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Abstract
We study Riemannian manifolds with boundary under a lower Ricci curvature

bound, and a lower mean curvature bound for the boundary. We prove a volume
comparison theorem of Bishop-Gromov type concerning the volumes of the metric
neighborhoods of the boundaries. We conclude several rigidity theorems. As one
of them, we obtain a volume growth rigidity theorem. We also show a splitting
theorem of Cheeger-Gromoll type under the assumption of the existence of a single
ray.

1. Introduction1. Introduction

In this paper, we study Riemannian manifolds with boundary under a lower Ricci cur-
vature bound, and a lower mean curvature bound for the boundary. Heintze and Karcher
in [18], and Kasue in [22] ([21]), have proved several comparison theorems for such mani-
folds with boundary. Furthermore, Kasue has proved rigidity theorems in [23], [24] for such
manifolds with boundary (see also [25], [20]). These rigidity theorems state that if such
manifolds satisfy suitable rigid conditions, then there exist diffeomorphisms preserving the
Riemannian metrics between the manifolds and the model spaces. Other rigidity results have
been also studied in [10] and [36], and so on.

In order to develop the geometry of such manifolds with boundary, we prove a volume
comparison theorem of Bishop-Gromov type concerning the metric neighborhoods of the
boundaries, and produce a volume growth rigidity theorem. We also prove a splitting theo-
rem of Cheeger-Gromoll type under the assumption of the existence of a single ray emanat-
ing from the boundary. We obtain a lower bound for the smallest Dirichlet eigenvalues for
the p-Laplacians. We also add a rigidity result to the list of the rigidity results obtained by
Kasue in [24] on the smallest Dirichlet eigenvalues for the Laplacians.

The preceding rigidity results mentioned above have stated the existence of Riemannian
isometries between manifolds with boundary and the model spaces. On the other hand, our
rigidity results discussed below states the existence of isometries as metric spaces from a
view point of metric geometry. These notions are equivalent to each other (see Subsection
2.3).
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1.1. Main results. For κ ∈ R, we denote by Mn
κ the n-dimensional space form with

constant curvature κ, and by gn
κ the standard Riemannian metric on Mn

κ .
We say that κ ∈ R and λ ∈ R satisfy the ball-condition if there exists a closed geodesic

ball Bn
κ,λ in Mn

κ with non-empty boundary ∂Bn
κ,λ such that ∂Bn

κ,λ has a constant mean curvature
λ. We denote by Cκ,λ the radius of Bn

κ,λ. We see that κ and λ satisfy the ball-condition if and
only if either (1) κ > 0; (2) κ = 0 and λ > 0; or (3) κ < 0 and λ >

√|κ|. Let sκ,λ(t) be a
unique solution of the so-called Jacobi-equation

f ′′(t) + κ f (t) = 0

with intial conditions f (0) = 1 and f ′(0) = −λ. We see that κ and λ satisfy the ball-condition
if and only if the equation sκ,λ(t) = 0 has a positive solution; in particular, Cκ,λ = inf{t > 0 |
sκ,λ(t) = 0}.

We denote by Sn−1 the (n−1)-dimensional standard unit sphere. Let ds2
n−1 be the canonical

metric on Sn−1. For an arbitrary pair of κ ∈ R and λ ∈ R, we define an n-dimensional model
space Mn

κ,λ with constant mean curvature boundary with Riemannian metric gn
κ,λ as follows:

If κ > 0, then we put (Mn
κ,λ, g

n
κ,λ) := (Bn

κ,λ, g
n
κ |Bn

κ,λ
). If κ ≤ 0, then

(Mn
κ,λ, g

n
κ,λ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Bn
κ,λ, g

n
κ |Bn

κ,λ
) if λ >

√|κ|,
(Mn

κ \ Int Bn
κ,−λ, g

n
κ |Mn

κ \Int Bn
κ,−λ) if λ < −√|κ|,

([0,∞) × Sn−1, dt2 + s2
κ,λ(t)ds2

n−1) if |λ| = √|κ|,
([tκ,λ,∞) × Sn−1, dt2 + s2

κ,0(t)ds2
n−1) if |λ| < √|κ|,

where tκ,λ is the unique solution of the equation s′κ,0(t)/sκ,0(t) = −λ under the assumptions
κ < 0 and |λ| < √|κ|. We denote by hn−1

κ,λ the induced Riemannian metric on ∂Mn
κ,λ.

For n ≥ 2, let M be an n-dimensional, connected Riemannian manifold with boundary
with Riemannian metric g. The boundary ∂M is assumed to be smooth. We denote by h
the induced Riemannian metric on ∂M. We say that M is complete if for the Riemannian
distance dM on M induced from the length structure determined by g, the metric space
(M, dM) is complete. We denote by Ricg the Ricci curvature on M defined by g. For K ∈ R,
by RicM ≥ K, we mean that the infimum of Ricg on the unit tangent bundle on the interior
Int M of M is at least K. For x ∈ ∂M, we denote by Hx the mean curvature on ∂M at x in
M. For λ ∈ R, by H∂M ≥ λ, we mean infx∈∂M Hx ≥ λ. Let ρ∂M : M → R be the distance
function from ∂M defined as

ρ∂M(p) := dM(p, ∂M).

The inscribed radius of M is defined as

D(M, ∂M) := sup
p∈M

ρ∂M(p).

For r > 0, we put Br(∂M) := { p ∈ M | ρ∂M(p) ≤ r }. We denote by volg the Riemannian
volume on M induced from g.

One of the main results is the following volume comparison theorem:
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Theorem 1.1. For κ ∈ R and λ ∈ R, and for n ≥ 2, let M be an n-dimensional, connected
complete Riemannian manifold with boundary with Riemannian metric g such that RicM ≥
(n − 1)κ and H∂M ≥ λ. Suppose ∂M is compact. Then for all r,R ∈ (0,∞) with r ≤ R, we
have

volg BR(∂M)
volg Br(∂M)

≤
volgn

κ,λ
BR(∂Mn

κ,λ)

volgn
κ,λ

Br(∂Mn
κ,λ)

.

Theorem 1.1 is an analogue to the Bishop-Gromov volume comparison theorem ([16],
[17]). What happens in the equality case can be described by using the Jacobi fields along
the geodesics perpendicular to the boundary (see Remark 4.10 and Proposition 5.3).

Remark 1.2. Theorem 1.1 is a relative volume comparison theorem. Under the same
setting as in Theorem 1.1, Heintze and Karcher have proved in Theorem 2.1 in [18] that the
absolute volume comparison inequality

volg Br(∂M)
volh ∂M

≤
volgn

κ,λ
Br(∂Mn

κ,λ)

volhn−1
κ,λ
∂Mn

κ,λ

holds for every r > 0. This inequality can be derived from Theorem 1.1. Similar volume
comparison inequalities for submanifolds have been studied in [18].

Remark 1.3. Kasue has shown in Theorem A in [23] that if κ and λ satisfy the ball-
condition, then D(M, ∂M) ≤ Cκ,λ (see Lemma 4.6); moreover, if there exists a point p0 ∈ M
such that ρ∂M(p0) = Cκ,λ, then M is isometric to Bn

κ,λ (see Theorem 4.7).

Remark 1.4. It has been recently shown in [28] that if M is an n-dimensional, connected
complete Riemannian manifold with boundary such that RicM ≥ 0 and H∂M ≥ λ > 0, then
D(M, ∂M) ≤ C0,λ; moreover, if ∂M is compact, then M is compact, and D(M, ∂M) = C0,λ

if and only if M is isometric to Bn
0,λ. It has been recently proved in [27] that for κ < 0

and λ >
√|κ|, if M is an n-dimensional, connected complete Riemannian manifold with

boundary such that RicM ≥ (n − 1)κ and H∂M ≥ λ, then D(M, ∂M) ≤ Cκ,λ; moreover, if ∂M
is compact, then D(M, ∂M) = Cκ,λ if and only if M is isometric to Bn

κ,λ. A similar result
has been proved in [27] for manifolds with boundary under a lower Bakry-Émery Ricci
curvature bound. It has been also recently stated in [14] that if κ ∈ R and λ ∈ R satisfy
the ball-condition, and if M is an n-dimensional, connected complete Riemannian manifold
with boundary such that RicM ≥ (n − 1)κ and H∂M ≥ λ, then D(M, ∂M) ≤ Cκ,λ; moreover,
if ∂M is compact, then M is compact, and D(M, ∂M) = Cκ,λ if and only if M is isometric to
Bn
κ,λ.

Remark 1.5. We prove Theorem 1.1 by using a geometric study of the cut locus for the
boundary, and a comparison result for the Jacobi fields along geodesics perpendicular to the
boundary.

For metric measure spaces, Strum [35], and Ohta [31], [32] have independently intro-
duced the so-called measure contraction property that is equivalent to a lower Ricci curva-
ture bound for manifolds without boundary. We prove a measure contraction inequality for
manifolds with boundary (see Proposition 8.4). Using our measure contraction inequality,
we give another proof of Theorem 1.1.
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For κ ∈ R and λ ∈ R, if κ and λ satisfy the ball-condition, then we put C̄κ,λ := Cκ,λ;
otherwise, C̄κ,λ := ∞. We define a function s̄κ,λ : [0,∞)→ R by

s̄κ,λ(t) :=

⎧⎪⎪⎨⎪⎪⎩
sκ,λ(t) if t < C̄κ,λ,

0 if t ≥ C̄κ,λ,

and define a function fn,κ,λ : [0,∞)→ R by

fn,κ,λ(t) :=
∫ t

0
s̄n−1
κ,λ (u) du.

For κ ∈ R and λ ∈ R, we define [0, C̄κ,λ)×κ,λ ∂M as the warped product ([0, C̄κ,λ)× ∂M, dt2 +

s2
κ,λ(t)h) with Riemannian metric dt2 + s2

κ,λ(t)h, and we put dκ,λ := d[0,C̄κ,λ)×κ,λ∂M.

Theorem 1.1 yields the following volume growth rigidity theorem:

Theorem 1.6. For κ ∈ R and λ ∈ R, and for n ≥ 2, let M be an n-dimensional Riemannian
manifold with boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ.
Suppose ∂M is compact. Let h denote the induced Riemannian metric on ∂M. If

lim inf
r→∞

volg Br(∂M)
fn,κ,λ(r)

≥ volh ∂M,

then the metric space (M, dM) is isometric to ([0, C̄κ,λ) ×κ,λ ∂M, dκ,λ). Moreover, if κ and λ
satisfy the ball-condition, then (M, dM) is isometric to (Bn

κ,λ, dBn
κ,λ

).

Remark 1.7. Under the same setting as in Theorem 1.6, by Theorem 1.1, we always have
the following (see Proposition 5.1):

lim sup
r→∞

volg Br(∂M)
fn,κ,λ(r)

≤ volh ∂M.

Theorem 1.6 is certainly concerned with a rigidity phenomenon.

1.2. Splitting theorems. Kasue in Theorem C in [23] has proved the following splitting
theorem. For κ ≤ 0, let M be an n-dimensional, connected complete Riemannian manifold
with boundary such that RicM ≥ (n − 1)κ and H∂M ≥

√|κ|. If M is noncompact and ∂M is
compact, then (M, dM) is isometric to ([0,∞) ×κ,√|κ| ∂M, dκ,√|κ|). The same result has been
proved by Croke and Kleiner in Theorem 2 in [9].

In [23], the proof of the splitting theorem is based on the original proof of the Cheeger-
Gromoll splitting theorem in [8]. For a ray γ on M, let bγ be the busemann function on M for
γ. The key points in [23] are to show the existence of a ray γ on M such that for all t ≥ 0 we
have ρ∂M(γ(t)) = t, and the subharmonicity of the function bγ − ρ∂M in a distribution sense,
and to apply an analytic maximal principle (see [15]). In [9], the splitting theorem has been
proved by using the Calabi maximal principle ([4]) similarly to the elementary proof of the
Cheeger-Gromoll splitting theorem developed by Eschenburg and Heintze in [11]. It seems
that the proof in [9] relies on the compactness of ∂M.
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Let M be a connected complete Riemannian manifold with boundary. For x ∈ ∂M, we
denote by ux the unit inner normal vector at x. Let γx : [0, T ) → M be the geodesic with
initial conditions γx(0) = x and γ′x(0) = ux. We define a function τ : ∂M → R ∪ {∞} by

τ(x) := sup{ t > 0 | ρ∂M(γx(t)) = t }.

We point out that the following splitting theorem holds for the case where the boundary
is not necessarily compact.

Theorem 1.8. For n ≥ 2 and κ ≤ 0, let M be an n-dimensional, connected complete
Riemannian manifold with boundary such that RicM ≥ (n−1)κ and H∂M ≥

√|κ|. Assume that
for some x ∈ ∂M, we have τ(x) = ∞. Then (M, dM) is isometric to ([0,∞)×κ,√|κ| ∂M, dκ,√|κ|).

Theorem 1.8 can be proved by a similar way to that of the proof of the splitting theorem
in [23]. We give a proof of Theorem 1.8 in which we use the Calabi maximal principle. Our
proof can be regarded as an elementary proof of the splitting theorem in [23].

Remark 1.9. In Theorem 1.8, if ∂M is noncompact, then we can not replace the assump-
tion of τwith that of the existence of a single ray orthogonally emanating from the boundary.
For instance, we put

M := {(p, q) ∈ R2 | p < 0, p2 + q2 ≤ 1} ∪ {(p, q) ∈ R2 | p ≥ 0, |q| ≤ 1}.

Observe that M is a 2-dimensional, connected complete Riemannian manifold with bound-
ary such that RicM = 0 and H∂M ≥ 0. For all x ∈ ∂M, we have τ(x) = 1. The geodesic γ(−1,0)

is a ray in M. On the other hand, M is not isometric to the standard product [0,∞) × ∂M.

