal{E}^{V^{+}}(u, u)+\gamma_{0}(u, u)_{m} \mid \int_{\mathbb{R}^{d}} u^{2} V^{-} d x=1, u \in H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d} ; V^{+} d x\right)\right\} \geq 1
$$

if and only if

$$
\inf \left\{\mathcal{E}^{V}(u, u)+\gamma_{0}(u, u)_{m} \mid \int_{\mathbb{R}^{d}} u^{2} d x=1, u \in H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d} ; V^{+} d x\right)\right\} \geq 0
$$

Hence by combing (4.7) with (4.8) we conclude that

$$
\gamma_{0}+\inf \left\{\mathcal{E}^{V}(u, u) \mid \int_{\mathbb{R}^{d}} u^{2} d x=1, u \in H^{1}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d} ; V^{+} d x\right)\right\}=0
$$

λ_{0} equals $-\gamma_{0}$ and $\varphi_{0} /\left\|\varphi_{0}\right\|_{2}$ is a minimizer for λ_{0}.

Suppose that $V \in L^{d / 2}\left(\mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}\right)$ on \mathbb{R}^{d} vanishes at infinity, that is, it satisfies

$$
\begin{equation*}
m(\{x||V(x)|>\varepsilon\})<\infty \text { for all } \varepsilon>0 \tag{4.9}
\end{equation*}
$$

Then it is known in [9, Theorem 11.5] that if, in addition, V satisfies (4.6), then a minimizer exists. Note that $V \in \mathcal{V}$ does not satisfy (4.9) in general. Indeed, for $B \in \mathcal{B}_{0}$ with $m(B)=\infty$, $V:=1_{B}$ does not satisfy (4.9).

5. Schrödinger Semi-groups

Recall that E is a locally compact separable metric space and m is a positive Radon measure on E with full support. Let X be an m-symmetric Borel right process having left limits on $(0, \zeta)$, where ζ is the life time (see section 2). In this section, we assume that X has the properties I and II. We define the Schrödinger semi-group $\left\{p_{t}^{\mu}\right\}_{t \geq 0}$ by

$$
p_{t}^{\mu} f(x)=\mathbb{E}_{x}\left(e^{-A_{t}^{\mu}} f\left(X_{t}\right)\right), \quad f \in \mathcal{B}_{b}(E)
$$

and consider the compactness of the operator p_{t}^{μ} on $L^{2}(E ; m)$.
Lemma 5.1. $\lim _{x \rightarrow \infty} R_{1}^{\mu} 1(x)=0$ if and only if $\lim _{x \rightarrow \infty} p_{t}^{\mu} 1(x)=0$ for any $t>0$.
Proof. The "if" part is clear. Noting

$$
R_{1}^{\mu} 1(x)=\int_{0}^{\infty} e^{-s} p_{s}^{\mu} 1(x) d s \geq \int_{0}^{t} e^{-s} p_{s}^{\mu} 1(x) d s \geq t e^{-t} p_{t}^{\mu} 1(x)
$$

we have this lemma.

A measure μ is said to be in $\mathcal{K}_{\text {loc }}$ if $1_{G} \mu$ is of Kato class for any relatively compact open set $G \subset E$.

Theorem 5.1. Let $\mu \in \mathcal{K}_{\text {loc }}$. Assume that for any $M>0$ there exists a Borel set D_{M} such that
(i) $\mu \geq M \cdot m$ on D_{M}^{c},
(ii) for any $t>0$ and any $\epsilon>0$

$$
\lim _{|x| \rightarrow \infty} \mathbb{P}_{x}\left(\int_{0}^{t} 1_{D_{M}}\left(X_{s}\right) d s>\epsilon, t<\zeta\right)=0
$$

Then p_{t}^{μ} is compact.
Proof. Owing to Remark 2.1 (i) and Lemma 5.1, it is sufficient to show that $\lim _{x \rightarrow \infty} p_{t}^{\mu} 1(x)$ $=0$ for any $t>0$.

