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Abstract
Let r be a positive integer. Anr -set is a pairX D (V(X), R(X)) consisting of a

set V(X) with a subsetR(X) of the direct productV(X)r . The object of this paper
is to investigate the Hom complexes ofr -sets, which were introduced for graphs in
the context of the graph coloring problem.

In the first part, we introduce simplicial sets which we call singular complexes,
and show that singular complexes and Hom complexes are naturally homotopy
equivalent. The second part is devoted to the generalization of �-homotopy theory
established by Dochtermann. We show the folding theorem forhypergraphs which
was partly proved by Iriye and Kishimoto.

1. Introduction

One of the most remarkable applications of algebraic topology to combinatorics
is Lovász’s proof of Kneser’s conjecture [10]. He assigned asimplicial complex to a
graph, and related its connectivity to the chromatic number. Hom complex was also
introduced by Lovász in the context of the graph coloring problem, and was later de-
veloped by Babson and Kozlov in [1] and [2].

The object of the paper is to investigate Hom complexes. As was mentioned in
[8], Hom complexes can be defined not only for graphs but for more general objects.
In fact, Hom complexes ofr -uniform hypergraphs were recently considered in [7] and
[12]. Thus we consider Hom complexes of more general objects, namely,r -sets.

Throughout this paper,r shall denote a fixed positive integer. Anr -set is a pair
X D (V(X), R(X)) consisting of a setV(X) with a subsetR(X) of the r -times direct
product ofV(X). We call V(X) the vertex set ofX and R(X) the r -relation of X. We
note thatV(X) may be infinite.

Let Sr denote the symmetric group on the set{1,: : : ,r }. An r -uniform hypergraph
is an r -set X whoser -relation is closed under theSr -action onV(X)r by permutation.
Therefore anr -set is a generalization of anr -uniform hypergraph.

As is the case of graphs, we define the Hom complex ofr -sets in the following
way. A map f W V(X) ! V(Y) is a homomorphismif f �r (R(X)) � R(Y). A map
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� W V(X)! 2V (Y)
n {;} is a multi-homomorphismif

�(x1) � � � � � �(xr ) � R(Y)

for every element (x1,: : : ,xr ) of R(X). For two multi-homomorphisms� and�0, we write
� � �

0 to indicate that�(v) � �0(v) for all v 2 V(X). The Hom complexHom(X, Y) is
the poset consisting of multi-homomorphisms fromX to Y together with the ordering
mentioned above.

The contents of this paper are divided into two parts. In the first part, we construct
the simplicial set Sing(X, Y) which we callsingular complexand relate it to the Hom
complex. To give the precise definition of singular complex,we need some preparation.

Let Setr denote the category ofr -sets whose morphisms are homomorphisms. It
will be shown in Section 3 thatSetr admits all small limits and colimits. For instance,
the productr -set X � Y of two r -sets X and Y is defined by

V(X � Y) D V(X) � V(Y),

R(X � Y) D {((x1, y1), : : : , (xr , yr )) j (x1, : : : , xr ) 2 R(X), (y1, : : : , yr ) 2 R(Y)}.

For a non-negative integern, we define ther -set 6n by V(6n) D {0, 1, : : : , n}

and R(6n) D V(6n)r . The singular complexSing(X, Y) which one associates to a pair
(X, Y) of r -sets is the simplicial set defined by

Sing(X, Y)n D { f W X �6n ! Y j f is a homomorphism}.

In terms of these notions, our principal result is formulated as follows.

Theorem 4.1. There is a natural homotopy equivalence

jSing(X, Y)j
'

�! jHom(X, Y)j.

Theorem 4.1 gives another description of the homology groups of Hom complexes.
Let Cn(X, Y) denote the free abelian group generated by the set of homomorphisms
from X � 6n to Y. The differential� W Cn(X, Y) ! Cn�1(X, Y) is obviously defined.
Theorem 4.1 implies that the homology group of the complexC

�

(X, Y) is isomorphic
to the homology group (with integral coefficients) of Hom(X, Y). This description is
similar to the singular homology group of a topological space. This is why we call the
simplicial set Sing(X, Y) the singular complex.