1.3. Eigenvalues. Let M be a Riemannian manifold with boundary with Riemannian
metric g. For p ∈ [1,∞), the (1, p)-Sobolev space W1,p

0 (M) on M with compact support is
defined as the completion of the set of all smooth functions on M whose support is compact
and contained in Int M with respect to the standard (1, p)-Sobolev norm. Let ‖ · ‖ denote the
standard norm induced from g, and div the divergence with respect to g. For p ∈ [1,∞), the
p-Laplacian Δp f for f ∈ W1,p

0 (M) is defined as

Δp f := − div
(
‖∇ f ‖p−2 ∇ f

)
,

where the equality holds in a weak sense on W1,p
0 (M). A real number λ is said to be a p-

Dirichlet eigenvalue for Δp on M if we have a non-zero function f in W1,p
0 (M) such that

Δp f = λ| f |p−2 f holds on Int M in a weak sense on W1,p
0 (M). For p ∈ [1,∞), the Rayleigh

quotient Rp( f ) for f ∈ W1,p
0 (M) is defined as

Rp( f ) :=

∫
M ‖∇ f ‖p d volg∫

M | f |p d volg
.

We put μ1,p(M) := inf f Rp( f ), where the infimum is taken over all non-zero functions in
W1,p

0 (M). The value μ1,2(M) is equal to the infimum of the spectrum of Δ2 on M. If M is
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compact, and if p ∈ (1,∞), then μ1,p(M) is equal to the infimum of the set of all p-Dirichlet
eigenvalues for Δp on M.

Due to the volume estimate obtained by Kasue in [25], we obtain the following:

Theorem 1.10. For κ ∈ R, λ ∈ R and D ∈ (0, C̄κ,λ], and for n ≥ 2, let M be an n-
dimensional, connected complete Riemannian manifold with boundary such that RicM ≥
(n− 1)κ, H∂M ≥ λ and D(M, ∂M) ≤ D. Suppose ∂M is compact. Then for all p ∈ (1,∞), we
have

μ1,p(M) ≥ ( p C(n, κ, λ,D) )−p,

where C(n, κ, λ,D) is a positive constant defined by

C(n, κ, λ,D) := sup
t∈[0,D)

∫ D
t sn−1

κ,λ (s) ds

sn−1
κ,λ (t)

.

Remark 1.11. In Theorem 1.10, since ∂M is compact, D(M, ∂M) is finite if and only
if M is compact (see Lemma 3.4). We see that C(n, κ, λ,∞) is finite if and only if κ <

0 and λ =
√|κ|; in this case, C(n, κ, λ,D) = ((n − 1)λ)−1

(
1 − e−(n−1)λD

)
; in particular,

(2 C(n, κ, λ,∞))−2 = ((n − 1)λ/2)2.

Remark 1.12. For compact manifolds with boundary of non-negative Ricci curvature,
similar lower bounds for μ1,p to that in Theorem 1.10 have been obtained in [26], in [37] and
in [38].

We recall the works of Kasue in [24] for compact manifolds with boundary. Let n ≥ 2,
κ, λ ∈ R and D ∈ (0, C̄κ,λ] \ {∞}. Kasue has proved in Theorem 2.1 in [24] that there exists a
positive constant μn,κ,λ,D such that for every n-dimensional, connected compact Riemannian
manifold M with boundary such that RicM ≥ (n − 1)κ, H∂M ≥ λ and D(M, ∂M) ≤ D, we
have μ1,2(M) ≥ μn,κ,λ,D; moreover, in some extremal case, the equality holds if and only if
M is isometric to some model space. The extremal case happens only if κ and λ satisfy the
ball-condition or the condition that the equation s′κ,λ(t) = 0 has a positive solution. Note that
the equation s′κ,λ(t) = 0 has a positive solution if and only if either (1) κ = 0 and λ = 0; (2)
κ < 0 and λ ∈ (0,

√|κ|); or (3) κ > 0 and λ ∈ (−∞, 0). Let

μ̄n,κ,λ,D :=
(

4 sup
t∈(0,D)

∫ D

t
sn−1
κ,λ (s) ds

∫ t

0
s1−n
κ,λ (s) ds

)−1

.

It has been shown in Lemma 1.3 in [24] that μn,κ,λ,D > μ̄n,κ,λ,D. Therefore, for every n-
dimensional, connected compact Riemannian manifold M with boundary such that RicM ≥
(n − 1)κ, H∂M ≥ λ and D(M, ∂M) ≤ D, we have μ1,2(M) > μ̄n,κ,λ,D. This estimate for μ1,2 is
better than that in Theorem 1.10.

Let n ≥ 2, κ < 0 and λ =
√|κ|. The model space Mn

κ,λ is non-compact. For t ∈
[0,∞), we put φn,κ,λ(t) := t e

(n−1)λt
2 . The smooth function φn,κ,λ ◦ ρ∂Mn

κ,λ
on Mn

κ,λ satisfies
R2(φn,κ,λ ◦ ρ∂Mn

κ,λ
) = ((n − 1)λ/2)2; hence, μ1,2(Mn

κ,λ) ≤ ((n − 1)λ/2)2. Notice that the value
(2 C(n, κ, λ,∞))−2 in Theorem 1.10 is equal to ((n − 1)λ/2)2 (see Remark 1.11). Theorem
1.10 implies μ1,2(Mn

κ,λ) = ((n − 1)λ/2)2. Let D ∈ (0,∞). As mentioned above, we have
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already known in [24] that for every n-dimensional, connected compact Riemannian mani-
fold M with boundary such that RicM ≥ (n − 1)κ, H∂M ≥ λ and D(M, ∂M) ≤ D, we have
μ1,2(M) > μ̄n,κ,λ,D. The value μ̄n,κ,λ,D is equal to ((n − 1)λ/2)2

(
1 − e−(n−1)λD/2

)−2
, and tends

to μ1,2(Mn
κ,λ) as D→ ∞.

By using Theorem 1.10 and the splitting theorem in [23], we add the following result for
not necessarily compact manifolds with boundary to the list of the rigidity results obtained
in [24].

Theorem 1.13. Let κ < 0 and λ :=
√|κ|. For n ≥ 2, let M be an n-dimensional, connected

complete Riemannian manifold with boundary such that RicM ≥ (n − 1)κ and H∂M ≥ λ.
Suppose ∂M is compact. Then for all p ∈ (1,∞), we have

μ1,p(M) ≥
(
(n − 1)λ

p

)p

;

if the equality holds for some p ∈ (1,∞), then (M, dM) is isometric to ([0,∞) ×κ,λ ∂M, dκ,λ);
moreover, if p = 2, then the equality holds if and only if (M, dM) is isometric to ([0,∞) ×κ,λ
∂M, dκ,λ).

Remark 1.14. In Theorem 1.13, the author does not know whether in the case of p � 2
the value μ1,p([0,∞) ×κ,λ ∂M) is equal to ((n − 1)λ/p)p.

Cheeger and Colding in Theorem 2.11 in [7] have proved the segment inequality for
complete Riemannian manifolds under a lower Ricci curvature bound. They have mentioned
that their segment inequality gives a lower bound for the smallest Dirichlet eigenvalue for
the Laplacian on a closed ball.

Based on the proof of Theorem 1.1, we prove a segment inequality of Cheeger-Colding
type for manifolds with boundary (see Proposition 7.2). Using our segment inequality, we
obtain a lower bound for μ1,p smaller than the lower bound in Theorem 1.10 (see Proposition
7.4).

1.4. Organization. In Section , we prepare some notations and recall the basic facts on
Riemannian manifolds with boundary.

In Section , for a connected complete Riemannian manifold with boundary, we study
the basic properties of the cut locus for the boundary. The basic properties seem to be well-
known, however, they has not been summarized in any literature. For the sake of the readers,
we discuss them in order to prove our results.

In Section 4, by using the study of the cut locus for the boundary in Section , we prove
Theorem 1.1.

In Section 5, we prove Theorem 1.6. The rigidity follows from the study in the equality
case in Theorem 1.1.

In Section 6, we prove Theorem 1.8.
In Section 7, we prove Theorems 1.10 and 1.13. We also prove a segment inequality

(see Proposition 7.2). After that, we show the Poincaré inequality (see Lemma 7.3), and we
conclude Proposition 7.4.

In Section 8, we prove a measure contraction inequality (see Proposition 8.4). We also
give another proof of Theorem 1.1.
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2. Preliminaries2. Preliminaries

We refer to [3] for the basics of metric geometry, and to [34] for the basics of Riemannian
manifolds with boundary.

2.1. Metric spaces. Let (X, dX) be a metric space. For r > 0 and A ⊂ X, we denote by
Ur(A) the open r-neighborhood of A in X, and by Br(A) the closed one.

For a metric space (X, dX), the length metric d̄X is defined as follows: For two points
x1, x2 ∈ X, we put d̄X(x1, x2) to the infimum of the length of curves connecting x1 and x2

with respect to dX . A metric space (X, dX) is said to be a length space if dX = d̄X .
Let (X, dX) be a metric space. For an interval I ⊂ R, let γ : I → X be a curve. We say that

γ is a normal minimal geodesic if for all s, t ∈ I, we have dX(γ(s), γ(t)) = |s − t|, and γ is a
normal geodesic if for each t ∈ I, there exists an interval J ⊂ I with t ∈ J such that γ|J is a
normal minimal geodesic. A metric space (X, dX) is said to be a geodesic space if for every
pair of two points in X, there exists a normal minimal geodesic connecting them. A metric
space is proper if all closed bounded subsets of the space are compact. The Hopf-Rinow
theorem for length spaces (see e.g., Theorem 2.5.23 in [3]) states that if a length space
(X, dX) is complete and locally compact, and if dX < ∞, then (X, dX) is a proper geodesic
space.

2.2. Riemannian manifolds with boundary. For n ≥ 2, let M be an n-dimensional,
connected Riemannian manifold with (smooth) boundary with Riemannian metric g. For
p ∈ Int M, let TpM be the tangent space at p on M, and let UpM be the unit tangent sphere
at p on M. We denote by ‖ · ‖ the standard norm induced from g. If v1, . . . , vk ∈ TpM are
linearly independent, then we see ‖v1 ∧ · · · ∧ vk‖ =

√
det(g(vi, v j)). Let dM be the length

metric induced from g. If M is complete with respect to dM, then the Hopf-Rinow theorem
for length spaces tells us that the metric space (M, dM) is a proper geodesic space.

For x ∈ ∂M, and the tangent space Tx∂M at x on ∂M, let T⊥x ∂M be the orthogonal
complement of Tx∂M in the tangent space at x on M. Take u ∈ T⊥x ∂M. For the second
fundamental form S of ∂M, let Au : Tx∂M → Tx∂M be the shape operator for u defined as

g(Auv, w) := g(S (v, w), u).

Let ux ∈ T⊥x ∂M denote the unit inner normal vector at x. The mean curvature Hx at x is
defined by

Hx :=
1

n − 1
trace Aux .

For the normal tangent bundle T⊥∂M :=
⋃

x∈∂M T⊥x ∂M of ∂M, let 0(T⊥∂M) be the zero-
section

⋃
x∈∂M{ 0x ∈ T⊥x ∂M } of T⊥∂M. For r > 0, we put

Ur(0(T⊥∂M)) :=
⋃

x∈∂M

{ t ux ∈ T⊥x ∂M | t ∈ [0, r) }.

For x ∈ ∂M, we denote by γx : [0, T ) → M the normal geodesic with initial conditions
γx(0) = x and γ′x(0) = ux. Note that γx is a normal geodesic in the usual sense in Riemannian
geometry. On an open neighborhood of 0(T⊥∂M) in T⊥∂M, the normal exponential map
exp⊥ of ∂M is defined as follows: For x ∈ ∂M and u ∈ T⊥x ∂M, put exp⊥(x, u) := γx(‖u‖).
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Since the boundary ∂M is smooth, there exists an open neighborhood U of ∂M satisfying
the following: (1) the map exp⊥ |(exp⊥)−1(U\∂M) is a diffeomorphism onto U \∂M; (2) for every
p ∈ U, there exists a unique point x ∈ ∂M such that dM(p, x) = dM(p, ∂M); in this case,
γx|[0,dM(p,∂M)] is a unique normal minimal geodesic in M from x to p. We call such an open
set U a normal neighborhood of ∂M. If ∂M is compact, then for some r > 0, the set Ur(∂M)
is a normal neighborhood of ∂M.

We say that a Jacobi field Y along γx is a ∂M-Jacobi field if Y satisfies the following
initial conditions:

Y(0) ∈ Tx∂M, Y ′(0) + AuxY(0) ∈ T⊥x ∂M.

We say that γx(t0) is a conjugate point of ∂M along γx if there exists a non-zero ∂M-Jacobi
field Y along γx with Y(t0) = 0. Let τ1(x) denote the first conjugate value for ∂M along γx.
It is well-known that for all x ∈ ∂M and t > τ1(x), we have t > dM(γx(t), ∂M).

For all x ∈ ∂M and t ∈ [0, τ1(x)), we denote by θ(t, x) the absolute value of the Jacobian
of exp⊥ at (x, tux) ∈ T⊥∂M. For each x ∈ ∂M, we choose an orthonormal basis {ex,i}n−1

i=1
of Tx∂M. For each i = 1, . . . , n − 1, let Yx,i be the ∂M-Jacobi field along γx with initial
conditions Yx,i(0) = ex,i and Y ′x,i(0) = −Auxex,i. Note that for all x ∈ ∂M and t ∈ [0, τ1(x)),
we have θ(t, x) = ‖Yx,1(t) ∧ · · · ∧ Yx,n−1(t)‖. This does not depend on the choice of the
orthonormal basis.

2.3. Distance rigidity and metric rigidity. For i = 1, 2, let Mi be connected Riemannian
manifolds with boundary with Riemannian metric gi. For each i, the boundary ∂Mi carries
the induced Riemannian metric hi.

