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Abstract

Chow stability is one notion of Mumford’s geometric invarigheory for study-
ing the moduli space of polarized varieties. Kapranov, 18fals and Zelevinsky de-
tected that Chow stability of polarized toric varieties istefmined by its inherent
secondary polytopewhich is a polytope whose vertices correspond to regular tr
angulations of the associated polytope [7]. In this paper,give a purely convex-
geometrical proof that the Chow form of a projective toriciety is H-semistable if
and only if it is H-polystable with respect to the standard complex torusoadt.
This essentiallymeans that Chow semistability is equivalent to Chow pobitita
for any (not-necessaliry-smooth) projective toric vaegt

1. Introduction

Let X" — PN be ann-dimensional complex projective variety with d¥g= 2 em-
bedded by very ample complete linear system. Chow stalidigne notion of the geo-
metric invariant theory (GIT) investigated by many resbars. In the present paper,
we study Chow poly(semi)stability of a projective toric sy for the standard com-
plex torus action. To state our result more precisely, lebtisfly recall the fundamen-
tal knowledge on toric varieties. See [2, 6, 14] for more iietd et A = {ag,...,an} C
Z" be a finite set of integer vectors. L& denote the convex hull ofA in R". A finite
set A is said tosatisfy (x) if the following conditions hold:

) A=QnNZ"={a,...,an}.

i) A affinely generates the latticd" over Z.

Now we regardA as a set of Laurent monomials mvariables, i.e., of monomials of
the form

X2 =X X,
wherea = (a;, ..., ay) € A is the exponent vectors amx, ..., X, are n-variables.
The closure of theA-monomial embedding of a complex toru8{()" to the projective
space defines the-dimensional projective toric varietiXa. It is well-known that toric
Fano varieties with the anticanonical polarization cqroesl to reflexive polytopes. Re-
call that a fully dimensional integral polytop® containing the origin in its interior is
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called reflexiveif vertices are primitive lattice points and whose polar Idpalytope is
again an integral polytope.

Next we quick review some related results on Chow stabilitypaarized varieties
which will be the source of our argument. One of the reasong @how stability is
important in Kéhler geometry is that Chow stability is cllyseelated to the existence
problem of canonical Riemannian metrics on a certain compahler manifold. A
breakthrough result has been achieved by Donaldson in [4}. (X, L) be a smooth
polarized variety, that isX is an n-dimensional smooth complex variety andis a
very ample line bundle oveX. Donaldson showed that the existence of a constant
scalar curvature Kahler (cscK) metric representing the fiisern classc;(L) implies
asymptotic Chow stability of a polarized variet{,L) wheneverX has no holomorphic
vector fields. This result has been extended by Mabuchi in #se evhere the auto-
morphism group is not discrete. In [9], Mabuchi proved tha{Xf L) admits a cscK
metric inc (L) then (X, L) is asymptotically Chow polystable whenevet, () satisfies
the hypothesis of the obstruction for asymptotic Chow sthibty. Eventually, Futaki
has detected that Mabuchi’'s hypothesis is equivalent to #mesking of a collection
of integral invariantsFrq, . .., Fro» defined in [5], where Tddenotes the-th Todd
polynomial. The reader should bear in mind tt#&{; equals theclassical Futaki in-
variant up to a multiplicative constant, so tha}y is an obstruction for the existence
of cscK metrics incy(L). Since these integral invarianfs;; are a generalization of the
classical Futaki invariant, we call thehigher Futaki invariants. Combining Mabuchi’s
result [9] and Futaki's statement [5], we have the following

Theorem 1.1 (Mabuchi—Futaki [9, 5]) Let (X, L) be an n-dimensional smooth
polarized variety. Assume that the higher Futaki invargat; vanishes for each &
1,...,n. Then if(X, L) admits a cscK metric ini€L) then (X, L) is asymptotically
Chow polystable.

One of the best possible result on the canonical Riemanniamias of smooth
toric Fano varieties, due to X.J. Wang and X. Zhu, is the foihg.