Let SSet denote the category of simplicial sets. We note that for anr -set X, the
functor Setr ! SSet, Y 7! Sing(X, Y) is an associated functor of the cosimplicialr -set
[n] 7! X�6n. As was mentioned, the categorySetr of r -sets admits all small colimits.
Because of this and the well-known fact of simplicial sets (Theorem 2.3), the functor
Y 7! Sing(X, Y) has the left adjoint.
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The object of the second part which we discuss in Section 5 is to generalize the
�-homotopy theory of graphs introduced by Dochtermann [5] tor -sets. We relate the
�-homotopy theory to the homotopy theory of posets and stronghomotopy theory of
finite simplicial complexes [4].

We note that a homomorphismf W X ! Y betweenr -sets is identified with the
multi-homomorphismx 7! { f (x)}. Recall that two continuous maps' and between
two (compactly generated) spaces are homotopic if and only if there is a path joining
' to  on the function space. From this viewpoint the following definition is quite
natural. Two homomorphismsf, g W X ! Y are strongly homotopicif f and g belong
to the same connected component of Hom(X, Y).

A vertex x of the r -set X is dismantlableif there is another vertexy of X such
that p�1

i (x) � p�1
i (y) for i D 1, : : : , r , where pi W R(X)! V(X) is the i -th projection.

Let X n x denote the maximalr -subset ofX whose vertex set isV(X) n {x}. As an
application of strong homotopy theory ofr -sets, we have that ifx is a dismantlable
vertex of X, then the maps

i � W Hom(X, Y) 7! Hom(X n x, Y)

and

i
�

W Hom(Y, X n x)! Hom(Y, X)

are homotopy equivalences (Theorem 5.6). In the case of graphs, Babson and Kozlov
showed thati � is a homotopy equivalence (Proposition 5.1 of [1]), and Kozlov later
showed thati

�

is a homotopy equivalence [9]. Iriye and Kishimoto showed that i � is
a homotopy equivalence for uniform hypergraphs (Theorem 17of [7]). The part i

�

is
a homotopy equivalence for uniform hypergraphs is a new result.

The strong homotopy type of anr -set is determined by itsweak core(Theorem 5.15).
A weak core is a homomorphismi W X0

! X wherei is a strong homotopy equivalence
and X0 has no dismantlable vertices.

We conclude this section by mentioning our terminology. Anr -uniform hypergraph
X is non-degenerateif for each element (x1, : : : , xr ) of R(X), x1, : : : , xr are distinct.
In some literature “r -uniform hypergraph” means non-degenerater -uniform hypergraph
in our sense. One of the reasons why we employ such terminology is that, as was
mentioned in [7], we need to admit degeneracies to apply the Hom complexes to the
hypergraph coloring problem. The second reason is that the category of non-degenerate
uniform hypergraphs does not admit small limits and colimits (see Remark 3.6).

2. Preliminaries

In this section, we review definitions and some properties ofabstract simplicial
complexes, posets, and simplicial sets following [6], [8],and [11].
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2.1. Simplicial complex and poset. An (abstract) simplicial complexis a pair
(V, K ) consisting of a setV together with a collection of finite subsets ofV such that
if � 2 K and � � � then � 2 K . Furthermore, we require thatv 2 V implies {v} 2 K .
The setV is the vertex setof the simplicial complex (V, K ). We call an element of
K a simplex. A simplicial complex is often denoted simply byK . In this notation, we
write V(K ) to indicate the vertex set ofK . A map f W V(K )! V(K 0) is a simplicial
map if f (� ) 2 K 0 for every � 2 K .

Let V be a set and letR(V) be the freeR-module generated byV . We regardR(V)

as a topological space whose topology is induced by finite dimensionalR-submodules,
and regard an element ofV as a point ofR(V) in the usual way. Thegeometric real-
ization of the simplicial complexK is the union of the convex hulls inR(V(K ))

jK j D
[

�2K

conv(� )

of simplices ofK .
Let P be a partially ordered set (poset, for short). A subsetc of P is a chain in

P if the restriction of the ordering ofP to c is a total ordering. The order complex of
P, denoted by1(P), is the simplicial complex whose vertices are elements ofP and
whose simplices are finite chains inP. We write jPj instead ofj1(P)j, and call it the
geometric realization ofP.