Definition 2.1. We say that a homeomorphism Φ : M1 → M2 is a Riemannian isometry
with boundary from M1 to M2 if Φ satisfies the following conditions:

(1) Φ|Int M1 : Int M1 → Int M2 is smooth, and (Φ|Int M1 )
∗(g2) = g1;

(2) Φ|∂M1 : ∂M1 → ∂M2 is smooth, and (Φ|∂M1 )
∗(h2) = h1.

If there exists a Riemannian isometry Φ : M1 → M2 with boundary, then the inverse Φ−1

is also a Riemannian isometry with boundary.
The following is well-known for manifolds without boundary (see e.g., Theorem 11.1 in

[19]).

Lemma 2.2. Let M and N be connected Riemannian manifolds (without boundary) with
Riemannian metric gM and with gN, respectively. Let dM and dN be the Riemannian dis-
tances on M and on N, respectively. Suppose that a mapΨ : M → N is an isometry between
the metric spaces (M, dM) and (N, dN). Then Ψ is smooth, and Ψ∗gN = gM. Namely, Ψ is a
Riemannian isometry from (M, gM) to (N, gN).

For manifolds with boundary, we show the following:

Lemma 2.3. For i = 1, 2, let Mi be connected Riemannian manifolds with boundary with
Riemannian metric gi. Then there exists a Riemannian isometry with boundary from M1 to
M2 if and only if the metric space (M1, dM1 ) is isometric to (M2, dM2 ).

Proof. For i = 1, 2, we denote by ‖ · ‖gi and by ‖ · ‖hi the standard norms induced from
gi and from hi, respectively. For a piecewise smooth curve γ in Mi, we denote by Lgi(γ) the
length of γ induced from gi.
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First, we show that if Φ : M1 → M2 is a Riemannian isometry with boundary, then it is
an isometry between the metric spaces (M1, dM1 ) and (M2, dM2 ). It suffices to show that Φ is
a 1-Lipschitz map from (M1, dM1 ) to (M2, dM2 ). Pick p, q ∈ M1. Take ε > 0. There exists
a piecewise smooth curve γ : [0, l] → M1 such that Lg1 (γ) < dM1 (p, q) + ε. Assume that γ
is smooth at t ∈ [0, l]. If γ(t) belongs to Int M1, then ‖(Φ ◦ γ)′(t)‖g2 is equal to ‖γ′(t)‖g1 . If
γ(t) belongs to ∂M1, then ‖(Φ ◦ γ)′(t)‖h2 is equal to ‖γ′(t)‖h1 , and hence Lg2 (Φ ◦ γ) is equal
to Lg1 (γ). We have dM2 (Φ(p),Φ(q)) < dM1 (p, q) + ε. This implies that Φ is 1-Lipschitz.

Next, we show that if Ψ : M1 → M2 is an isometry between the metric spaces (M1, dM1 )
and (M2, dM2 ), then it is a Riemannian isometry with boundary. To do this, we first show
that Ψ|Int M1 : Int M1 → Int M2 is smooth, and (Ψ|Int M1 )

∗(g2) = g1. Take p ∈ Int M1. There
exists a sufficiently small r ∈ (0,∞) such that Ur(p) and Ur(Ψ(p)) are strongly convex in
(Int M1, g1) and in (Int M2, g2), respectively. Then Ψ|Ur(p) becomes an isometry between
the metric subspaces Ur(p) and Ur(Ψ(p)). Applying Lemma 2.2 to the open Riemannian
submanifolds Ur(p) and Ur(Ψ(p)), we see that Ψ|Ur(p) is a smooth Riemannian isometry.
This implies that Ψ|Int M1 : Int M1 → Int M2 is smooth, and (Ψ|Int M1 )

∗(g2) = g1.
We second show that the map Ψ|∂M1 : ∂M1 → ∂M2 is smooth, and (Ψ|∂M1 )

∗(h2) = h1.
To do this, we prove that Ψ|∂M1 is an isometry between the metric spaces (∂M1, d∂M1 ) and
(∂M2, d∂M2 ), where d∂M1 and d∂M2 are the Riemannian distances on ∂M1 and on ∂M2, respec-
tively. It suffices to show that Ψ|∂M1 is a 1-Lipschitz map from (∂M1, d∂M1 ) to (∂M2, d∂M2 ).
Take x, y ∈ ∂M1. For every ε > 0, there exists a piecewise smooth curve γ : [0, l] → ∂M1

such that Lh1 (γ) < d∂M1 (x, y) + ε. Fix t ∈ [0, l] at which γ is smooth. Since Ψ is an isometry
between (M1, dM1 ) and (M2, dM2 ), we have

‖γ′(t)‖h1 = ‖γ′(t)‖g1 = lim
δ→0

dM1 (γ(t), γ(t + δ))
δ

= lim
δ→0

dM2 ((Ψ ◦ γ)(t), (Ψ ◦ γ)(t + δ))
δ

.

Since ∂M2 is smooth, and since h2 is induced from g2, for every z0 ∈ ∂M2 we have

lim
z→z0

d∂M2 (z0, z)
dM2 (z0, z)

= 1,

where the limit is taken with respect to d∂M2 . Hence, we have

lim
δ→0

d∂M2 ((Ψ ◦ γ)(t), (Ψ ◦ γ)(t + δ))
dM2 ((Ψ ◦ γ)(t), (Ψ ◦ γ)(t + δ))

= 1;

in particular,

‖γ′(t)‖h1 = lim
δ→0

d∂M2 ((Ψ ◦ γ)(t), (Ψ ◦ γ)(t + δ))
δ

.

It follows that

Lh1 (γ) =
∫ l

0
lim
δ→0

d∂M2 ((Ψ ◦ γ)(t), (Ψ ◦ γ)(t + δ))
δ

dt.

The right hand side coincides with the length of Ψ ◦ γ with respect to d∂M2 (see e.g., Section
2.7 in [3]), and is greater than or equal to d∂M2 (Ψ(x),Ψ(y)). Therefore, d∂M2 (Ψ(x),Ψ(y)) <
d∂M1 (x, y) + ε. This implies that Ψ|∂M1 is 1-Lipschitz. Thus, we conclude that Ψ|∂M1 is an
isometry between (∂M1, d∂M1 ) and (∂M2, d∂M2 ). Applying Lemma 2.2 to ∂M1 and ∂M2, we
see that Ψ|∂M1 is smooth, and (Ψ|∂M1 )

∗(h2) = h1.
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This completes the proof of Lemma 2.3. �

2.4. Comparison theorem. For κ ∈ R, let sκ(t) be a unique solution of the so-called
Jacobi-equation f ′′(t) + κ f (t) = 0 with initial conditions f (0) = 0 and f ′(0) = 1.

The Laplacian Δ of a smooth function on a Riemannian manifold is defined by the minus
of the trace of its Hessian.

It is well-known that we have the following Laplacian comparison theorem for the dis-
tance function from a single point (see e.g., Proposition 3.6 in [34]).

Lemma 2.4. Let M be an n-dimensional, connected complete Riemmanian manifold with
boundary such that RicM ≥ (n − 1)κ. Take p ∈ Int M and u ∈ UpM. Let ρp : M → R be
the function defined as ρp(q) := dM(p, q), and let γu : [0, t0) → M be the normal minimal
geodesic with initial conditions γu(0) = p and γ′u(0) = u such that γu lies in Int M. Then for
all t ∈ (0, t0), we have

Δρp(γu(t)) ≥ −(n − 1)
s′κ(t)
sκ(t)

.

3. Cut locus for the boundary3. Cut locus for the boundary

Let M be a connected complete Riemannian manifold with boundary with Riemannian
metric g.

3.1. Foot points. For a point p ∈ M, we call x ∈ ∂M a foot point on ∂M of p if
dM(p, x) = dM(p, ∂M). Since (M, dM) is proper, every point in M has at least one foot point
on ∂M.

Lemma 3.1. For p ∈ Int M, let x ∈ ∂M be a foot point on ∂M of p. Then there exists
a unique normal minimal geodesic γ : [0, l] → M from x to p such that γ = γx|[0,l], where
l = ρ∂M(p). In particular, γ′(0) = ux and γ|(0,l] lies in Int M.

Proof. Since (M, dM) is a geodesic space, there exists a normal minimal geodesic γ :
[0, l] → M from x to p. Since x is a foot point on ∂M of p, we see that γ|(0,l] lies in Int M.
We take a normal neighborhood U of ∂M. If p ∈ U \∂M, then x is a unique foot point on ∂M
of p, and γ = γx|[0,l]; in particular, we have γ′(0) = ux. Even if p � U \ ∂M, then for every
sufficiently small t > 0, we see that x is the foot point on ∂M of γ(t). Hence, γ′(0) = ux.
This implies γ = γx|[0,l]. �

3.2. Cut locus. Let τ : ∂M → R ∪ {∞} be the function defined as

τ(x) := sup{ t > 0 | ρ∂M(γx(t)) = t }.

Recall that for all x ∈ ∂M and t > τ1(x), we have t > ρ∂M(γx(t)). Therefore, for all x ∈ ∂M,
we have 0 < τ(x) ≤ τ1(x).

To study the cut locus, we show the following:

Lemma 3.2. The function τ is continuous on ∂M.
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Proof. Assume xi → x in ∂M. First, we show the upper semi-continuity of τ. We assume
lim supi→∞ τ(xi) < ∞. Take a subsequence {τ(x j)} of {τ(xi)} with τ(x j) → lim supi→∞ τ(xi)
as j → ∞. Put p j := γx j(τ(x j)) and p := γx(lim supi→∞ τ(xi)). Since geodesics in (Int M, g)
depend continuously on the initial direction and the parameter, we see p j → p in M as
j → ∞. By the definition of τ, for all j we have ρ∂M(p j) = τ(x j). By letting j → ∞,
we obtain ρ∂M(p) = lim supi→∞ τ(xi). Hence, lim supi→∞ τ(xi) ≤ τ(x). In a similar way,
we see that if lim supi→∞ τ(xi) = ∞, then τ(x) = ∞. Therefore, we have shown the upper
semi-continuity.

Next, we show the lower semi-continuity of τ. We may assume lim infi→∞ τ(xi) < ∞.
The proof is done by contradiction. We suppose lim infi→∞ τ(xi) < τ(x). Choose δ > 0
such that lim infi→∞ τ(xi) + δ < τ(x). Take a subsequence {τ(x j)} of {τ(xi)} with τ(x j) →
lim infi→∞ τ(xi) as j→ ∞. By the definition of τ, we have τ(x j)+δ > dM(γx j(τ(x j)+δ), ∂M).
Since γx j(τ(x j) + δ)→ γx(lim infi→∞ τ(xi) + δ) in M, we have

lim inf
i→∞ τ(xi) + δ > ρ∂M(γx(lim inf

i→∞ τ(xi) + δ)).

On the other hand, lim infi→∞ τ(xi) + δ < τ(x). This contradicts the definition of τ. Hence,
we have shown the lower semi-continuity. �

By Lemma 3.1, we have the following:

Lemma 3.3. For all r > 0, we have

Br(∂M) = exp⊥
⎛⎜⎜⎜⎜⎜⎝
⋃

x∈∂M

{tux | t ∈ [0,min{r, τ(x)}]}
⎞⎟⎟⎟⎟⎟⎠ .

Proof. Take p ∈ Br(∂M), and let x be a foot point on ∂M of p. By Lemma 3.1, there
exists a unique normal minimal geodesic γ : [0, l] → M from x to p such that γ = γx|[0,l],
where l = ρ∂M(p). Since x is a foot point on ∂M of p, we have l ≤ r, and l ≤ τ(x). Hence,

Br(∂M) ⊂ exp⊥
⎛⎜⎜⎜⎜⎜⎝
⋃

x∈∂M

{tux | t ∈ [0,min{r, τ(x)}]}
⎞⎟⎟⎟⎟⎟⎠ .

On the other hand, take x ∈ ∂M and t ∈ [0,min{r, τ(x)}]. By the definition of τ, the point
x is a foot point on ∂M of γx(t). Therefore, ρ∂M(γx(t)) = t ≤ r. This implies the opposite
inclusion. �

For the inscribed radius D(M, ∂M) of M, from the definition of τ, it follows that
supx∈∂M τ(x) ≤ D(M, ∂M). Lemma 3.1 implies the opposite. Hence, we have D(M, ∂M) =
supx∈∂M τ(x).

We put

T D∂M :=
⋃

x∈∂M

{ t ux ∈ T⊥x ∂M | t ∈ [0, τ(x)) },

TCut ∂M :=
⋃

x∈∂M

{ τ(x) ux ∈ T⊥x ∂M | τ(x) < ∞},
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and define D∂M := exp⊥(T D∂M) and Cut ∂M := exp⊥(TCut ∂M). We call Cut ∂M the cut
locus for the boundary ∂M. By Lemma 3.1, we have Int M = (D∂M \ ∂M) ∪ Cut ∂M and
M = D∂M ∪ Cut ∂M.

The continuity of τ tells us the following:

Lemma 3.4. Suppose ∂M is compact. Then D(M, ∂M) < ∞ if and only if M is compact.

Proof. If D(M, ∂M) < ∞, then supx∈∂M τ(x) < ∞. By the continuity of τ, the set T D∂M ∪
TCut ∂M is closed in T⊥∂M. Since ∂M is compact, the set is compact in T⊥∂M. The
set D∂M ∪ Cut ∂M coincides with M. The continuity of exp⊥ |T D∂M∪TCut ∂M implies that M
is compact. On the other hand, if M is compact, then the function ρ∂M is finite on M; in
particular, D(M, ∂M) < ∞. �

Furthermore, we have:

Proposition 3.5. volg Cut ∂M = 0.