Theorem 1.2 (Wang—Zhu [17]) Let X be a smooth toric Fano variety. Then
(X, Ox(KxY)) admits a Kahler—Einstein metric i@x(KxY) if and only if the clas-
sical Futaki invariant vanishes.

Note that all cscK metrics iy (Ox (K1) are Kahler—Einstein metrics on smooth
Fano varieties. Summing up these results, one can see traptdic Chow semista-
bility implies asymptotic Chow polystability fosmoothtoric Fano varieties. Consid-
ering a direct combinatorial proof of this result, we pravithore general result. That
is, for an equivalently embedded projective toric variéty C PN, Chow semistability
is essentiallyequivalent to Chow polystability. In the above, the readesudd bear in
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mind that we fixed a polarization and dwt need asymptotic (semi)stability in order
to show our result. More precisely, we have the following.

Theorem 1.3. Let A={ay,...,an} C Z" be a finite set of integer vectors which
satisfies(x). Let Xa — PN be the associated complex projective toric variety with
degX = 2. Considering the algebraic torus action ¢€>)N*? into PN, we define the
subtorus of(C*)N*! by

H = {(to, ey tN) (S] (CX)N+1

N

1_[ tj = 1}.

j=0

Then the Chow point of Xis H-semistable if and only if it is H-polystable.

Remark that Theorem 1.3 doest require Xa to be either smooth or Fano vari-
ety. Also we note thatH-polystability simpliesH-semistability by its definition (see
Definition 2.1). On the other hand, even Xf is Fano variety Theorem 1.3 does not
seem to be true in non-toric case. In fact, a cubic surbéee P® with a singular point
of type A, gives an example of Fano variety which is Chow semistablenbtitChow
polystable (see Remark 4.1 for more details).

The main idea of our proof is based on the following obseovatiLet G be a
reductive algebraic group. Suppo&e acts linearly on a finite dimensional complex
vector spaceV. The well-known Hilbert—Mumford numerical criterion of GI{Prop-
osition 2.3) gives a necessary and sufficient condition fanoazero vecton* € V
being polystable (resp. semistable). In the special casenwthe reductive groups
is isomorphic to the algebraic torus, this criterion can bstate in terms of the cor-
responding weight polytope (Proposition 2.5). See [3, §,f&@6 more details. Roughly
speaking, the condition for -semistability in Theorem 1.3 is equivalent to the fact that
the corresponding weight polytop¥y (X) with respect toH-action containing the ori-
gin. On the other hand, the condition fét-polystability is equivalent to the fact that
Ny (X) containing the origin in its interior. In particular, theeight polytope of the
Chow point (form) of X — PN with respect to ¢*)N+-action is called theChow
polytope In the toric case, we can describe Chow polytopes in pureiypbinatorial
way. Namely, the Chow polytope of a toric varie¥/, coincides with thesecondary
polytope Xsec(®), which is a polytope whose vertices are corresponding golee tri-
angulations ofQ (see Theorem 3.4). We will use this combinatorial approdehsec-
ondary polytopes in order to show our main theorem.

This paper is organized as follows. Section 2 is a brief vevim the geometric
invariant theory and Chow stability. In Section 3, we firsfige the secondary poly-
tope and discuss about its fundamental property due to thike @foGel'fand, Kapranov
and Zelevinsky. The structure of secondary polytopes id-éistussed in [6, 8]. Sec-
tion 3.2 collects a combinatorial description on secongalytopes. We give the proof
of the main theorem in Section 4.
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2. Preliminaries

2.1. Weight polytope. Let G be a reductive algebraic group aMd be a finite
dimensional complex vector space. Supp@eacts linearly onV. Let us denote a
point v* in V which is a representative af € P(V).

DEFINITION 2.1. Letv* be as above and l&Dg(v*) be theG-orbit in V.
(a) v* is called G-semistablgf the Zariski closure ofOg(v*) does not contain the
origin: 0¢ Og(v*).
(b) v* is called G-polystableif Og(v*) is closed orbit.
Analogously,v € P(V) is said to beG-polystable (resp. semistable) if any representa-
tive of v is G-polystable (resp. semistable).