Since

$$
\left\{\omega \in \Omega \mid \int_{0}^{t} 1_{D_{M}^{c}}\left(X_{s}\right) d s \geq t-\epsilon, t<\zeta\right\}=\left\{\omega \in \Omega \mid \int_{0}^{t} 1_{D_{M}}\left(X_{s}\right) d s \leq \epsilon, t<\zeta\right\}
$$

we have

$$
\begin{align*}
p_{t}^{\mu} 1(x)= & \mathbb{E}_{x}\left(e^{-A_{t}^{\mu}} ; \int_{0}^{t} 1_{D_{M}}\left(X_{s}\right) d s>\epsilon, t<\zeta\right) \\
& +\mathbb{E}_{x}\left(e^{-A_{t}^{\mu}} ; \int_{0}^{t} 1_{D_{M}^{c}}\left(X_{s}\right) d s \geq t-\epsilon, t<\zeta\right) \tag{5.1}
\end{align*}
$$

It follows from the assumption (i) that if $\int_{0}^{t} 1_{D_{M}^{c}}\left(X_{s}\right) d s \geq t-\epsilon$, then $\int_{0}^{t} 1_{D_{M}^{c}}\left(X_{s}\right) d A_{s}^{\mu} \geq M(t-\epsilon)$. Hence the second term of (5.1) is less than $\exp (-M(t-\epsilon))$ and thus

$$
\limsup _{|x| \rightarrow \infty} p_{t}^{\mu} 1(x) \leq e^{-M(t-\epsilon)}
$$

by the assumption (ii). We have the desired claim by letting M to ∞.
In the sequel, let us consider the symmetric α-stable process on \mathbb{R}^{d}, the Lévy process with generator $-(-\Delta)^{\alpha / 2}, 0<\alpha \leq 2$, and denote it by $X^{\alpha}=\left(\mathbb{P}_{x}, X_{t}\right)$. Let V be a positive function on \mathbb{R}^{d} in the local Kato class. Set

$$
V_{M}=\left\{x \in \mathbb{R}^{d} \mid V(x) \leq M\right\}
$$

Lemma 5.2. If $V_{M} \in \mathcal{B}_{0}$, then

$$
\lim _{|x| \rightarrow \infty} \mathbb{P}_{x}\left(\int_{0}^{t} 1_{V_{M}}\left(X_{s}\right) d s>\epsilon\right)=0
$$

Proof. We have

$$
\begin{gather*}
\mathbb{P}_{x}\left(\int_{0}^{t} 1_{V_{M}}\left(X_{s}\right) d s>\epsilon\right)=\mathbb{P}_{x}\left(\int_{0}^{t} 1_{V_{M} \cap B(x, R)}\left(X_{s}\right) d s+\int_{0}^{t} 1_{V_{M} \cap B(x, R)^{c}}\left(X_{s}\right) d s>\epsilon\right) \\
\leq \mathbb{P}_{x}\left(\int_{0}^{t} 1_{V_{M} \cap B(x, R)}\left(X_{s}\right) d s>\frac{\epsilon}{2}\right)+\mathbb{P}_{x}\left(\int_{0}^{t} 1_{V_{M} \cap B(x, R)^{c}}\left(X_{s}\right) d s>\frac{\epsilon}{2}\right) . \tag{5.2}
\end{gather*}
$$

Note that by the same argument as in Lemma 3.1, the semi-group p_{t} of X^{α} satisfies $\left\|p_{t}\right\|_{p, \infty} \leq$ $C / t^{d /(\alpha p)}$. We then see that for $p>d / \alpha$ the first term of the right-hand side is dominated by

$$
\frac{2}{\epsilon} \mathbb{E}_{x}\left(\int_{0}^{t} 1_{V_{M} \cap B(x, R)}\left(X_{s}\right) d s\right) \leq C(\varepsilon, t) \cdot m\left(V_{M} \cap B(x, R)\right)^{1 / p}
$$

and tends to 0 as $|x| \rightarrow \infty$ on account of (4.1), where m means the Lebesgue measure on \mathbb{R}^{d}.
Since $\int_{0}^{t} 1_{V_{M} \cap B(x, R)^{c}}\left(X_{s}\right) d s \leq\left(t-\tau_{B(x, R)}\right)^{+}$, the second term of the right-hand side of (5.2) is dominated by

$$
\mathbb{P}_{x}\left(t-\tau_{B(x, R)}>\epsilon / 2\right)=\mathbb{P}_{0}\left(\tau_{B(R)}<t-\epsilon / 2\right) \longrightarrow 0
$$

as $R \rightarrow \infty$. Here $\tau_{B(x, R)}$ is the first exist time from $B(x, R)$. Therefore, we have this lemma.

Lemma 5.2 is valid for any $B \in \mathcal{B}_{0}$. Combining Theorem 5.1 with Lemma 5.2, we have the next theorem.