Proof. By Lemma 3.2, and by the Fubini theorem, the graph

{ (x, τ(x)) | x ∈ ∂M, τ(x) < ∞}
of τ is a null set of ∂M × [0,∞). A map Ψ : ∂M × [0,∞) → T⊥∂M defined by Ψ(x, t) :=
(x, tux) is smooth. In particular, the set TCut ∂M is also a null set of T⊥∂M. By the definition
of τ, the set Cut ∂M is contained in Int M. Hence, exp⊥ is smooth on an open neighborhood
of TCut ∂M in T⊥∂M. Therefore, we see volg Cut ∂M = 0. �

We next show the following characterization of τ:

Lemma 3.6. Let T > 0. Take x ∈ ∂M with τ(x) < ∞. Then T = τ(x) if and only if
T = ρ∂M(γx(T )), and at least one of the following holds:

(1) γx(T ) is the first conjugate point of ∂M along γx;
(2) there exists a foot point y ∈ ∂M \ {x} on ∂M of γx(T ).

Proof. First, we assume T = ρ∂M(γx(T )). By the definition of τ, we have T ≤ τ(x). If
(1) holds, then T is equal to τ1(x); in particular, T = τ(x). Suppose that (2) holds. We
assume T < τ(x), and take δ > 0 such that T + δ < τ(x). If γ′x(T ) = −γ′y(T ) at γx(T ), then
γx(T + δ) = γy(T − δ). Since T ≤ τ(y), we have

ρ∂M(γx(T + δ)) = ρ∂M(γy(T − δ)) = T − δ.
This is in contradiction with T + δ < τ(x). If γ′x(T ) � −γ′y(T ) at γx(T ), then for all t ∈
(T, T + δ], we have

ρ∂M(γx(t)) < dM(γx(t), γx(T )) + dM(γx(T ), y) ≤ t.

This contradicts t ≤ T + δ < τ(x). Hence, we see T = τ(x).
Next, we assume T = τ(x). Then we have T = ρ∂M(γx(T )). Put p := γx(T ). Assuming

that p is not the first conjugate point of ∂M along γx, we will prove (2). Take an open
neighborhood Ū of (x,Tux) in T⊥∂M such that exp⊥ |Ū : Ū → exp⊥(Ū) is a diffeomorphism.
Put U := exp⊥(Ū). For every sufficiently large i ∈ N, we put pi := γx(T + 1/i), and take a
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foot point xi on ∂M of pi. By Lemma 3.1, there exists a unique normal minimal geodesic
γi : [0, li] → M from xi to pi such that γi = γxi |[0,li], where li = ρ∂M(pi). Since (M, dM) is
proper, by taking a subsequence if necessary, we may assume that for some y ∈ ∂M, we have
xi → y in ∂M. Since xi is a foot point on ∂M of pi and pi → p in M, we see that y is a foot
point on ∂M of p. If x = y, then for every sufficiently large i ∈ N, we have (xi, li uxi) ∈ Ū and
exp⊥(x, (T + 1/i) ux) = exp⊥(xi, li uxi). By the injectivity of exp⊥ |Ū , we have T + 1/i = li.
This is in contradiction with T + 1/i > li. Hence, we see x � y. This completes the proof.

�

From Lemma 3.6, we derive the following:

Lemma 3.7. We have Cut ∂M ∩ D∂M = ∅. In particular,

Int M = (D∂M \ ∂M) � Cut ∂M, M = D∂M � Cut ∂M.

Proof. Suppose that there exists p ∈ Cut ∂M ∩ D∂M. Then there exist x, y ∈ ∂M and
l ∈ (0, τ(y)) such that p = γx(τ(x)) = γy(l). By the definition of τ, we have l = τ(x); in
particular, x � y. Furthermore, by the definition of τ, we see that x and y are foot points
on ∂M of p. By Lemma 3.6, we have l = τ(y). This is a contradiction. Therefore, we have
Cut ∂M ∩D∂M = ∅. Since Int M = (D∂M \ ∂M)∪Cut ∂M and M = D∂M ∪Cut ∂M, we prove
the lemma. �

For the connectedness of the boundary, we show:

Lemma 3.8. If Cut ∂M = ∅, then ∂M is connected.

Proof. Suppose that ∂M is not connected. Let {∂Mi}i≥2 be the connected components of
∂M. By Lemma 3.6, for every p ∈ D∂M \ ∂M, there exists a unique foot point on ∂M of
p. For each i, we denote by D∂Mi the set of all points in D∂M \ ∂M whose foot points are
contained in ∂Mi. By the continuity of τ, the sets D∂Mi \ ∂M, i ≥ 2, are mutually disjoint
domains in Int M. Lemma 3.7 implies that Int M coincides with (

⊔
i≥2 D∂Mi)�Cut ∂M. Since

Cut ∂M = ∅, the set Int M is not connected. This is a contradiction. �

By the continuity of τ, the set T D∂M \ 0(T⊥∂M) is a domain in T⊥∂M. Using Lemma
3.6, we see the following:

Lemma 3.9. T D∂M \ 0(T⊥∂M) is a maximal domain in T⊥∂M on which exp⊥ is regular
and injective.

We show the smoothness of ρ∂M on the set Int M \ Cut ∂M.

Proposition 3.10. The function ρ∂M is smooth on Int M \ Cut ∂M. Moreover, for each
p ∈ Int M \ Cut ∂M, the gradient vector ∇ρ∂M(p) of ρ∂M at p is given by ∇ρ∂M(p) = γ′(l),
where γ : [0, l]→ M is the normal minimal geodesic from the foot point on ∂M of p to p.

Proof. By Lemma 3.9, the map exp⊥ |T D∂M\0(T⊥∂M) is a diffeomorphism onto D∂M \ ∂M.
Lemma 3.7 implies Int M \ Cut ∂M = D∂M \ ∂M. For all q ∈ Int M \ Cut ∂M, we have
ρ∂M(q) = ‖(exp⊥)−1(q)‖. Hence, ρ∂M is smooth on Int M \ Cut ∂M.
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For any vector v ∈ TpM, we take a smooth curve c : (−ε, ε) → Int M tangent to v

at p = c(0). We may assume c(s) ∈ Int M \ Cut ∂M when |s| is sufficiently small. By
Lemma 3.6, there exists a unique foot point c̄(s) on ∂M of c(s). By Lemma 3.1, we obtain a
smooth variation of γ by taking normal minimal geodesics in M from c̄(s) to c(s). The first
variation formula for the variation implies (ρ∂M ◦ c)′(0) = g(v, γ′(l)). Therefore, we have
∇ρ∂M(p) = γ′(l). �

4. Comparison theorems4. Comparison theorems

In this section, we prove Theorem 1.1.

4.1. Basic comparison. We refer to the following absolute comparison inequality that
has been shown by Heintze and Karcher in Subsection 3.4 in [18].

Lemma 4.1 ([18]). Let M be an n-dimensional, connected complete Riemannian mani-
fold with boundary with Riemannian metric g. Take a point x ∈ ∂M. Suppose that for all
t ∈ (0,min{τ1(x), C̄κ,λ}), we have Ricg(γ′x(t)) ≥ (n − 1)κ, and suppose Hx ≥ λ. Then for all
t ∈ (0,min{τ1(x), C̄κ,λ}), we have

θ′(t, x)
θ(t, x)

≤ (n − 1)
s′κ,λ(t)
sκ,λ(t)

.

Remark 4.2. In the case in Lemma 4.1, we choose an orthonormal basis {ex,i}n−1
i=1 of Tx∂M,

and let {Yx,i}n−1
i=1 be the ∂M-Jacobi fields along γx with initial conditions Yx,i(0) = ex,i and

Y ′x,i(0) = −Auxex,i. Then there exists t0 ∈ (0,min{τ1(x), C̄κ,λ}) such that

θ′(t0, x)
θ(t0, x)

= (n − 1)
s′κ,λ(t0)

sκ,λ(t0)
.

if and only if for all i = 1, . . . , n− 1 and t ∈ [0, t0], we have Yx,i(t) = sκ,λ(t) Ex,i(t), where Ex,i

are the parallel vector fields along γx with initial condition Ex,i(0) = ex,i (see [18]).

The following Laplacian comparison theorem has been stated by Kasue in Corollary 2.42
in [22].

Theorem 4.3 ([22]). Let M be an n-dimensional, connected complete Riemannian man-
ifold with boundary with Riemannian metric g. Take x ∈ ∂M. Suppose that for all t ∈
(0, τ(x)), we have Ricg(γ′x(t)) ≥ (n − 1)κ, and suppose Hx ≥ λ. Then for all t ∈ (0, τ(x)), we
have

Δρ∂M(γx(t)) ≥ −(n − 1)
s′κ,λ(t)
sκ,λ(t)

.

Remark 4.4. In the case in Theorem 4.3, for all t ∈ (0, τ(x)), we have Δρ∂M(γx(t)) =
−θ′(t, x)/θ(t, x). Therefore, the equality case in Theorem 4.3 results into that in Lemma 4.1
(see Remark 4.2).

By Lemma 4.1, we have the following relative comparison inequality.
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Lemma 4.5. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary with Riemannian metric g. Take a point x ∈ ∂M. Suppose that for all
t ∈ (0,min{τ1(x), C̄κ,λ}), we have Ricg(γ′x(t)) ≥ (n − 1)κ, and suppose Hx ≥ λ. Then for all
s, t ∈ [0,min{τ1(x), C̄κ,λ}) with s ≤ t,

θ(t, x)
θ(s, x)

≤ sn−1
κ,λ (t)

sn−1
κ,λ (s)

;

in particular, θ(t, x) ≤ sn−1
κ,λ (t). Moreover, if κ and λ satisfy the ball-condition, then τ1(x) ≤

Cκ,λ.

Proof. Take x̃ ∈ ∂Mn
κ,λ. By Lemma 4.1, for all t ∈ (0,min{τ1(x), C̄κ,λ}),

d
dt

log
θ(t, x̃)
θ(t, x)

=
θ′(t, x̃)
θ(t, x̃)

− θ
′(t, x)
θ(t, x)

≥ 0.

Hence, for all s, t ∈ (0,min{τ1(x), C̄κ,λ}) with s ≤ t, we have

θ(t, x)
θ(s, x)

≤ θ(t, x̃)
θ(s, x̃)

.

In the inequality, by letting s → 0, we have θ(t, x) ≤ θ(t, x̃). Hence, for all s, t ∈
[0,min{τ1(x), C̄κ,λ}) with s ≤ t, we have the desired inequality.

Let κ and λ satisfy the ball-condition. We suppose Cκ,λ < τ1(x). For all t ∈ [0,Cκ,λ),
we have θ(t, x) ≤ sn−1

κ,λ (t). By letting t → Cκ,λ, we have θ(Cκ,λ, x) = 0. Since Cκ,λ < τ1(x),
the point γx(Cκ,λ) is not a conjugate point of ∂M along γx. Hence, there exists a nonzero
∂M-Jacobi field Y along γx such that Y(Cκ,λ) = 0; in particular, γx(Cκ,λ) is a conjugate point
of ∂M along γx. This is a contradiction. Therefore, we have τ1(x) ≤ Cκ,λ. �

4.2. Inscribed radius comparison. Using Lemma 4.5, we will give a proof of the fol-
lowing lemma that has been already proved by Kasue in Theorem A in [23].

Lemma 4.6 ([23]). Let κ ∈ R and λ ∈ R satisfy the ball-condition. Let M be an n-
dimensional, connected complete Riemannian manifold with boundary such that RicM ≥
(n− 1)κ and H∂M ≥ λ. Then for all x ∈ ∂M, we have τ(x) ≤ Cκ,λ; in particular, D(M, ∂M) ≤
Cκ,λ.

Proof. Take x ∈ ∂M. By the definition of τ, the geodesic γx|(0,τ(x)] lies in Int M. If
Cκ,λ < τ(x), then by Lemma 4.5, we see that γx(Cκ,λ) is a conjugate point of ∂M along γx.
We obtain τ1(x) < τ(x). This contradicts the relation between τ and τ1. Hence, τ(x) ≤ Cκ,λ.

�

The following rigidity theorem has been proved in Theorem A in [23].

Theorem 4.7 ([23]). Let κ ∈ R and λ ∈ R satisfy the ball-condition. Let M be an n-
dimensional, connected complete Riemannian manifold with boundary such that RicM ≥
(n − 1)κ and H∂M ≥ λ. If there exists a point p ∈ M such that ρ∂M(p) = Cκ,λ, then the metric
space (M, dM) is isometric to (Bn

κ,λ, dBn
κ,λ

).
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4.3. Volume comparison. By the coarea formula (see e.g., Theorem 3.2.3 in [12]), we
have the following:

Lemma 4.8. Let M be a connected complete Riemannian manifold with boundary with
Riemannian metric g. Suppose ∂M is compact. Let r be a positive number such that Ur(∂M)
is a normal neighborhood of ∂M. Then we have

volg Br(∂M) =
∫
∂M

∫ r

0
θ(t, x) dt d volh .

From Lemma 4.8, we derive the following:

Lemma 4.9. Let M be a connected complete Riemannian manifold with boundary with
Riemannian metric g. Suppose ∂M is compact. Then for all r > 0, we have

volg Br(∂M) =
∫
∂M

∫ min{r,τ(x)}

0
θ(t, x) dt d volh .

Proof. Take r > 0. By Lemma 3.3, we have

Br(∂M) = exp⊥
⎛⎜⎜⎜⎜⎜⎝
⋃

x∈∂M

{tux | t ∈ [0,min{r, τ(x)}]}
⎞⎟⎟⎟⎟⎟⎠ .

From Lemma 3.9, it follows that the map exp⊥ is diffeomorphic on
⋃

x∈∂M{tux | t ∈
(0,min{r, τ(x)})}. Therefore, by Proposition 3.5 and Lemma 4.8, we have the desired equal-
ity. �

We prove Theorem 1.1. Proof of Theorem 1.1. We define a function θ̄ : [0,∞)×∂M → R
by

θ̄(t, x) :=

⎧⎪⎪⎨⎪⎪⎩
θ(t, x) if t ≤ τ(x),

0 if t > τ(x).

By Lemma 4.9, we have

volg Br(∂M) =
∫
∂M

∫ r

0
θ̄(t, x) dt d volh .