The geometric realization functor allows us to assign topological concepts to posets
and simplicial complexes. For example, we call two order preserving mapsf and g
homotopic if j f j and jgj are homotopic.

Let K be a simplicial complex. The face posetF K of K is the poset of non-
empty simplices ofK by inclusion. Thebarycentric subdivisionof K is the order
complex of F K .

Theorem 2.1. There is a natural homeomorphism

jF K j
�

�! jK j.

Theorem 2.2 (Quillen [13]). Let f W P ! Q be an order preserving map. If
f �1(Q

�y) is contractible for all y2 Q, then f is a homotopy equivalence.

2.2. Strong homotopy of posets. Let P, Q be posets, and letf, gW P! Q be
order preserving maps. We writef � g to indicate that f (x) � g(x) for every element
x of P. Let Poset(P, Q) denote the poset consisting of all order preserving maps from
P to Q together with the above ordering. LetP � Q denote the categorical product
of posetsP, Q. Namely, the underlying set ofP � Q is the cartesian product of their
underlying sets, and the ordering is given by that (x, y) � (x0, y0) if and only if x � x0
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and y � y0. Then one can verify that there is a natural isomorphism

Poset(P, Poset(Q, R)) � Poset(P � Q, R)

for posetsP, Q, and R.
Order preserving mapsf, g W P ! Q are strongly homotopicif f and g belong

to the same connected component ofjPoset(P, Q)j. We write f �s g to mean thatf
and g are strongly homotopic. It is known that iff � g, then f and g are homotopic.
Hence if f and g are strongly homotopic, then they are homotopic.

An order preserving mapf W P ! Q is a strong equivalenceif there is an order
preserving mapg W Q! P such thatg f �s idP and f g �s idQ.

The terminology “strongly homotopic” and “strong equivalence” are not standard.
However, these notions have been known in terms of finite spaces [3]. Recall that the
category of finite posets and the category of finiteT0-spaces are equivalent. From this
viewpoint, two order preserving mapsf and g are strongly homotopic in our sense if
and only if continuous maps associated tof and g are homotopic. The reason why we
use such terminology is that a strong equivalence of posets is closely related to strong
equivalence of finite simplicial complexes introduced by Barmak and Minian [4]. For
instance, Barmak and Minian show that if an order preserving map f W P! Q between
finite posets is a strong equivalence, then the associated simplicial map1( f )W 1(P)!
1(Q) is a strong equivalence of finite simplicial complexes. Since a strong equivalence
between finite simplicial complexes is a simple homotopy equivalence (Proposition 2.5
of [4]), a simplicial map1( f ) W 1(P) ! 1(Q) associated to a strong equivalencef
between finite posets is a simple homotopy equivalence.

2.3. Simplicial set. For a non-negative integern, we write [n] to mean the lin-
early ordered set{0, 1, : : : , n}. Let 1 be the small category whose objects are [n] for
n � 0 and whose morphisms are order preserving maps. Asimplicial set is a func-
tor from the opposite category of1 to the category of sets. Morphisms between two
simplicial sets are defined by natural transformations. LetSSetdenote the category of
simplicial sets. For a simplicial setK , we write Kn instead ofK [n].

The canonicaln-simplex1n is the subspace ofRnC1 defined by

1

n
D

(

x0e0C � � � C xnen

�

�

�

�

�

xi � 0 (i D 0, 1, : : : , n),
n
X

iD0

xi D 1

)

wheree0, : : : , en are the canonical basis ofRnC1.
The geometric realization of a simplicial setK is defined as follows. First we

assign a canonicaln-simplex1(� ) to each element� of Kn. The geometric realization
of the simplicial setK is the quotient space

a

n�0,�2Kn

1(� )=�
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where the equivalence relation� is generated by the relation

1( f �� ) 3 x0e0C � � � C xnen � x0ef (0)C � � � C xnef (n) 2 1(� ), ( f W [n] ! [m]).