REMARK 2.2. The closure ofdg(v*) in the Euclidean topology coincides with
the Zariski closureOg(v*) (see, [11], Theorem 2.33).

From Definition 2.1, one can see thatpolystability impliesG-semistability ass-
orbit itself never contain the origin. The following HildketMumford criterion is well-
known in the geometric invariant theory.

Proposition 2.3 (The Hilbert—Mumford criterion [12]) v € P(V) is G-polystable
(resp. semistab)eif and only if v is H-polystable(resp. semistab)efor all maximal
algebraic torus H< G.

Now we assume that a reductive gro@ is isomorphic to an algebraic torus.
Let x(G) denote the character group &. Then x(G) consists of algebraic homo-
morphismsy: G — C*. If we fix an isomorphismG =~ (C*)N*!, we may express
eachy as a Laurent monomial

(o, - tn) =t t3Y, t eC*, g €Z.
Thus, there is the identification betwegiiG) and ZN+1:
x = (ao, ..., ay) € ZN*L,
Then it is well-known thaty decomposes under the action @finto weight spaces

V=@ Vi, Vo= eV |t-v"=x() vt G}
x€x(G)

DEFINITION 2.4 (Weight polytope). Let* € V\{0} be a nonzero vector M with

* _
vo= Z Uy, Uy €V,.
x€x(G)
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The weight polytopeof v* (with respect toG-action) is the integral convex polytope
in x(G) ® R = RN*! defined by

No(v*) := Conv{x € x(G) | v, # 0} c RN,
where ConyA} denotes the convex hull of a finite set of poirs

In the case wher& is an algebraic torus, the Hilbert—Mumford criterion (Prepo
ition 2.3) can be restated as the following proposition.

Proposition 2.5 (The numerical criterion: [3] Theorem 9.2, [16] Theorem.1)5
Suppose G is isomorphic to an algebraic torus which acts aptexnvector space V
linearly. Letv* be a nonzero vector in V. Then
(i) v* is G-semistable if and only iVg(v*) contains the origin.

(i) v* is G-polystable if and only if\/g(v*) contains the origin in its interior.

2.2. Chow form. Now we recall the definition of the Chow form of irreducible
complex projective varieties. See [6] for more details.

Let X — PN be ann-dimensional irreducible complex projective variety of-de
greed > 2. Recall that the Grassmann varieB(k, PN) parametrizesk-dimensional
projective linear subspaces BfV.

DEFINITION 2.6 (Associated hypersurface). Thssociated hypersurfaad X —
PN is the subvariety irG(N —n — 1, PN) which is given by

Zy:={LeG(N-—n—-1,PN) | LN X # 7).

The fundamental properties &x can be summarized as follows (see [6], p.99):
(1) Zx is irreducible,
(2) CodimZy =1 (that is, Zx is a divisor inG(N —n—1,PN)),
(3) degZyx = d in the Plucker coordinates, and
(4) Zx is given by the vanishing of a sectidR; € H(G(N —n—1,PN), O(d)).
We call Ry the Chow formof X. Note thatR} can be determined up to a multi-
plicative constant. Settiny := HY(G(N —n — 1, PN), O(d)) and Rx € P(V) which
is the projectivization ofRy, we call Rx the Chow pointof X. Since we have the
natural action ofG = SL(N + 1,C) into P(V), we can define SIN + 1)-polystability
(resp. semistability) ofRy.

DEFINITION 2.7 (Chow stability). LetX — PN be an irreduciblen-dimensional
complex projective variety. TheX is said to beChow polystablgresp. semistab)eif
the Chow pointRy of X is SL(N + 1, C)-polystable (resp. semistable).
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3. Secondary polytopes and Regular triangulations

3.1. A construction of secondary polytopes. In this section we recall the def-
inition of secondary polytope and its fundamental propefiyr more details, see [6, 8].