Lemma 4.6 implies that for each x ∈ ∂M, we have τ(x) ≤ C̄κ,λ. Therefore, from Lemma 4.5,
it follows that for all s, t ∈ [0,∞) with s ≤ t,

θ̄(t, x) s̄n−1
κ,λ (s) ≤ θ̄(s, x) s̄n−1

κ,λ (t).

Integrating the both sides of the above inequality over [0, r] with respect to s, and then doing
that over [r,R] with respect to t, we see

∫ R
r θ̄(t, x) dt∫ r
0 θ̄(s, x) ds

≤
∫ R

r s̄n−1
κ,λ (t) dt∫ r

0 s̄n−1
κ,λ (s) ds

.
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Hence, we have

volg BR(∂M)
volg Br(∂M)

= 1 +

∫
∂M

∫ R
r θ̄(t, x) dt d volh∫

∂M

∫ r
0 θ̄(s, x) ds d volh

≤ 1 +

∫ R
r s̄n−1

κ,λ (t) dt∫ r
0 s̄n−1

κ,λ (s) ds
=

vol BR(∂Mn
κ,λ)

vol Br(∂Mn
κ,λ)

.

This completes the proof of Theorem 1.1. �

Remark 4.10. In the case in Theorem 1.1, we suppose that there exists R > 0 such that
for all r ∈ (0,R], we have

volg BR(∂M)
volg Br(∂M)

=
vol BR(∂Mn

κ,λ)

vol Br(∂Mn
κ,λ)

.

In this case, for all t ∈ (0,R] and x ∈ ∂M, we have θ̄(t, x) = s̄n−1
κ,λ (t). We choose an orthonor-

mal basis {ex,i}n−1
i=1 of Tx∂M. Let Yx,i be the ∂M-Jacobi field along γx with initial conditions

Yx,i(0) = ex,i and Y ′x,i(0) = −Auxex,i. For all i = 1, . . . , n − 1, and for all t ∈ [0,min{R, C̄κ,λ}]
and x ∈ ∂M, we have Yx,i(t) = sκ,λ(t) Ex,i(t), where Ex,i are the parallel vector fields along γx

with initial condition Ex,i(0) = ex,i.

5. Volume growth rigidity5. Volume growth rigidity

5.1. Volume growth. By Theorem 1.1, we have the following:

Proposition 5.1. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ. Suppose
∂M is compact. Let h denote the induced Riemannian metric on ∂M. Then

lim sup
r→∞

volg Br(∂M)
fn,κ,λ(r)

≤ volh ∂M.

Proof. Take r > 0. By Lemma 4.9, we have

volg Br(∂M) =
∫
∂M

∫ min{r,τ(x)}

0
θ(t, x) dt d volh .

By Lemma 4.5, for all x ∈ ∂M and t ∈ (0,min{r, τ(x)}), we have θ(t, x) ≤ sn−1
κ,λ (t). Integrating

the both sides of the inequality over (0,min{r, τ(x)}) with respect to t, and then doing that
over ∂M with respect to x, we see volg Br(∂M)/ fn,κ,λ(r) ≤ volh ∂M. Letting r → ∞, we
obtain the desired inequality. �
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5.2. Volume growth rigidity. In the equality case in Theorem 1.1, τ satisfies the follow-
ing property:

Lemma 5.2. Let M be an n-dimensional, connected complete Riemannian manifold with
boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ. Suppose ∂M
is compact. Assume that there exists R ∈ (0, C̄κ,λ] \ {∞} such that for all r ∈ (0,R], we have

volg BR(∂M)
volg Br(∂M)

=
volgn

κ,λ
BR(∂Mn

κ,λ)

volgn
κ,λ

Br(∂Mn
κ,λ)

.

Then for all x ∈ ∂M, we have τ(x) ≥ R.

Proof. Suppose that for some x0 ∈ ∂M, we have τ(x0) < R. Put t0 := τ(x0). Take ε > 0
with t0 + ε < R. By the continuity of τ, there exists a closed geodesic ball B in ∂M centered
at x0 such that for all x ∈ B, we have τ(x) ≤ t0 + ε. By Lemmas 4.5 and 4.9, we see that
volg BR(∂M) is not larger than

∫
∂M\B

∫ min{R,τ(x)}

0
sn−1
κ,λ (t) dt d volh +

∫
B

∫ t0+ε

0
sn−1
κ,λ (t) dt d volh .

This is smaller than (volh ∂M) fn,κ,λ(R). On the other hand, by the assumption, we see that
fn,κ,λ(R) is equal to volg BR(∂M)/ volh ∂M. This is a contradiction. �

In the case in Lemma 5.2, for every r ∈ (0,R), the level set ρ−1
∂M(r) is an (n−1)-dimensional

submanifold of M. In particular, (Br(∂M), g) is an n-dimensional (not necessarily, con-
nected) complete Riemannian manifold with boundary. We denote by dBr(∂M) and by dκ,λ,r
the Riemannian distances on (Br(∂M), g) and on [0, r] ×κ,λ ∂M, respectively.

Proposition 5.3. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ. Suppose
∂M is compact. Assume that there exists R ∈ (0, C̄κ,λ] \ {∞} such that for all r ∈ (0,R], we
have

volg BR(∂M)
volg Br(∂M)

=
volgn

κ,λ
BR(∂Mn

κ,λ)

volgn
κ,λ

Br(∂Mn
κ,λ)

.

Then for every r ∈ (0,R), the metric space (Br(∂M), dBr(∂M)) is isometric to ([0, r] ×κ,λ
∂M, dκ,λ,r).

Proof. Take r ∈ (0,R). By Lemma 5.2, for all x ∈ ∂M, we have τ(x) > r; in particular,
Br(∂M) ∩ Cut ∂M = ∅. Each connected component of ∂M one-to-one corresponds to the
connected component of Br(∂M). Therefore, we may assume that Br(∂M) is connected.

By Lemma 4.5, for all t ∈ (0,R] and x ∈ ∂M, we have θ(t, x) = sn−1
κ,λ (t). Choose

an orthonormal basis {ex,i}n−1
i=1 of Tx∂M. For each i = 1, . . . , n − 1, let Yx,i be the ∂M-

Jacobi field along γx with initial conditions Yx,i(0) = ex,i and Y ′x,i(0) = −Auxex,i. For all
t ∈ [0,min{R, C̄κ,λ}] and x ∈ ∂M, we have Yx,i(t) = sκ,λ(t) Ex,i(t), where Ex,i are the paral-
lel vector fields along γx with initial condition Ex,i(0) = ex,i (see Remark 4.10). Define a
map Φ : [0, r] × ∂M → Br(∂M) by Φ(t, x) := γx(t). For every p ∈ (0, r) × ∂M, the map
D(Φ|(0,r)×∂M)p sends an orthonormal basis of Tp([0, r]× ∂M) to that of TΦ(p)Br(∂M), and for
every x ∈ {0, r} × ∂M, the map D(Φ|{0,r}×∂M)x sends an orthonormal basis of Tx({0, r} × ∂M)
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to that of TΦ(x)∂(Br(∂M)). Hence, Φ is a Riemannian isometry with boundary from [0, r]×κ,λ
∂M to Br(∂M). �

5.3. Proof of Theorem 1.6. Let M be an n-dimensional, connected complete Riemannian
manifold with boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ.
Suppose ∂M is compact. We assume

lim inf
r→∞

volg Br(∂M)
fn,κ,λ(r)

≥ volh ∂M.

By Theorem 1.1 and Proposition 5.1, for all r,R ∈ (0,∞) with r ≤ R,

volg BR(∂M)
fn,κ,λ(R)

=
volg Br(∂M)

fn,κ,λ(r)
= volh ∂M.

If κ and λ satisfy the ball-condition, then for all r ∈ (0,Cκ,λ] we have

volg BCκ,λ
(∂M)

volg Br(∂M)
=

volgn
κ,λ

BCκ,λ
(∂Mn

κ,λ)

volgn
κ,λ

Br(∂Mn
κ,λ)

;

in particular, Lemmas 4.6 and 5.2 imply that τ is equal to Cκ,λ on ∂M. If κ and λ do not
satisfy the ball-condition, then for all R ∈ (0,∞) and r ∈ (0,R] we have

volg BR(∂M)
volg Br(∂M)

=
volgn

κ,λ
BR(∂Mn

κ,λ)

volgn
κ,λ

Br(∂Mn
κ,λ)

;

in particular, Lemma 5.2 implies that for all x ∈ ∂M, we have τ(x) = ∞. It follows that τ
coincides with C̄κ,λ on ∂M.

If κ and λ satisfy the ball-condition, then Lemmas 3.4 and 4.6 imply that M is compact;
in particular, there exists a point p ∈ M such that ρ∂M(p) = D(M, ∂M) = Cκ,λ. Hence, from
Theorem 4.7, it follows that (M, dM) is isometric to (Bn

κ,λ, dBn
κ,λ

).
If κ and λ do not satisfy the ball-condition, then Cut ∂M = ∅. From Lemma 3.8, it follows

that ∂M is connected. Take a sequence {ri} with ri → ∞. By Proposition 5.3, for each
ri, we obtain a Riemannian isometry Φi : [0, ri] ×κ,λ ∂M → Bri(∂M) with boundary from
[0, ri] ×κ,λ ∂M to Bri(∂M) defined by Φi(t, x) := γx(t). Since for all x ∈ ∂M it holds that
τ(x) = ∞, there exists a Riemannian isometry Φ : [0,∞) ×κ,λ ∂M → M with boundary from
[0,∞) ×κ,λ ∂M to M defined by Φ(t, x) := γx(t) satisfying Φ|[0,ri]×κ,λ∂M = Φi. Hence, (M, dM)
is isometric to ([0,∞) ×κ,λ ∂M, dκ,λ). We complete the proof. �

5.4. Curvature of the boundary. It seems that the following is well-known, especially
in a submanifold setting (see e.g., Proposition 9.36 in [1]). For the sake of the readers, we
give a proof in our setting.

Lemma 5.4. Let M be an n-dimensional Riemannian manifold with boundary with Rie-
mannian metric g. Let h denote the induced Riemannian metric on ∂M. Take a point x ∈ ∂M,
and choose an orthonormal basis {ex,i}n−1

i=1 of Tx∂M. Put u := ex,1. Then

Rich(u) = Ricg(u) − Kg(ux, u) + trace AS (u,u) −
n−1∑
i=1

‖S (u, ex,i)‖2,
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where Kg(ux, u) is the sectional curvature at x in (M, g) determined by ux and u.

Proof. Note that Rich(u) =
∑n−1

i=2 Kh(u, ex,i). By the Gauss formula,

Rich(u) =
n−1∑
i=2

(
Kg(u, ex,i) + g(S (u, u), S (ex,i, ex,i)) − ‖S (u, ex,i)‖2

)
.

Since u, ex,2, . . . , ex,n−1, ux are orthogonal to each other, we have

Ricg(u) =
n−1∑
i=2

Kg(u, ex,i) + Kg(u, ux).

On the other hand, we see

n−1∑
i=1

g(S (u, u), S (ex,i, ex,i)) =
n−1∑
i=1

g(AS (u,u)ex,i, ex,i) = trace AS (u,u).

Combining these equalities, we have the formula. �

To study our rigidity cases, we need the following:

Lemma 5.5. Let M be an n-dimensional, connected complete Riemannian manifold with
boundary with Riemannian metric g such that RicM ≥ (n − 1)κ. If (M, dM) is isometric to
([0,∞) ×κ,λ ∂M, dκ,λ), then we have Ric∂M ≥ (n − 2)(κ + λ2).

Proof. There exists a Riemannian isometry with boundary from M to [0,∞)×κ,λ ∂M. For
each x ∈ ∂M, choose an orthonormal basis {ex,i}n−1

i=1 of Tx∂M. For each i = 1, . . . , n − 1,
let Yx,i be the ∂M-Jacobi field along γx with initial conditions Yx,i(0) = ex,i and Y ′x,i(0) =
−Auxex,i. We have Yx,i(t) = sκ,λ(t)Ex,i(t), where Ex,i are the parallel vector fields along γx

with initial condition Ex,i(0) = ex,i. Then Auxex,i = −Y ′x,i(0) = λex,i and Y ′′x,1(0) = κex,1.
Hence, trace Aux = (n − 1)λ and Kg(ux, ex,1) = κ. For all i we have S (ex,i, ex,i) = λux, and
for all i � j we have S (ex,i, ex, j) = 0x. By Lemma 5.4 and RicM ≥ (n − 1)κ, we have
Ric∂M ≥ (n − 2)(κ + λ2). �

5.5. Complement rigidity. For κ > 0, let M be an n-dimensional, connected complete
Riemmanian manifold (without boundary) with Riemannian metric g such that RicM ≥ (n−
1)κ. By the Bishop volume comparison theorem ([2]), volg M ≤ vol Mn

κ ; the equality holds
if and only if M is isometric to Mn

κ .
The following is concerned with the complements of metric balls.

Corollary 5.6. Let κ ∈ R and −λ ∈ R satisfy the ball-condition. Let M be an n-
dimensional, connected complete Riemannian manifold with boundary with Riemannian
metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ. Suppose ∂M is compact. Let h denote the
induced Riemannian metric on ∂M. If

lim inf
r→∞

volg Br(∂M)
fn,κ,λ(r)

≥ volh ∂M, volh ∂M ≥ volhn−1
κ,−λ
∂Bn

κ,−λ,

then (M, dM) is isometric to (Mn
κ \ Int Bn

κ,−λ, dMn
κ \Int Bn

κ,−λ).
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Proof. By Theorem 1.6, (M, dM) is isometric to ([0,∞) ×κ,λ ∂M, dκ,λ). Lemma 5.5 im-
plies Ric∂M ≥ (n − 2)(κ + λ2). Since κ and −λ satisfy the ball-condition, (∂M, h) is a
connected complete Riemannian manifold of positive Ricci curvature. By the assumption
volh ∂M ≥ volhn−1

κ,−λ
∂Bn

κ,−λ, and by the Bishop volume comparison theorem, (∂M, h) is isomet-
ric to (∂Bn

κ,−λ, h
n−1
κ,−λ). It turns out that M and Mn

κ \ Int Bn
κ,−λ are isometric to each other as

metric spaces. �

6. Splitting theorems6. Splitting theorems

Let M be a connected complete Riemannian manifold with boundary. A normal geodesic
γ : [0,∞)→ M is said to be a ray if for all s, t ∈ [0,∞), we have dM(γ(s), γ(t)) = |s − t|. For
a ray γ : [0,∞)→ M, the function bγ : M → R defined as

bγ(p) := lim
t→∞(t − dM(p, γ(t)))

is called the busemann function of γ.