Let C be a category. Acosimplicial objectof the categoryC is a functor from1
to C. Let A�

W 1! C be a cosimplicial object ofC. The functorC(A�, �) W C ! SSet
is defined byC(A�, X)n D C(An, X).

Theorem 2.3 (Proposition 3.1.5 of [6]). If the categoryC admits all small co-
limits, then the functorC(A�, �) has the left adjoint.

2.4. Gluing lemma. We will need the following theorem in Section 4.

Theorem 2.4. Let X and Y be CW-complexes and let A be a set. Let(X
�

)
�2A

(or (Y
�

)
�2A) be an A-indexed family of subcomplexes of X(or Y) which is a covering

of X (or Y respectively). Let f W X ! Y be a continuous map such that f(X
�

) � Y
�

for all � 2 A. Suppose that for any finite subset� 2 A, the map

f jT
�2�

X
�

W

\

�2�

X
�

!

\

�2�

Y
�

is a homotopy equivalence. Then the map f is a homotopy equivalence.

Proof. This theorem is well-known ifA is finite (see Section 15.5.1 of [8]). Hence
we only deal with the infinite case. First we introduce the notation. For a subset� of A,
we write X

�

(or Y
�

) to indicate the union
S

�2�

X
�

(or
S

�2�

Y
�

respectively). It follows
from the finite case thatX

�

! Y
�

is a homotopy equivalence.
We can assume thatX and Y are non-empty. Letx 2 X. It is enough to show

that �n(X, x) ! �n(Y, f (x)) is bijective for n � 0. Let ' W (Sn, �) ! (Y, f (x)) be a
continuous map. Since'(Sn) is compact there is a finite subset� � A such that

x 2 X
�

, '(Sn) � Y
�

.

Since f jX
�

�

W �n(X
�

, x)! �n(Y
�

, f (x)) is bijective, there is W (Sn, �)! (X
�

, x) such
that f Æ ' '. This implies that f

�

W �n(X, x)! �n(Y, f (x)) is surjective. The inject-
ivity of f

�

is similarly obtained.

3. Limits and colimits

Let Setr be the category ofr -sets and letGraphr be the category ofr -uniform
hypergraphs. The aim of this section is to show thatSetr and Graphr admit all small
limits and colimits. First we deal with the case ofr -sets.
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Throughout this sectionJ shall denote a small category. We typically writej 2 J
to indicate thatj is an object ofJ . Let ' W J ! Setr be a functor. The limit lim(') 2
Setr of ' is defined by

V(lim('))

D

(

(x j ) j2J 2
Y

j2J

V('( j ))

�

�

�

�

�

'(u)(x j0) D x j1 for a morphismu W j0! j1 in J

)

,

R(lim(')) D {((x1
j ) j2J , : : : , (xr

j ) j2J ) j (x1
j , : : : , xr

j ) 2 R('( j )) for j 2 J }.

Let J be a small set and let (X j ) j2J be a J-indexed family of r -sets. The co-
product

`

j2J X j is defined by

V

 

a

j2J

X j

!

D

a

j2J

V(X j ),

R

 

a

j2J

X j

!

D

a

j2J

R(X j ).

Let X be an r -set and let� be an equivalence relation onV(X). The quotient
r -set X=� is defined by

V(X=�) D V(X)=�,

R(X=�) D {(�1, : : : , �r ) j (�1 � � � � � �r ) \ R(X) ¤ ;}.

Then the quotient map� W V(X)! V(X=�) is a homomorphism. Furthermore, this has
the following universality.

Lemma 3.1. Let f W X! Y be a homomorphism such that if x� y then f(x) D
f (y). Then there is a unique homomorphismNf W (X=�)! Y satisfying Nf Æ � D f .

Proof. It suffices to show that the set mapNf W V(X=�)! V(Y) induced by the
set map f W V(X) ! V(Y) is a homomorphism. Let (�1, : : : , �r ) 2 R(X=�) and let
xi 2 �i (i D 1, : : : , r ) such that (x1, : : : , xr ) 2 R(X). Then we have

( Nf (�1), : : : , Nf (�r )) D ( f (x1), : : : , f (xr )) 2 R(Y).