Theorem 5.2. Let $V \in \mathcal{K}_{l o c}$. If $V_{M} \in \mathcal{B}_{0}$ for any $M>0$, then the semi-group of $(-\Delta)^{\alpha / 2}+V$ is compact.

For the symmetric α-stable process, the compactness of p_{t}^{V} is equivalent to $\lim _{|x| \rightarrow \infty} p_{t}^{V} 1(x)=0$ ([6, Lemma 9]). On account of Remark 2.1 (ii) and Lemma 5.1 we have the next corollary.

Corollary 5.1. For $V \in \mathcal{K}_{\text {loc }}$, let X^{V} be the subprocess of the symmetric α-stable process by the multiplicative functional $\exp \left(-\int_{0}^{t} V\left(X_{s}\right) d s\right)$. Then the following statements are equivalent.
(i) X^{V} is in Class (T);
(ii) $\lim _{|x| \rightarrow \infty} p_{t}^{V} 1(x)=0$;
(iii) p_{t}^{V} is compact on $L^{2}\left(\mathbb{R}^{d}\right)$.

References

[1] M. Aizenman and B. Simon: Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), 209-273.
[2] Z.-Q. Chen: Gaugeability and Conditional Gaugeability, Trans. Amer. Math. Soc. 354 (2002), 4639-4679.
[3] K.L. Chung and Z.X. Zhao: From Brownian motion to Schrödinger's equation, Springer-Verlag, Berlin, 1995.
[4] D.E. Edmunds and W.D. Evans: Spectral theory and differential operators, Oxford University Press, 1987.
[5] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes, de Gruyter, 2nd rev. and ext. ed., 2011.
[6] K. Kaleta and T. Kulczycki: Intrinsic ultracontractivity for Schrödinger operators based on fractional Laplacians, Potential Anal. 33 (2010), 313-339.
[7] K. Kuwae and M. Takahashi: Kato class measures of symmetric Markov processes under heat kernel estimates, J. Funct. Anal. 250 (2007), 86-113.
[8] D. Lenz, P. Stollmann and D. Wingert: Compactness of Schrödinger semigroups, Math. Nachr. 283 (2010), 94-103.
[9] E.H. Lieb and M. Loss: Analysis, Graduate Studies in Mathematics 14, American Mathematical Society, 2001.
[10] M. Reed and B. Simon: Method of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1980.
[11] B. Simon: Schrödinger operators with purely discrete spectra, Methods Funct. Anal. Topology 15 (2009), 61-66.
[12] B. Simon: Operator theory, A Comprehensive Course in Analysis, Part 4. American Mathematical Society, 2015.
[13] P. Stollmann and J. Voigt:Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), 109-138.
[14] M. Takeda: Compactness of symmetric Markov semi-groups and boundedness of eigenfunctions, preprint.
[15] M. Takeda and K. Tsuchida: Differentiability of spectral functions for symmetric α-stable processes, Trans. Amer. Math. Soc. 359 (2007), 4031-4054.
[16] Z. Zhao: Subcriticality and gaugeability of the Schrödinger operator, Trans. Amer. Math. Soc. 334 (1992), 75-96.

Masayoshi Takeda
Mathematical Institute
Tohoku University
Aoba, Sendai 980-8578
Japan
e-mail: takeda@math.tohoku.ac.jp
Yoshihiro Tawara
Division of General Education
National Institute of Technology, Nagaoka College
Nagaoka, Niigata 940-8532
Japan
e-mail: tawara@nagaoka-ct.ac.jp
Kaneharu Tsuchida
Department of Mathematics
National Defense Academy
Yokosuka, Kanagawa 239-8686
Japan
e-mail: tsuchida@nda.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 47D08, 60J25.
 M. Takeda was supported in part by Grant-in-Aid for Scientific Research (No.26247008(A)) and Grant-inAid for Challenging Exploratory Research (No.25610018), Japan Society for the Promotion of Science.

[^1]: ${ }^{1}$ In [5], the measure μ (resp. PCAF A_{t}) is said to be a smooth measure in the strict sense (resp. a PCAF in the strict sense). We treat only smooth measures in the strict sense and PCAF's in the strict sense, and omit the term "in the strict sense".

[^2]: ${ }^{2}$ For positive functions $f(z)$ and $g(z)$ on some set Z, we write $f \simeq g$ if there exists a positive constant C such that $C^{-1} \leq f(z) / g(z) \leq C, \quad \forall z \in Z$.