Lemma 6.1. Let M be a connected complete Riemannian manifold with boundary. Sup-
pose that for some x0 ∈ ∂M, we have τ(x0) = ∞. Take a point p ∈ Int M. If bγx0

(p) = ρ∂M(p),
then p � Cut ∂M. Moreover, for the unique foot point x on ∂M of p, we have τ(x) = ∞.

Proof. Since τ(x0) = ∞, the normal geodesic γx0 : [0,∞) → M is a ray. Since ρ∂M is
1-Lipschitz, for all q ∈ M, we have bγx0

(q) ≤ ρ∂M(q).
Take a foot point x on ∂M of p. Suppose p ∈ Cut ∂M. We have τ(x) < ∞ and p =

γx(τ(x)). Take ε > 0 with Bε(p) ⊂ Int M, and a sequence {ti} with ti → ∞. For each i, we
take a normal minimal geodesic γi : [0, li] → M from p to γx0 (ti). Then γi|[0,ε) lies in Int M.
Put ui := γ′i (0) ∈ UpM. By taking a subsequence, for some u ∈ UpM, we have ui → u in
UpM. We denote by γu : [0, T ) → M the normal geodesic with initial conditions γu(0) = p
and γ′u(0) = u. We have

ti − dM(p, γx0 (ti)) = −ε + (ti − dM(γi(ε), γx0 (ti))).

By letting i→ ∞, we have bγx0
(p) = −ε+bγx0

(γu(ε)). From the assumption bγx0
(p) = ρ∂M(p),

it follows that ρ∂M(p) ≤ −ε + ρ∂M(γu(ε)). On the other hand, since ρ∂M is 1-Lipschitz, we
have the opposite. Therefore, dM(x, γu(ε)) is equal to dM(x, p) + dM(p, γu(ε)); in particular,
we see u = γ′x(τ(x)). Furthermore, ρ∂M(γx(τ(x) + ε)) = τ(x) + ε. This contradicts the
definition of τ. Hence, p � Cut ∂M, and x is the unique foot point on ∂M of p.

Put l := ρ∂M(p). We see that for every sufficiently small ε > 0, we have bγx0
(γx(l + ε)) =

ρ∂M(γx(l + ε)). In particular, for all t ∈ [l,∞), we have bγx0
(γx(t)) = ρ∂M(γx(t)). It follows

that τ(x) = ∞. �

Let M be a connected complete Riemannian manifold with boundary, and let γ : [0,∞)→
M be a ray. Take p ∈ Int M, and a sequence {ti} with ti → ∞. For each i, let γi : [0, li]→ M
be a normal minimal geodesic from p to γ(ti). Since γ is a ray, we have li → ∞. Take a
sequence {T j} with T j → ∞. Since M is proper, there exists a subsequence {γ1,i} of {γi},
and a normal minimal geodesic γp,1 : [0, T1] → M from p to γp,1(T1) such that γ1,i|[0,T1]

uniformly converges to γp,1. Furthermore, there exists a subsequence {γ2,i} of {γ1,i}, and a
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normal minimal geodesic γp,2 : [0, T2]→ M from p to γp,2(T2) such that γ2,i|[0,T2] uniformly
converges to γp,2, where γp,2|[0,T1] = γp,1. By a diagonal argument, we obtain a subsequence
{γk} of {γi}, and a ray γp : [0,∞)→ M such that for every t ∈ (0,∞), we have γk(t)→ γp(t)
as k → ∞. We call such a ray γp an asymptote for γ from p.

Lemma 6.2. Let M be a connected complete Riemannian manifold with boundary. Sup-
pose that for some x0 ∈ ∂M, we have τ(x0) = ∞. Take l > 0, and put p := γx0 (l). Then there
exists ε > 0 such that for all q ∈ Bε(p), all asymptotes for the ray γx0 from q lie in Int M.

Proof. The proof is by contradiction. Suppose that there exists a sequence {qi} in Int M
with qi → p such that for each i, there exists an asymptote γi for γx0 from qi such that γi

does not lie in Int M. Now, M is proper. Therefore, by taking a subsequence of {γi}, we
may assume that there exists a ray γp : [0,∞) → M such that for every t ∈ [0,∞), we have
γi(t)→ γp(t) as i→ ∞.

Fix i. Since γi is an asymptote for γx0 from qi, there exists a sequence {tik } with tik → ∞
as k → ∞, and for every k there exists a normal minimal geodesic γik in M from qi to γx0 (tik )
such that for every t ∈ (0,∞) we have γik (t) → γi(t) as k → ∞. For a fixed t ∈ (0,∞), and
for every k, we have

tik − dM(qi, γx0 (tik )) = −t +
(
tik − dM(γik (t), γx0 (tik ))

)
.

Letting k → ∞, we have bγx0
(qi) = −t + bγx0

(γi(t)). By letting i → ∞, we obtain bγx0
(p) =

−t + bγx0
(γp(t)).

Since ρ∂M is 1-Lipschitz, and since τ(x0) = ∞, we have bγx0
≤ ρ∂M on M, and the equality

holds at p. Furthermore, for every t ∈ (0,∞) we have bγx0
(p) = −t + bγx0

(γp(t)). Therefore,
for every t ∈ (0,∞),

dM(γp(t), x0) ≥ ρ∂M(γp(t)) ≥ bγx0
(γp(t)) = t + ρ∂M(p)

= dM(γp(t), p) + dM(p, x0).

From the triangle inequality, it follows that dM(γp(t), x0) is equal to dM(γp(t), p)+dM(p, x0).
In particular, γp|[0,∞) coincides with γx0 |[l,∞). Since qi ∈ Int M for each i, we have ui :=
γ′i (0) ∈ Uqi M. We have qi → p in M. Therefore, by taking a subsequence of {ui}, for some
u ∈ UpM we have ui → u in the unit tangent bundle on Int M. Since γp|[0,∞) coincides with
γx0 |[l,∞), we have u = γ′x0

(l). Put

ti := sup{t > 0 | γi([0, t)) ⊂ Int M}
and xi := γi(ti) ∈ ∂M. Since all γi are asymptotes for γx0 , and since ρ∂M(xi) = 0 for all i, we
have

bγx0
(qi) = −ti + bγx0

(xi) ≤ −ti.

We see bγx0
(qi) → l as i → ∞. Therefore, the sequence {ti} does not diverge. We may

assume that for some x ∈ ∂M, the sequence {xi} converges to x in ∂M. Since u = γ′x0
(l), the

ray γx0 passes through x. This contradicts that γx0 |(0,∞) lies in Int M. �

Let M be a connected complete Riemannian manifold with boundary. Take a point p ∈
Int M, and a continuous function f : M → R. We say that a function f̄ : M → R is a support
function of f at p if we have f̄ (p) = f (p), and for all q ∈ M, we have f̄ (q) ≤ f (q).
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Take a domain U in Int M. We say that f is subharmonic in a barrier sense on U if for
each ε > 0, and for each p ∈ U, there exists a support function fp,ε : M → R of f at p such
that fp,ε is smooth on an open neighborhood of p, and Δ fp,ε(p) ≤ ε. The Calabi maximal
principle in [4] tells us that if a function that is subharmonic in a barrier sense on U takes
the maximal value at a point in U, then the function must be constant.

We prove Theorem 1.8 by using the Calabi maximal principle in [4]. Proof of Theorem
1.8. For κ ≤ 0, let M be an n-dimensional, connected complete Riemannian manifold with
boundary such that RicM ≥ (n − 1)κ and H∂M ≥

√|κ|. Assume that for x ∈ ∂M, we have
τ(x) = ∞. Let ∂M0 be the connected component of ∂M containing x. Put

Ω := {y ∈ ∂M0 | τ(y) = ∞}.
The assumption implies Ω � ∅. By the continuity of the function τ, we see that Ω is closed
in ∂M0.

We show the openness of Ω in ∂M0. Let x0 ∈ Ω. Take l > 0, and put p0 := γx0 (l).
By Lemma 6.2, there exists a sufficiently small open neighborhood U of p0 in Int M with
U ⊂ D∂M such that for each q ∈ U, the unique foot point on ∂M of q belongs to ∂M0, and
all asymptotes for γx0 from q lie in Int M.

We prove that the function bγx0
−ρ∂M is subharmonic in a barrier sense on U. By Proposi-

tion 3.10, ρ∂M is smooth on U. Fix a point q0 ∈ U, and take an asymptote γq0 : [0,∞)→ M
for γx0 from q0. For t > 0, define a function bγx0 ,t : M → R by

bγx0 ,t(p) := bγx0
(q0) + t − dM(p, γq0 (t)).

We see that bγx0 ,t − ρ∂M is a support function of bγx0
− ρ∂M at q0. Since γq0 is a ray contained

in Int M, for every t ∈ (0,∞), the function bγx0 ,t is smooth on a neighborhood of q0 in Int M.
By Lemma 2.4, we have Δbγx0 ,t(q0) ≤ (n − 1)(s′κ(t)/sκ(t)). Note that s′κ(t)/sκ(t) →

√|κ| as
t → ∞. On the other hand, by Theorem 4.3, for all q ∈ U, we have Δρ∂M(q) ≥ (n − 1)

√|κ|.
Hence, bγx0

− ρ∂M is subharmonic in a barrier sense on U. The function bγx0
− ρ∂M takes the

maximal value 0 at p0. The Calabi maximal principle in [4] implies that bγx0
coincides with

ρ∂M on U. From Lemma 6.1, it follows that Ω is open in ∂M0.
For all x ∈ ∂M0, we have τ(x) = ∞. We put

T D∂M0 :=
⋃

x∈∂M0

{t ux | t ∈ (0,∞)}.

By Lemma 3.9, exp⊥ |T D∂M0
: T D∂M0 → exp⊥(T D∂M0 ) is a diffeomorphism. The set T D∂M0

is open and closed in T D∂M \ 0(T⊥∂M). Therefore, exp⊥(T D∂M0 ) is also open and closed
in Int M. Since Int M is connected, exp⊥(T D∂M0 ) coincides with Int M; in particular, ∂M is
connected and Cut ∂M = ∅. Note that ρ∂M is smooth on Int M.

Take p ∈ Int M and the unique foot point xp on ∂M of p. Since τ(xp) = ∞, the maximal
principle argument implies that bγxp

coincides with ρ∂M on a neighborhood V of p in Int M;
in particular, bγxp

is smooth on V , and Δρ∂M(p) = (n − 1)
√|κ|. It follows that the equality

in Theorem 4.3 holds on Int M. For each x ∈ ∂M, choose an orthonormal basis {ex,i}n−1
i=1

of Tx∂M. For each i = 1, . . . , n − 1, let Yx,i be the ∂M-Jacobi field along γx with initial
conditions Yx,i(0) = ex,i and Y ′x,i(0) = −Auxex,i. Then we have Yx,i(t) = sκ,√|κ|(t)Ex,i(t), where
Ex,i is the parallel vector fields along γx with initial condition Ex,i(0) = ex,i (see Remark 4.4).
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Define a map Φ : [0,∞)× ∂M → M by Φ(t, x) := γx(t). For every p ∈ (0,∞)× ∂M, the map
D(Φ|(0,∞)×∂M)p sends an orthonormal basis of Tp((0,∞) × ∂M) to that of TΦ(p)M, and for
every x ∈ {0}×∂M, the map D(Φ|{0}×∂M)x sends an orthonormal basis of Tx({0}×∂M) to that
of TΦ(x)∂M. Therefore, Φ is a Riemannian isometry with boundary from [0,∞)×κ,√|κ| ∂M to
M. We complete the proof of Theorem 1.8. �

The Cheeger-Gromoll splitting theorem ([8]) states that if M is an n-dimensional, con-
nected complete Riemmanian manifold of non-negative Ricci curvature, and if M contains a
line, then there exists an (n − 1)-dimensional Riemannian manifold N of non-negative Ricci
curvature such that M is isometric to the standard product R × N.

Corollary 6.3. For κ ≤ 0, let M be an n-dimensional, connected complete Riemannian
manifold with boundary such that RicM ≥ (n − 1)κ and H∂M ≥

√|κ|. Suppose that for some
x ∈ ∂M, we have τ(x) = ∞. Then there exist k ∈ {0, . . . , n−1}, and an (n−1−k)-dimensional,
connected complete Riemannian manifold N of non-negative Ricci curvature containing no
line such that (∂M, d∂M) is isometric to the standard product metric space (Rk × N, dRk×N).
In particular, (M, dM) is isometric to ([0,∞) ×κ,√|κ| (Rk × N), dκ,√|κ|).

Proof. From Theorem 1.8, it follows that the metric space (M, dM) is isometric to
([0,∞) ×κ,√|κ| ∂M, dκ,√|κ|). Lemma 5.5 implies Ric∂M ≥ 0. Applying the Cheeger-Gromoll
splitting theorem to ∂M inductively, we see that (∂M, d∂M) is isometric to (Rk × N, dRk×N)
for some k. �

7. The first eigenvalues7. The first eigenvalues

7.1. Lower bounds. Let M be a connected complete Riemannian manifold with bound-
ary with Riemannian metric g. For a relatively compact domain Ω in M such that ∂Ω is
a smooth hypersurface in M, we denote by vol∂Ω the Riemannian volume measure on ∂Ω
induced from the induced Riemannian metric on ∂Ω. For α ∈ (0,∞), the Dirichlet α-
isoperimetric constant IDα(M) of M is defined as

IDα(M) := inf
Ω

vol∂Ω ∂Ω(
volgΩ

)1/α ,

where the infimum is taken over all relatively compact domains Ω in M such that ∂Ω is a
smooth hypersurface in M and ∂Ω∩ ∂M = ∅. The Dirichlet α-Sobolev constant S Dα(M) of
M is defined as

S Dα(M) := inf
f∈W1,1

0 (M)

∫
M ‖∇ f ‖ d volg(∫

M | f |α d volg
)1/α .