Therefore the mapNf is a homomorphism ofr -sets.

Let us construct the colimit of the functor'W J ! Setr . Let �
'

denote the equiva-
lence relation on the vertex set of the coproduct

`

j2J '( j ) generated by the relations:
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x �
'

'(u)(x) for x 2 '( j0) and a morphismu W j0 ! j1 in J . Then the colimit of'
is defined by

colim(') D
a

j2J

'( j )=�
'

.

Theorem 3.2. The categorySetr of r-sets admits all small limits and colimits.

Next we deal with the categoryGraphr of r -uniform hypergraphs.

DEFINITION 3.3. Let X be anr -set.
(1) Let F X denote ther -uniform hypergraph defined byV(F X) D V(X) and

R(F X) D {(x1, : : : , xr ) j there is� 2 Sr such that (x
� (1), : : : , x

� (r )) 2 R(X)}.

(2) Let U X denote ther -uniform hypergraph defined byV(U X) D V(X) and

R(U X) D {(x1, : : : , xr ) j (x
� (1), : : : , x

� (r )) 2 R(X) for every � 2 Sr }.

For a homomorphismf W X! Y of r -sets, we putF f D U f D f . Then F andU
are functors fromSetr to Graphsr . Let � denote the inclusion functorGraphr ,! Setr .
Then we have the following proposition.

Proposition 3.4. The functor F is the left adjoint of� and the functor U is the
right adjoint of �.

Proof. Let X be anr -set and letY be anr -uniform hypergraph. Letf W X ! Y
be a homomorphism. We want to show thatf W V(F X) D V(X) ! V(Y) is again a
homomorphism fromF X to Y. Let (x1, : : : , xr ) 2 R(F X). Then there is� 2 Sr such
that (x

� (1), : : : ,x� (r )) 2 R(X). We have (f (x
� (1)), : : : , f (x

� (r ))) 2 R(Y) since f is a homo-
morphism. SinceY is an r -uniform hypergraph, we have (f (x1), : : : , f (xr )) 2 R(Y).

Next let g be a homomorphism fromY to X. We want to show thatg W V(Y) !
V(X) D V(U X) is a homomorphism fromY to U X. Let (y1, : : : , yr ) 2 R(Y). Then we
have that (y

� (1),:::,y� (r )) 2 R(Y) for each� 2Sr . Hence we have (f (y
� (1),:::, f (y

� (r ))) 2
R(X) for each� 2 Sr . This implies that (f (y1), : : : , f (yr )) 2 R(X).

Corollary 3.5. The categoryGraphr of r-uniform hypergraphs admits all small
limits and colimits.
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Proof. Let ' W J ! Graphsr be a functor. For eachr -uniform hypergraphX,
we have

Graphsr (X, U (lim �')) � Setr (�X, lim �')

� lim
j

(Setr (�X, �'( j )))

� lim
j

(Graphsr (X, '( j ))).

This implies thatU (lim(�')) is the limit of '. We have similarly thatF(colim(�')) is
the colimit of '.

REMARK 3.6. As was mentioned in Section 1, anr -uniform hypergraphX is
non-degenerate if for each element (x1, : : : , xr ) of R(X), x1, : : : , xr are distinct. LetG
be the full subcategory of the categoryGraphr consisting of non-degenerater -uniform
hypergraphs. ThenG does not admit finite limits and finite colimits.

In fact G does not admit finite limits sinceG does not have the terminal object. On
the other hand, letKr be ther -uniform hypergraph defined byV(Kr ) D {1, : : : , r } and
R(Kr )D {(x1, : : : , xr ) j xi ¤ x j (i ¤ j )}. We regard the symmetric groupSr as a small
category in a usual way. Namely, the object ofSr is only one� and the morphism
set from� to � is the groupSr . Let ' W Sr ! G be the functor defined by'(�) D Kr

and '(� )(x) D � (x) for � 2 Sr . This functor does not have the colimit.