Let A= {ag, ..., an} be a finite subset irZ" which satisfies *). Let Q be the
convex hull of A in R" as usual. To begin, we construct tregular triangulation of
(Q, A) as follows:

StepP 1. (Lifting): Pick a height functionw: A — R which can be thought of as
a vectorow = (wp, . .., wn) € RN*! with w(a) = ;. Using the coordinate of» as
‘heights’, we consider théifted finite setin R"*%, defined by

R I ]

wj

STEP 2. (Lower Face): LetQ® be the convex hull ofA” in R"*1, A face F of
Qv is said to be dower faceif it satisfies

X—Ceny1 & Q¥ foreach xe F and c¢> 0.

Hereeny: = (0,...,0,1)e R,
Step 3. (Projection): Lep denote the canonical projection

p: R™L S RY (Xg, .y Xna1) > (Xt .oy Xn)-
Then, if all lower faces ofQ® are simplices, their projections
{p(F) | F is a lower face ofQ“}
form a triangulation of Q, A).

DerINITION 3.1 (Regular triangulation). LefA and Q be as above. A triangula-
tion of (Q, A) is calledregular if it can be obtained by projecting all the lower faces
of a lifted finite setA® in R"*! for somew € RN+,

Let A and Q be as above and Idt be a triangulation of @, A). Let J = {0,...,N}
be the index set of labels. Fix a poiaj € A. Let Vol(-) denote a translation in-
variant volume form onR" with the normalization Vold,) = 1/n! for the standard
n-dimensional simplexA, = Cony{g | 1 <i < n}. For any simplexC of T, we de-
note the set of vertices o by V(C). Then we consider the functiopat: A - R
defined by

¢at(@)= Y  nl\Vol(C)

C: ajeV(C)
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where the summation is over all maximal simplices offor which a; is a vertex.
Especially,¢a 1(aj) = 0 for j € J if and only if a; € A is not a vertex of any simplex
of T. Then theGelfand—Kapranov—Zelevinsk{GKZ) vector of T is given by

$a(T) =D ¢at(aj)e; € RN

jed
wheree; for j € J is the standard basis @®N+1.

DEFINITION 3.2 (Secondary polytope). Theecondary polytopecsec@) is the
polytope inRN* defined by

¥sec) = Conpa(T) | T is a triangulation of Q, A)}.
The following properties of secondary polytopes are walhkn.

Theorem 3.3([6] p.221, Theorem 1.7) For a finite subset A= {ag, ..., an} in
Z"™ which satisfieq*), we have
(i) dim Xsec®) = N —n.
(i) There is a one to one correspondence between the regularguiations of(Q, A)
and vertices ofzsec(d). In particular, the GKZ-vectorga(T) for a triangulation T of
(Q, A) will be a vertex ofxsec@) if and only if T is regular.

In order to see the relationship between secondary polgtepe Chow polytopes
of toric varieties, we first quick review on the constructiohtoric varieties. See [6],
Chapter 5 for more details. Recall that a toric variety is mplex irreducible algebraic
variety with a complex torus action having an open denset.odg usual, letA =
{ag, ..., an} be a finite set of integer vectors A" which satisfies ). Setting

X =([x*: - :x®™] e PN | x=(Xg,...,X) € (C)"},

we define the varietyXa C PN to be the closure ofXQ in PN. Then Xa is an
n-dimensional equivariantly embedded subvarietyPil. Then we require the follow-
ing result.

Theorem 3.4 (Kapranov—Sturmfels—Zelevinsky [7]) Let A C Z" be a finite set
which satisfies(x). Let Xa C PN be the associated toric variety. LetxR be the
Chow point of X%. Then the weight polytopd/c-n+1(Rx,) of Rx, with respect to
the algebraic torus actiofC*)N*?! (i.e., the Chow polytopeof Xa) coincides with the
secondary polytop&sec@).

Next we define a piecewise-linear functi@p t: Q — R as follows. LetT be
a triangulation of Q, A) and letw € RN*! be a height function. Theharacteristic
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sectionof T with respect tow is a piecewise-linear function which is defined by

Jo,T: Q_)]R a; ng,T(ai)Za)i

and extended affinely o€ for each maximal simplexC of T. Remark that in the
definition of the characteristic section, we do not requiréo be the height function
that induces the triangulatiom.