For all α ∈ (0,∞), we have IDα(M) = S Dα(M). This relationship between the isoperimetric
constant and the Sobolev constant has been formally established by Federer and Fleming
in [13] (see e.g., Theorem 4 in Chapter 4 in [5], Theorem 9.5 in [29]), and later used by
Cheeger in [6] for the estimate of the first Dirichlet eigenvalue of the Laplacian.

The following volume estimate has been proved by Kasue in Proposition 4.1 in [25].

Proposition 7.1 ([25]). Let M be an n-dimensional, connected complete Riemannian
manifold with boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ.
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Let Ω be a relatively compact domain in M such that ∂Ω is a smooth hypersurface in M.
Then

volgΩ ≤ vol∂Ω ∂Ω sup
t∈(δ1(Ω),δ2(Ω))

∫ δ2(Ω)
t sn−1

κ,λ (s) ds

sn−1
κ,λ (t)

,

where δ1(Ω) := infp∈Ω ρ∂M(p) and δ2(Ω) := supp∈Ω ρ∂M(p).

The equality case in Proposition 7.1 has been also studied in [25].
We prove Theorem 1.10. Proof of Theorem 1.10. Let M be an n-dimensional, connected

complete Riemannian manifold with boundary with Riemannian metric g such that RicM ≥
(n − 1)κ, H∂M ≥ λ and D(M, ∂M) ≤ D. Suppose ∂M is compact. Recall that the positive
constant C(n, κ, λ,D) is defined as

C(n, κ, λ,D) := sup
t∈[0,D)

∫ D
t sn−1

κ,λ (s) ds

sn−1
κ,λ (t)

.

Let Ω be a relatively compact domain in M such that ∂Ω is a smooth hypersurface in M and
∂Ω ∩ ∂M = ∅. By Proposition 7.1,

volgΩ ≤ vol∂Ω ∂Ω sup
t∈(0,D)

∫ D
t sn−1

κ,λ (s) ds

sn−1
κ,λ (t)

= C(n, κ, λ,D) vol∂Ω ∂Ω.

From the relationship ID1(M) = S D1(M), it follows that S D1(M) ≥ C(n, κ, λ,D)−1. There-
fore, for all φ ∈ W1,1

0 (M), we have the following Poincaré inequality:
∫

M
|φ| d volg ≤ C(n, κ, λ,D)

∫
M
‖∇φ‖ d volg .

For a fixed p ∈ (1,∞), let ψ be a non-zero function in W1,p
0 (M). Put q := p (1 − p)−1. In

the Poincaré inequality, by replacing φ with |ψ|p, and by the Hölder inequality, we see

∫
M
|ψ|p d volg ≤ p C(n, κ, λ,D)

∫
M
|ψ|p−1 ‖∇ψ‖ d volg

≤ p C(n, κ, λ,D)
(∫

M
|ψ|p d volg

)1/q (∫
M
‖∇ψ‖p d volg

)1/p

.

Considering the Rayleigh quotient Rp(ψ), we obtain the inequality μ1,p(M) ≥
(p C(n, κ, λ,D))−p. This proves Theorem 1.10. �

We next prove Theorem 1.13. Proof of Theorem 1.13. Let κ < 0 and λ :=
√|κ|. Let

M be an n-dimensional, connected complete Riemannian manifold with boundary such that
RicM ≥ (n − 1)κ and H∂M ≥ λ. Suppose ∂M is compact. We put D := D(M, ∂M) ∈ (0,∞].
We have

C(n, κ, λ,D) = ((n − 1)λ)−1
(
1 − e−(n−1)λD

)
.

The right hand side is monotone increasing as D→ ∞. By Theorem 1.10, for all p ∈ (1,∞)
we have μ1,p(M) ≥ ((n − 1)λ/p)p.
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We assume μ1,p(M) = ((n − 1)λ/p)p. By Theorem 1.10, we have D = ∞. Therefore,
the compactness of ∂M and Lemma 3.4 imply that M is noncompact. It has been proved
in Theorem C in [23] as a splitting theorem (see Subsection 1.2) that if M is noncompact
and ∂M is compact, then (M, dM) is isometric to ([0,∞)×κ,λ ∂M, dκ,λ). Therefore, (M, dM) is
isometric to ([0,∞) ×κ,λ ∂M, dκ,λ).

Let p = 2, and let (M, dM) be isometric to ([0,∞) ×κ,λ ∂M, dκ,λ). Let φn,κ,λ : [0,∞) →
[0,∞) be a smooth function defined by

φn,κ,λ(t) := t e
(n−1)λt

2 .

Then the smooth function φn,κ,λ ◦ ρ∂M on M satisfies

Δ2(φn,κ,λ ◦ ρ∂M) =
(
(n − 1)λ

2

)2

(φn,κ,λ ◦ ρ∂M)

on M; in particular,

μ1,2(M) ≤ R2(φn,κ,λ ◦ ρ∂M) =
(
(n − 1)λ

2

)2

.

Therefore, μ1,2(M) = ((n − 1)λ/2)2. This proves Theorem 1.13. �

7.2. Segment inequality. For n ≥ 2, κ, λ ∈ R, and D ∈ (0, C̄κ,λ], let C1(n, κ, λ,D) be the
positive constant defined as

C1(n, κ, λ,D) := sup
l∈(0,D)

sup
t∈(0,l)

sn−1
κ,λ (l)

sn−1
κ,λ (t)

.

We prove the following segment inequality:

Proposition 7.2. For D ∈ (0, C̄κ,λ] \ {∞}, let M be an n-dimensional, connected complete
Riemannian manifold with boundary with Riemannian metric g such that RicM ≥ (n −
1)κ, H∂M ≥ λ and D(M, ∂M) ≤ D. Let f : M → R be a non-negative integrable function on
M, and define a function E f : M → R by

E f (p) := inf
x∈∂M

∫ ρ∂M(p)

0
f (γx(t)) dt,

where the infimum is taken over all foot points x on ∂M of p. Then∫
M

E f d volg ≤ C1(n, κ, λ,D)D
∫

M
f d volg .

Proof. Put C1 := C1(n, κ, λ,D). Fix x ∈ ∂M and l ∈ (0, τ(x)). Observe that x is the unique
foot point on ∂M of γx(l), and γx|(0,l] lies in Int M. By Lemma 4.5, for all t ∈ [0, l] we have

E f (γx(l))θ(l, x) ≤ C1

∫ l

0
f (γx(t))θ(t, x) dt.

Integrating the both sides, we see
∫ τ(x)

0
E f (γx(l))θ(l, x) dl ≤ C1D

∫ τ(x)

0
f (γx(t))θ(t, x) dt.
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Lemma 3.7 implies M = exp⊥(
⋃

x∈∂M{tux | t ∈ [0, τ(x)]}). From Lemma 3.9, it follows
that exp⊥ |T D∂M\0(T⊥∂M) is a diffeomorphism onto D∂M \ ∂M. By Proposition 3.5, we have
volg Cut ∂M = 0. Integrating the both sides of the above inequality over ∂M with respect to
x, we obtain the desired segment inequality. �

From Proposition 7.2, we derive the following Poincaré inequality:

Lemma 7.3. For D ∈ (0, C̄κ,λ] \ {∞}, let M be an n-dimensional, connected complete
Riemannian manifold with boundary with Riemannian metric g such that RicM ≥ (n −
1)κ, H∂M ≥ λ and D(M, ∂M) ≤ D. Let ψ : M → R be a smooth integrable function on
M with ψ|∂M = 0. Assume

∫
M ‖∇ψ‖ d volg < ∞. Then

∫
M
|ψ| d volg ≤ C1(n, κ, λ,D)D

∫
M
‖∇ψ‖ d volg .

Proof. Put f := ‖∇ψ‖, and let E f be the function defined in Proposition 7.2. For each
p ∈ D∂M, let x be the foot point on ∂M of p. By the Cauchy-Schwarz inequality, we have

|ψ(p) − ψ(x)| ≤
∫ ρ∂M(p)

0

∣∣∣g(∇ψ, γ′x(t))
∣∣∣ dt ≤ E f (p).

Since ψ|∂M = 0, we have |ψ(p)| ≤ E f (p). Integrate the both sides of the inequality over
D∂M with respect to p. By Proposition 7.2 and volg Cut ∂M = 0, we arrived at the desired
inequality. �

As one of the applications of our segment inequality in Proposition 7.2, we show the
following:

Proposition 7.4. For D ∈ (0, C̄κ,λ], let M be an n-dimensional, connected complete Rie-
mannian manifold with boundary such that RicM ≥ (n − 1)κ,H∂M ≥ λ and D(M, ∂M) ≤ D.
Let M be compact. Then for all p ∈ (1,∞), we have

μ1,p(M) ≥ ( p C1(n, κ, λ,D) D )−p.

Proof. For a fixed p ∈ (1,∞), let ψ be a non-zero function in W1,p
0 (M). We may assume

that ψ is smooth on M. In Lemma 7.3, by replacing ψ with |ψ|p, we have
∫

M
|ψ|p d volg ≤ p C1(n, κ, λ,D) D

∫
M
|ψ|p−1 ‖∇ψ‖ d volg .

From the Hölder inequality, we derive Rp(ψ) ≥ ( p C1(n, κ, λ,D) D )−p. This proves Proposi-
tion 7.4. �

Remark 7.5. Proposition 7.4 is weaker than Theorem 1.10. We can prove that the lower
bound (p C1(n, κ, λ,D) D)−p for μ1,p in Proposition 7.4 is at most the lower bound
(p C(n, κ, λ,D))−p in Theorem 1.10.
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8. Measure contraction property8. Measure contraction property

Let M be a connected complete Riemannian manifold with boundary with Riemannian
metric g.

8.1. Measure contraction inequalities. Let t ∈ (0, 1). For a point p ∈ M, we say that
q ∈ M is a t-extension point from ∂M of p if q satisfies the following: (1) ρ∂M(p)/ρ∂M(q) = t;
(2) there exists a foot point x on ∂M of p with q = γx(ρ∂M(q)). We denote by Wt the set of
all points p ∈ M for which there exists a t-extension point from ∂M of p.

We first show the following:

Lemma 8.1. For every t ∈ (0, 1), and for every p ∈ Wt, there exists a unique foot point
on ∂M of p. In particular, every p ∈ Wt has a unique t-extension point from ∂M.

Proof. Take p ∈ Wt. Let q be a t-extension point from ∂M of p. There exists a foot
point x on ∂M of p such that q = γx(ρ∂M(q)). The definition of τ implies ρ∂M(q) ≤ τ(x).
Since ρ∂M(p) = tρ∂M(q), it follows that ρ∂M(p) < τ(x). From Lemma 3.1, we derive p =
γx(ρ∂M(p)). Lemma 3.6 tells us that x is a unique foot point on ∂M of p.

Suppose that there exist distinct t-extension points q1, q2 ∈ M from ∂M of p. By the
definition, it holds that ρ∂M(q1) = ρ∂M(q2). Furthermore, for each i = 1, 2, there exists a foot
point xi on ∂M of p with qi = γxi(ρ∂M(qi)). Since q1 � q2, we have x1 � x2. This contradicts
the property that p has a unique foot point on ∂M. �

By Lemma 8.1, for every t ∈ (0, 1), we can define a map Φt : Wt → M by Φt(p) := q,
where q is a unique t-extension point from ∂M of p. We call Φt the t-extension map from
∂M. Notice that for every t ∈ (0, 1), the t-extension map Φt from ∂M is surjective and
continuous.

Let Ω be a subset of M. We say that x ∈ ∂M is a foot point on ∂M of Ω if there exists a
point p ∈ Ω such that x is a foot point on ∂M of p. We denote by Π(Ω) the set of all foot
points on ∂M of Ω.

We have the following property of the t-extension map Φt from ∂M:

Lemma 8.2. For t ∈ (0, 1), let Φt be the t-extension map from ∂M. Let Ω be a subset of
M. Then Π(Φ−1

t (Ω)) = Π(Ω).

Proof. First, we show Π(Ω) ⊂ Π(Φ−1
t (Ω)). Take x ∈ Π(Ω). There exists p ∈ Ω such

that x is a foot point on ∂M of p. Put pt := γx(tρ∂M(p)). It suffices to show that x is a
foot point on ∂M of pt, and pt belongs to Φ−1

t (Ω). Lemma 3.1 implies p = γx(ρ∂M(p)). By
the definition of τ, we see ρ∂M(p) ≤ τ(x); in particular, tρ∂M(p) is smaller than τ(x). From
Lemma 3.6, it follows that x is a unique foot point on ∂M of pt. Furthermore, we have
ρ∂M(pt) = tρ∂M(p). Hence, p is a t-extension point from ∂M of pt. By Lemma 8.1, p is a
unique t-extension point from ∂M. Since p = Φt(pt) and p ∈ Ω, we see pt ∈ Φ−1

t (Ω). This
implies x ∈ Π(Φ−1

t (Ω)).
Next, we show the opposite. Take x ∈ Π(Φ−1

t (Ω)). There exists p ∈ Φ−1
t (Ω) such that x

is a foot point on ∂M of p. By Lemma 8.1, x is a unique foot point on ∂M of p. By the
definition of the t-extension point from ∂M, we see Φt(p) = γx(ρ∂M(Φt(p))). Thus, we have
ρ∂M(Φt(p)) ≤ τ(x). Hence, x is a foot point on ∂M of Φt(p). Since Φt(p) ∈ Ω, we have
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x ∈ Π(Ω). This proves the lemma. �

For t ∈ (0, 1), let Φt be the t-extension map from ∂M. Let Ω be a subset of M. For
x ∈ Π(Ω), we put

IΩ,t,x := { s ∈ (0, tτ(x)) | γx(s) ∈ Φ−1
t (Ω) }.