4. Singular complex

Recall that the singular complex is defined by the right adjoint functor
Sing(X, �) W Setr ! SSetassociated to the cosimplicialr -set

1! Setr , [n] 7! X �6n

for an r -set X. Namely, the singular complex Sing(X, Y) is the simplicial set

Sing(X, Y)n D { f W X �6n ! Y j f is a homomorphism ofr -sets}

with obvious face maps and degeneracy maps. The aim of this section is to show the
following theorem.

Theorem 4.1. There is a natural homotopy equivalence

jSing(X, Y)j
'

�! jHom(X, Y)j.

Let X and Y be r -sets. A multi-homomorphism� 2 Hom(X, Y) is finite if �(x) is
finite for eachx 2 V(X). The induced subposet of Hom(X, Y) consisting of all finite
multi-homomorphisms is denoted by Homf (X, Y).
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If X and Y are finiter -sets then Homf (X, Y) D Hom(X, Y). In general the inclu-
sion Homf (X, Y) ,! Hom(X, Y) is a homotopy equivalence. This fact is deduced from
the following lemma and Quillen’s Theorem A (Theorem 2.2).

Lemma 4.2. Let P be a poset. If there is an upper bound for every finite subset
of P, then P is contractible.

Proof. Since the empty subset has an upper bound,P is not empty. By the hy-
pothesis, every finite subcomplex of1(P) is included in a certain contractible subcom-
plex. This implies that a map from a sphere toj1(P)j is null-homotopic, and hence
P is contractible by the Whitehead theorem.

DEFINITION 4.3. Let X and Y be r -sets. Themorphism r-set YX is defined by

V(YX) D { f W V(X)! V(Y) j f is a map of sets},

R(YX) D {( f1, : : : , fr ) j ( f1 � � � � � fr )(R(X)) � R(Y)}.

It can be verified that there is a natural isomorphismSetr (X�Y, Z)� Setr (X, ZY).
Hence we have Sing(X � Y, Z) � Sing(X, ZY). On the other hand the following holds
in the case of Hom complexes.

Lemma 4.4. There is a natural strong equivalence

Hom(X, ZY)! Hom(X � Y, Z).

Proof. Dochtermann proved this lemma in the case of graphs (Proposition 3.5 of
[5]) although he did not use the term “strong equivalence.” Asimilar proof works well.
Hence we give a sketch of the proof.

The maps8W Hom(X�Y, Z)! Hom(X, ZY) and9W Hom(X, ZY)! Hom(X�Y, Z)
are defined by

8(�)(x) D { f W V(Y)! V(Z) j f (y) 2 �(x, y) for y 2 V(Y)},

9(�)(x, y) D { f (y) j f 2 �(x)}.

Then one can show that9 Æ8 D id, and8 Æ9 � id.

Since60 � X � X, we have that Sing(X, Y) � Sing(60, YX) and Hom(X, Y) '
Hom(60, YX) ' Homf (60, YX). Hence it suffices to construct a homotopy equivalence
jSing(60, X)j ! jHomf (60, X)j.

A subsetA of an r -set X is a clique if Ar is included in R(X). The clique com-
plex Cliq(X) is the simplicial complex whose simplices are finite cliques of X. Since
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Homf (60, X) is isomorphic to the face poset of Cliq(X), there is a homeomorphism
jCliq(X)j ! jHomf (60, X)j.

We write Sing(X) to mean the singular complex Sing(60, X). Corresponding to an
n-simplex� of Sing(X), 1

�

denotes the canonicaln-simplex inRnC1. Define the map
'

�

W 1

�

! jCliq(X)j by

t0e0C � � � C tnen 7! t0� (0)C � � � C tn� (n).

For an order preserving mapf W [n] ! [m], one can verify the following diagram is
commutative.

1 f �� 1

�

jCliq(X)j jCliq(X)j,

 

!

f
�

 

!

' f ��  

!

'

�

(

(

where f
�

(t0e0C� � �C tnen)D t0ef (0)C� � �C tnef (n). Hence these'
�

induce a continuous
map'X W jSing(X)j ! jCliq(X)j. To prove'X is a homotopy equivalence, we need the
following lemma.

Lemma 4.5. If X is a non-empty clique, then jSing(X)j is contractible.