Proposition 3.5 ([6] p.221, Lemma 1.8) Letw € RN+! be a height function and

let T be any triangulation ofQ, A). For the characteristic section,g- of T with
respect tow and the GKZ-vectopa(T), we have

(@.0aT) = (0 + D! [ 9,709 o,
Q
We finish this subsection with the following lemma.

Lemma 3.6. Letw, T, g, 1 and ¢a(T) be as inProposition 3.5 For each max-
imal simplex C of T we have

_\Wol(C) '
(3.1) /C Oo.T(X) dv = Py %w,.
Moreover
(3.2) (@, ¢a(T)) =11 " VOI(C) Y
CeT jeC

where the first summation runs over all maximal simplices of T

Proof. (3.2) follows from (3.1) and Proposition 3.5. Hentsuiffices to show (3.1).

From the definition ofg, r, we haveg, r(a;) = wj. Note that the integral of a
linear function on a domain is equal to the multiplicationtbé volume of a domain
with the value of a linear function at the barycenter. In oase; this implies

(3.3) /C go.7(¥) dv = VOI(C)g 7 (bc),

where bc is the barycenter of a simple€. Now we use the fact that the barycenter
of a simplex is given by the average of its vertices:

(3.4) be :=/dev =

Note that we have the linearity @, t with respect to the barycenter (see [8], p.219).
Substituting (3.4) in (3.3), we have (3.1). The assertioneisfied. ]
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3.2. Facets of the secondary polytope.We describe the faces of secondary poly-
topes. The facets (i.e., codimension 1 facesksec(d) correspond to maximal regular
subdivisions of Q, A). These are calledoarse subdivisiongsee [6], Chapter 7 Sec-
tion 2 B).

Let A= {ap, ..., an} be a finite subset irZ" which satisfies £) and let Q be
the convex hull ofA in R". Recall that a subdivision of(, A) is calledregular if it
can be obtained by projecting all the lower faces of a liftettdi set A” for somew
(Definition 3.1). Let.”(A, w) denote the regular subdivision of( A) produced byw.
We will find the defining equation of the facet afsec(d) corresponding to a certain
coarse subdivision” (A, w). To begin, we shall define gefinementof a polyhedral
subdivision.

DeriNITION 3.7 (Refinement). Lef andS be two subdivisions of@, A). Then
S is said to be aefinementof S if for any C € S, there is aC’ € S with C € C'.
We denote it byS=< S.

The following theorem due to Gel'fand, Kapranov and Zelskin gives a combi-
natorial description of the faces of secondary polytopeg. Theorem 3.3).

Theorem 3.8 ([6] p. 228, Theorem 2.4) Let S be any regular subdivision @, A).
Let F(S) denote the convex hull iRN*1 of the GKZ-vectors for all triangulations T which
is obtained by refining S

F(S) = Con{¢a(T) | T is a triangulation refining &
Then two faces oEsec) satisfy HS) ¢ F(S) if and only if S< S.

From Theorem 3.8, the facets of the secondary polytBsec(®) correspond to
regular subdivisions of @, A) which only refine the trivial subdivision and no other.
We call these subdivisions theoarse subdivisions Note that the trivial subdivision
always exists and is given by the zero height functien= (0, ..., 0). The following
Lemma gives the explicit defining equation of the facetiifec(d) corresponding to a
coarse subdivision.

Lemma 3.9 ([8] Excercise 5.11) Let (Q, A) be as above. Let» € RN*! be a
height function which produces the coarse subdivisi6fA, ») of (Q, A). The defining
linear equation of the facet oEsec(d) corresponding ta” (A, w) is

Za)j(pj =n! Z Vol(C) Zwi for ¢ =(go,...,on) € RNTL

jed CeT jeC

where T is a certain triangulation which is obtained by raimi”(A, w) (i.e, T <
(A, w)).
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4. Proof of the main theorem

Now we ready to prove Theorem 1.3.