We prove the following:

Lemma 8.3. For t ∈ (0, 1), let Φt be the t-extension map from ∂M. Suppose that a subset
Ω of M is measurable, and satisfies volgΦ−1

t (Ω) < ∞. Then we have

volgΦ−1
t (Ω) =

∫
Π(Ω)

∫
IΩ,t,x

θ(s, x) ds d volh .

Proof. We put

A := { γx(tτ(x)) ∈ Φ−1
t (Ω) | x ∈ Π(Ω), τ(x) < ∞},

B := { γx(s) | x ∈ Π(Ω), s ∈ IΩ,t,x}.

Note that A and B are disjoint.
We show Φ−1

t (Ω) \ ∂M = A � B. The definition of IΩ,t,x implies A � B ⊂ Φ−1
t (Ω) \ ∂M.

To show the opposite, take p ∈ Φ−1
t (Ω) \ ∂M, and take a foot point x on ∂M of p. By

Lemma 3.1, we see p = γx(ρ∂M(p)). From Lemma 8.2, we derive x ∈ Π(Ω). Now, p
belongs to Wt. Hence, by Lemma 8.1, x is a unique foot point on ∂M of p, and there exists
a unique t-extension point q ∈ M from ∂M of p. The t-extension point q from ∂M of p
satisfies tρ∂M(q) = ρ∂M(p) and q = γx(ρ∂M(q)). The definition of τ implies ρ∂M(q) ≤ τ(x).
It holds that ρ∂M(p) ≤ tτ(x). Since x ∈ Π(Ω) and ρ∂M(p) ∈ (0, tτ(x)], it follows that
Φ−1

t (Ω) \ ∂M ⊂ A � B.
We next show that A is a null set of M. We put

Ā :=
⋃

x∈Π(Ω)

{tτ(x)ux | τ(x) < ∞}.

Note that A = exp⊥(Ā). By Lemma 3.2, and by the Fubini theorem, the graph {(x, tτ(x)) |
x ∈ ∂M, τ(x) < ∞} of tτ is a null set of ∂M× [0,∞). Since a map Ψ : ∂M× [0,∞)→ T⊥∂M
defined by Ψ(x, s) := sux is smooth, the set Ā is also a null set of T⊥∂M. By the definition
of τ, the set A is contained in Int M. From the smoothness of exp⊥, it follows that A is a null
set of M.

Since Φ−1
t (Ω) \ ∂M = A � B, and since A is a null set of M, it suffices to show that

volg B =
∫
Π(Ω)

∫
IΩ,t,x

θ(s, x) ds d volh .

We put

B̄ :=
⋃

x∈Π(Ω)

{sux | s ∈ IΩ,t,x}.
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Note that B = exp⊥(B̄). The set B̄ is contained in T D∂M \ 0(T⊥∂M). By Lemma 3.9, the
map exp⊥ |T D∂M\0(T⊥∂M) is a diffeomorphism. Hence, by the coarea formula and the Fubini
theorem,

volg exp⊥(B̄) =
∫
Π(Ω)

∫
IΩ,t,x

θ(s, x) ds d volh .

Since B = exp⊥(B̄), we arrive at the desired equation. �

Now, we prove the following measure contraction inequality:

Proposition 8.4. Let M be an n-dimensional, connected complete Riemannian manifold
with boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ. For t ∈
(0, 1), let Φt be the t-extension map from ∂M. Suppose that a subset Ω of M is measurable.
Then we have

volgΦ−1
t (Ω) ≥ t

∫
Ω

sn−1
κ,λ ◦ tρ∂M

sn−1
κ,λ ◦ ρ∂M

d volg .

Proof. We may assume volgΦ−1
t (Ω) < ∞. By Lemma 8.3,

volgΦ−1
t (Ω) =

∫
Π(Ω)

∫
IΩ,t,x

θ(s, x) ds d volh .

From Lemma 4.5, for all x ∈ Π(Ω) and s ∈ IΩ,t,x, we derive

θ(t−1s, x)
θ(s, x)

≤ sn−1
κ,λ (t−1s)

sn−1
κ,λ (s)

.

It follows that

volgΦ−1
t (Ω) ≥

∫
Π(Ω)

∫
IΩ,t,x

sn−1
κ,λ (s)

sn−1
κ,λ (t−1s)

θ(t−1s, x) ds d volh .

For x ∈ Π(Ω), we put
IΩ,x := { s ∈ (0, τ(x)) | γx(s) ∈ Ω }.

Note that for each x ∈ Π(Ω), the set {l ∈ (0, τ(x)) | tl ∈ IΩ,t,x} coincides with IΩ,x. By putting
l := t−1s in the above inequality, we have

volgΦ−1
t (Ω) ≥ t

∫
Π(Ω)

∫
IΩ,x

sn−1
κ,λ (tl)

sn−1
κ,λ (l)

θ(l, x) dl d volh .

Now, we put
Ū :=

⋃
x∈Π(Ω)

{sux | s ∈ IΩ,x}.

We show exp⊥(Ū) = Ω \ (Cut ∂M ∪ ∂M). By the definition of IΩ,x, we have exp⊥(Ū) ⊂ Ω \
(Cut ∂M ∪ ∂M). To show the opposite, take p ∈ Ω \ (Cut ∂M ∪ ∂M), and take a foot point x
on ∂M of p. From Lemma 3.1, it follows that p = exp⊥(ρ∂M(p)ux). We see x ∈ Π(Ω). Since
p does not belongs to Cut ∂M∪∂M, we have ρ∂M(p) ∈ (0, τ(x)). This implies ρ∂M(p) ∈ IΩ,x.
Hence, the set Ω \ (Cut ∂M ∪ ∂M) is contained in exp⊥(Ū).
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The set Ū is contained in T D∂M \ 0(T⊥∂M). Lemma 3.9 implies that the map
exp⊥ |T D∂M\0(T⊥∂M) is a diffeomorphism. By the coarea formula and the Fubini theorem, and
by Lemma 3.5, we have

t
∫
Π(Ω)

∫
IΩ,x

sn−1
κ,λ (tl)

sn−1
κ,λ (l)

θ(l, x) dl d volh = t
∫

exp⊥(Ū)

sn−1
κ,λ ◦ tρ∂M

sn−1
κ,λ ◦ ρ∂M

d volg

= t
∫
Ω

sn−1
κ,λ ◦ tρ∂M

sn−1
κ,λ ◦ ρ∂M

d volg .

Thus, we arrive at the desired inequality. �

8.2. Another proof of Theorem 1.1. For r,R ∈ (0,∞) with r < R, we put Ar,R(∂M) :=
BR(∂M) \ Br(∂M).

By using Proposition 8.4, we have the following:

Lemma 8.5. Let M be an n-dimensional, connected complete Riemannian manifold with
boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ. Let t ∈ (0, 1).
Suppose ∂M is compact. Then for all R ∈ (0, C̄κ,λ] \ {∞} and r ∈ (0,R), we have

volg Ar,R(∂M)
volg Atr,tR(∂M)

≤
⎛⎜⎜⎜⎜⎜⎝t inf

s∈(r,R)

sn−1
κ,λ (ts)

sn−1
κ,λ (s)

⎞⎟⎟⎟⎟⎟⎠
−1

.

Proof. Take R ∈ (0, C̄κ,λ]\{∞} and r ∈ (0,R). PutΩ := Ar,R(∂M). LetΦt be the t-extension
map from ∂M. For all p ∈ Φ−1

t (Ω), we have

ρ∂M(p) = t ρ∂M(Φt(p)) ∈ (tr, tR].

Hence, Φ−1
t (Ω) is contained in Atr,tR(∂M). Applying Proposition 8.4 to Ω, we obtain

volg Atr,tR(∂M) ≥ volgΦ−1
t (Ω) ≥ t inf

s∈(r,R)

sn−1
κ,λ (ts)

sn−1
κ,λ (s)

volgΩ.

This proves the lemma. �

From Lemma 8.5, we derive the following:

Lemma 8.6. Let M be an n-dimensional, connected complete Riemannian manifold with
boundary with Riemannian metric g such that RicM ≥ (n−1)κ and H∂M ≥ λ. Suppose ∂M is
compact. Let r2 ∈ (0, C̄κ,λ] \ {∞}, and let r1 ∈ (0, r2). Put t := r1/r2. For k ∈ N, put r := tkr2.
Then we have

volg Ar1,r2 (∂M)
volg Br(∂M)

≤
⎛⎜⎜⎜⎜⎜⎝
∞∑

i=k

ti inf
s∈(r1,r2)

sn−1
κ,λ (ti s)

sn−1
κ,λ (s)

⎞⎟⎟⎟⎟⎟⎠
−1

.

Proof. We see Br(∂M) \ ∂M =
⋃∞

i=k Atir1,tir2 (∂M). Lemma 8.5 implies

volg Br(∂M) =
∞∑

i=k

volg Atir1,tir2 (∂M)
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≥ volg Ar1,r2 (∂M)

⎛⎜⎜⎜⎜⎜⎝
∞∑

i=k

ti inf
s∈(r1,r2)

sn−1
κ,λ (ti s)

sn−1
κ,λ (s)

⎞⎟⎟⎟⎟⎟⎠ .
This completes the proof. �

By Lemma 8.6, we have the following volume estimate:

Lemma 8.7. Let M be an n-dimensional, connected complete Riemannian manifold with
boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ. Suppose
∂M is compact. Let t ∈ (0, 1). Take l,m ∈ N with l < m. Then for all r ∈ (0,∞) with
tl−1r ∈ (0, C̄κ,λ] \ {∞}, we have

volg Btl−1r(∂M)
volg Btm−1r(∂M)

≤
∑∞

j=l sups∈(t jr,t j−1r) sn−1
κ,λ (s)(t j−1r − t jr)∑∞

i=m inf s∈(tir,ti−1r) sn−1
κ,λ (s)(ti−1r − tir)

.

Proof. Fix j ∈ {l, . . . ,m − 1}. By Lemma 8.6, we have

volg At jr,t j−1r(∂M)
volg Btm−1r(∂M)

≤
⎛⎜⎜⎜⎜⎜⎜⎝
∞∑

i=m− j

ti inf
s∈(t jr,t j−1r)

sn−1
κ,λ (ti s)

sn−1
κ,λ (s)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

≤
⎛⎜⎜⎜⎜⎜⎜⎝
∞∑

i=m− j

ti
inf s∈(t jr,t j−1r) sn−1

κ,λ (ti s)

sups∈(t jr,t j−1r) sn−1
κ,λ (s)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

.

Note that we have⎛⎜⎜⎜⎜⎜⎜⎝
∞∑

i=m− j

ti
inf s∈(t jr,t j−1r) sn−1

κ,λ (ti s)

sups∈(t jr,t j−1r) sn−1
κ,λ (s)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

=
t j sups∈(t jr,t j−1r) sn−1

κ,λ (s)∑∞
i=m ti inf s∈(tir,ti−1r) sn−1

κ,λ (s)
.

It follows that

volg Btl−1r(∂M)
volg Btm−1r(∂M)

= 1 +
m−1∑
j=l

volg At jr,t j−1r(∂M)
volg Btm−1r(∂M)

≤ 1 +
m−1∑
j=l

t j sups∈(t jr,t j−1r) sn−1
κ,λ (s)∑∞

i=m ti inf s∈(tir,ti−1r) sn−1
κ,λ (s)

≤
∑∞

j=l t j sups∈(t jr,t j−1r) sn−1
κ,λ (s)∑∞

i=m ti inf s∈(tir,ti−1r) sn−1
κ,λ (s)

.

This implies the lemma. �

Now, we give another proof of Theorem 1.1.
Proof of Theorem 1.1. Let M be an n-dimensional, connected complete Riemannian

manifold with boundary with Riemannian metric g such that RicM ≥ (n − 1)κ and H∂M ≥ λ.
Suppose ∂M is compact. Take r,R ∈ (0,∞) with r ≤ R. By Lemma 4.6, we may assume
R ∈ (0, C̄κ,λ] \ {∞} and r < R. Put r0 := Rr. Take a sufficiently large N ∈ N such that
N−1 log r ∈ (0, 1). We put t := 1 − (log r/N), and

l := N + 1, m := min
{
i ∈ N | i ≥ N(log R/ log r) + 1

}
.
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We have l < m and tm−1r0 ≤ r. Note that if N → ∞, then tl−1r0 → R and tm−1r0 → r. From
Lemma 8.7, it follows that

volg Btl−1r0 (∂M)
volg Br(∂M)

≤ volg Btl−1r0 (∂M)
volg Btm−1r0 (∂M)

≤
∑∞

j=l sups∈(t jr0,t j−1r0) sn−1
κ,λ (s)(t j−1r0 − t jr0)∑∞

i=m inf s∈(tir0,ti−1r0) sn−1
κ,λ (s)(ti−1r0 − tir0)

.

Letting N → ∞, we have

volg BR(∂M)
volg Br(∂M)

≤
∫ R

0 sn−1
κ,λ (s) ds∫ r

0 sn−1
κ,λ (s) ds

.

Thus, we obtain Theorem 1.1. �

Addendum: After completing the first draft of this paper, the author has been informed by
Sormani of the paper [33] written by Perales. Let M be a connected complete Riemannian
manifold with boundary such that RicM ≥ 0 and H∂M ≥ λ. The paper [33] contains a
Laplacian comparison theorem for ρ∂M everywhere in a barrier sense, a theorem of volume
estimates of the metric neighborhoods of ∂M, and applications to studies of convergences
of such manifolds with boundary.
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