Proof. We note that if a homomorphismf W X ! Y betweenr -sets is constant
then jSing(f )jW jSing(X)j ! jSing(Y)j is again constant. This is deduced from the fact
that Sing(60) is a point.

Suppose thatX is a non-empty clique. It is clear thatjSing(X)j is connected. Let
x0 2 V(X) and let f W X �61! X be the map

f (x, i ) D

�

x (i D 0),
x0 (i D 1).

Let �k W 60! 61 (k D 0, 1) be the homomorphism mapping 0 tok. Then f Æ �0 D idX

and f Æ �1 is the constant homomorphismx 7! x0 (x 2 V(X)). Since Sing(X � 61) �
Sing(X) � Sing(61) and Sing(61) is connected, we have that the identity ofjSing(X)j
is null-homotopic.

Lemma 4.5 implies that'XjA W jSing(A)j ! jCliq(A)j is a homotopy equivalence
for a finite clique A which may be empty. IfA1, : : : , An be a family of finite cliques
of X, then A1 \ � � � \ An is also a clique. Therefore the map

'XjjSing(A1)j\���\jSing(An)j W jSing(A1)j \ � � � \ jSing(An)j ! jCliq(A1)j \ � � � \ jCliq(An)j

is again a homotopy equivalence. By gluing homotopy equivalences (Theorem 2.4), we
have that'X is a homotopy equivalence. This completes the proof of Theorem 4.1.
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We conclude this section by giving a few remarks. Recall thata homomorphism of
r -sets is identified with a minimal point of Hom(X,Y) and with a vertex of Sing(X,Y).
By chasing the proof carefully, one can show that the constructed homotopy equiva-
lence preserves homomorphisms ofr -sets.

Let X be anr -set. The functorSetr ! SSet, Y 7! Sing(X, Y) is a right adjoint
functor by Theorem 2.3 and Theorem 3.2. Since the inclusion functor is a right ad-
joint functor (Proposition 3.4), the functorGraphr ! SSet, Y 7! Sing(X, Y) is also
a right adjoint functor. In particular, this functor preserves limits. On the other hand,
jHom(X, lim Y)j and jlim Hom(X, Y)j are not isomorphic but homotopy equivalent (see
Proposition 3.7 in [5]).

5. Strong homotopy theory of r-sets

Let f, g W X ! Y be homomorphisms ofr -sets. As was mentioned in Section 1,
f and g are strongly homotopicif they belong to the same connected component of
Hom(X, Y). We write f �s g to mean thatf and g are strongly homotopic.

Most of results in this section are known for graphs as the�-homotopy theory
by Dochtermann [5]. However, we relate the strong homotopy theory of r -sets to the
strong homotopy theory of posets and finite simplicial complexes. For the sake of
our treatment, we have that a strong homotopy equivalencef W X ! Y induces strong
equivalences Hom(Z, X) ! Hom(Z, Y) and Hom(Y, Z) ! Hom(X, Z). Furthermore,
we have an alternative proof of the folding theorem (Theorem5.6). The notion of a
weak core is new. This notion is easier to handle than a core. Indeed, the associated
proposition for cores of Lemma 5.14 is not trivial and is open.

Let X, Y, and Z be r -sets. The composition map

�W Hom(Y, Z) � Hom(X, Y)! Hom(X, Z)

is defined by

(� � �)(x) D
[

y2�(x)

� (y).

It is easy to verify that� � f D f �(� ) and g � � D g
�

(� ) for homomorphisms
f W X ! Y and g W Y! Z.

Proposition 5.1. Let X, Y, and Z be r-sets. Suppose that two homomorphisms
f, g W X ! Y are strongly homotopic. Then the following hold.
(1) Poset maps f

�

, g
�

W Hom(Z, X)! Hom(Z, Y) are strongly homotopic.
(2) Poset maps f�, g� W Hom(Y, Z)! Hom(X, Z) are strongly homotopic.

Proof. Let

8 W Hom(X, Y)! Poset(Hom(Z, X), Hom(Z, Y))
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be the adjoint of the composition map�. One can show that8( f ) D f
�

and8(g) D
g
�

. Since f and g belong to the same connected component of Hom(X, Y), we have
that f

�

and g
�

are strongly homotopic. The proof of (2) is similarly obtained.