Proof of Theorem 1.3. LeA = {ap,...,an} C Z" be a finite subset which sat-
isfies &) and letJ = {0, ..., N} be the index set of labels. LeXy — PN be the
associated projective toric variety of degrde= degXa = 2. We denote the Chow
point of Xa by Ryx,. Considering the complex toru€{)N*!, we define the subtorus
of (CX)N+1 by

H= {(to, o ty) e (©)NE

N
[]t= 1} ~ (CN,
j=0

Suppose thaRy, is H-semistable but noH-polystable. SettingG = (C*)N*1, we
consider the projection

74 x(G) @R = RN — y(H)® R =~ RN,
4.1) 4
(®0) -, oN) = (90— @Ny -+ -y ON-1 — @N)-

Then by Theorem 3.4 we observe that
7h(Zsec@)) = Mu(Rx,) and 7' (9Nu(Rx,)) C dTsec®),

wheredP denotes the boundary of an integral polytdpe Thus, the numerical criter-
ion (Proposition 2.5) implies that there is an element (¢q, ..., ¢n) IN dXsec@)
satisfyingzy (p) = 0 € INM4(Rx,). In particular, there exists € R such that

(4.2) t, ..., t) e 0Xsec@)
N

from (4.1). Meanwhile, we have the equality
(4.3) (N + 1)t = (n+ 1)! Vol(Q)

by (18) in [15]. This implies that # 0 as Vol@) > 0 in (4.3). Hence we may assume
that there exists € R* satisfying (4.2).

Now we take the faceF of Xsec(®) which contains the point{...,t) in (4.2). As
discussed in Section 3, there is a height functios RN+ which produces the coarse
subdivision.” (A, w) corresponding to this facet. Fix @ € RN*1. Then Lemma 3.9

implies that
tY wj=n > Vol(C) ) w

jed CeT jeC
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for a certain triangulation7 < . (A, w) which is given by a refinement o’ (A, w).
Also, Lemma 3.6 gives

(@, pa(T)) =n! Y " Vol(C) ) o

CeT jeC

for any triangulationT of (Q, A). TakingT = .7 < (A, w), we have

(4.4) tY o) = (o, ¢a(T)).

jed
On the other hand, we may assume that there is a subsed such that

wi=1 for iel,
wj=0 for jeld\l,

from the definition of the coarse subdivisions.

CAsE I. The simplest case: Assume that there is only brel satisfyingw; = 1
and there are no other (i.d.,= {i}). Then we have the following two possibilities: (a)
a ¢ V(Q) and (b)a € V(Q).

In the case of (a), we observe that

(@, ¢a(T)) =0

for any T < (A, w). Remark thaty; is never a vertex of any simplices @f because
a is lifting by the height functiorw. Therefore (4.4) implies = 0. This contradicts
t e R*.

In case (b),a must be contained in a standard simpléxof T with g € V(C),
where WoIC) = 1/nl. Thus,

(0, #A(T)) = wi - paT(ay) = 1.
Then (4.4) impliest = 1. Substituting this in (4.3), we have
(4.5) N + 1= (n+ 1)! Vol(Q).

Therefore, Lemma 4.3 (see the Appendix) implies tQais a standarch-dimensional
simplex A, = Con\g | 1 <i < n}. Then the associated toric variety iB"( Opn(1))
which has degree 1. This contradicts dég=> 2.

Hence the assertion is verified in the simplest case.

CAseE Il. The general case: Now let us consider the general casethEssimplic-
ity, we may assume that

wo=(0,...,0,0,0,...,0,0,0,...,0)
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for w; = wj = 1. Other cases are similar and our proof is readily genemlip such
cases with minor modifications. Then we have the followinge¢hpossibilities:
(&) In the case where boty anda. are not a vertex ofQ, we conclude that

(@, 9a(T)) =0

by the computation in Case I-(a). Again, this yields= 0, a contradiction.
(b) In the case wherg € V(Q) but & ¢ V(Q), we have

(w, pa(T)) = wi - paT(@) + wir - daT(a")
= 1,

by the same argument in Case I-(a), (b). Theretore 1/2 by (4.4). Substituting this
in (4.3), we have

(N + 1) = 2(n + 1) Vol(Q).

This contradicts Lemma 4.3.
(c) In the case where both anda; are vertices ofQ, we have

(@, ¢a(T)) = 2.

Thus (4.4) impliest = 1. Now we repeat the argument in the last part of Case I-(b).
The proof is complete. O

REMARK 4.1. It is an interesting problem to generalize Theorem &.the case
of non-toric However, the following example indicates that there setanise no such
a generalization even to the caseFkano varieties (see [10], 7.2 (b) for more details).

Let X be a cubic surface ilP® and let Ry denote the Chow point oK. Re-
mark that Ry is given by the defining equation of since X is a hypersurface. We
recall the following results on Mumford’s geometric invarigheory:

e X is Chow stable if and only if it has finitely many singular pi@irof type A; and
no worse singularities;

e X is Chow semistable if and only if it has at most finitely mangggilar points
of type A; or type A,.

Let Xo C P2 be a special one which is given by

Xo:={[x:y:z:w] e P?|y®—xzw =0} c P>.
Then Xo has exactly three singular points
pr=[1:0:0:0], p,=[0:0:1:0], p3=[0:0:0:1]

which are all of typeA,. Thus, Xy is Chow semistable and not Chow stable. More-
over, it is well-known that SL(4C) - Rx, is a closed orbit ([10], Proposition 7.23).
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Hence we conclude thaXy is Chow polystable. Let us consider any other cubic sur-
face X with a singular point of typeA, such that

SL(4,C) - Rx N SL(4,C) - Ry, = .

Obviously, X is Chow semistable. Then it follows that the closure of SIG#; Rx
containsRx,. This implies that SL(4C)- Rx is not closed orbit. ThereforeX is Chow
semistable but not Chow polystable.

Appendix

In this appendix we shall show Lemma 4.3 which is used in tlwofpof our the-
orem. To begin, we recall some properties of Hierhart h-vector of an integral poly-
tope. See [13], [1], Chapter 6, for more details.

Let Q C R" be ann-dimensional integral polytope. LéEg(t) denote theEhrhart
polynomial of Q, which is a polynomial of degree satisfying

Eo(l) = Card(Q N z")

for each positive integel. Then we define it€hrhart seriesby

Ehrg(t) :=1+ > Eq()t'.

1=1

It is well-known that Ehg(t) can be written as the power series expansioh-atO of
a rational function
hnt" + hy gt" 1 4 .- + ho
(1 _ t)n+1

with some integeréy, ..., h,. We call by, ..., h,) the Ehrhart h-vector of Q. Then
the Ehrharth-vector satisfies the following properties.

Proposition 4.2 (Ehrhart—Stanley) Let Q be an n-dimensional integral polytope
in R".
Q) hp=1, hy=Card@QNZ")—n-1.
(2) nIVol(Q) = XL, h.

(3) hy € Zzp for 01 <n.
Lemma 4.3. Let Q be an n-dimensional integral polytope &Y. Then we have

CardQNz" < (n+ 1)!'Vol(Q)

and equality holds if and only if Q is the standard n-simplex
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Proof. Let o, ..., hy) be the Ehrharh-vector of Q. Combining (1) and (2) in
Proposition 4.2, we have

(n+ 1)!'Vol(Q) = (n+ 1) - n!' Vol( Q)

=+ 1)(2 m)
1=0
=M+1)A+hi+ha+---+ hy).

On the other hand, Car@(N Z") = hy + n + 1 by (1) in Proposition 4.2. Since all
integersh; (I =1,...,n) are nonnegative by Proposition 4.2, (3), we conclude that

CardQNz") =h;+n+1
<(M+1)Q+hy+hy+---+hy) = (0 + 1) VoI(Q).

In particular, we see that Cai@(n Z") = (n + 1)! Vol(Q) if and only if
(ho, ..., hy) =(1,0,...,0),

and in this case we have thdiy(.. ., hy) equals (1, 0,..,0) if and only if Q = A,.
The lemma is proved. ]
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