Corollary 5.2. Let f W X ! Y be a homomorphism of r-sets. Then the following
are equivalent.
(1) The homomorphism f is a strong homotopy equivalence.
(2) For each r-set Z, the poset map f

�

W Hom(Z, X) ! Hom(Z, Y) is a homotopy
equivalence.
(3) For each r-set Z, the poset map f

�

W Hom(Z, X)! Hom(Z, Y) is a strong homo-
topy equivalence of posets.
A similar result holds for f�.

Proof. By Proposition 5.1, (1) implies (3). It is clear that (3) implies (2).
Suppose that the condition (2) holds. Since�0( f

�

)W �0(Hom(Y,X))! �0(Hom(Y,Y))
is surjective, there is a homomorphismgW Y! X such thatf g�s idY. On the other hand
we can deduceg f �s idX from f g f �s f and the injectivity of�0( f

�

). Therefore f is
a strong homotopy equivalence.

Corresponding to a non-negative integern, the r -set In is defined by

V(In) D {0, 1, : : : , n},

R(In) D {(x1, : : : , xr ) j there isk 2 {1, : : : , n} such that{x1, : : : , xr } � {k � 1, k}}.

We note thatI1 coincides with61.

Proposition 5.3. Let f, g W X ! Y be homomorphisms of r-sets. Then f and g
are strongly homotopic if and only if there are a non-negative integer n and a homo-
morphism HW X � In ! Y such that H(x, 0) D f (x) and H(x, n) D g(x) for every
x 2 V(X).

Proof. Note that by Theorem 4.1 and a remark given in the end ofSection 4,
f and g are strongly homotopic if and only iff and g belong to the same con-
nected component of Sing(X, Y). The proposition follows from the fact that for a pair
of homomorphisms',  W X ! Y, a 1-simplex of Sing(X, Y) joining ' to  is the
homomorphismH W X � I1! Y such thatH (x, 0)D '(x) and H (x, 1)D  (x) for all
x 2 V(X).

DEFINITION 5.4. Let X be anr -set. A vertexx of X is dismantlableif there is
y 2 V(X) n {x} such thatp�1

i (x) � p�1
i (y) for i 2 {1, : : : , r } where pi W R(X)! V(X)

is the i -th projection.
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Let X be anr -set. An r -subset ofX is an r -set Y such thatV(Y) � V(X) and
R(Y) � R(X). An inducedr -subsetY of X is an r -subset such thatR(Y) D V(Y)r

\

R(X). Let X be an r -set and letx be a vertex ofX. The inducedr -subset ofX
consisting of all vertices ofX except forx is denoted byX n x.

Lemma 5.5. Let X be an r-set and let x be a vertex of X. If x is dismantlable
then the inclusion iW X n x ,! X is a strong homotopy equivalence.

Proof. Let y 2 V(X) n {x} such that p�1
i (x) � p�1

i (y) for i 2 {1, : : : , r }. Let
f W V(X)! V(X) n {x} be the map

f (v) D

�

v (v ¤ x),
y (v D x).

Then f is a homomorphism ofr -sets andf i is the identity of X nx. Let �W V(X)!
2V(Y)

n {;} be the map�(v) D {v, f (v)}. It is easy to verify that� is a multi-
homomorphism. Since idX � � and f � �, i f and idX are strongly homotopic.

By Corollary 5.2 and Lemma 5.5, we have the following theorem.

Theorem 5.6 (Folding theorem). Let X and Y be r-sets and let x be a disman-
tlable vertex of X. We denote by i the inclusion Xn x ,! X. Then the following two
maps are strong equivalences

i � W Hom(X, Y) 7! Hom(X n x, Y),

i
�

W Hom(Y, X n x)! Hom(Y, X).

REMARK 5.7. Kozlov also proved thati
�

and i � are strong equivalences although
he did not use the term.

Dochtermann pointed out that by the�-homotopy theory, the folding theorem for
i � yields thati

�

is a homotopy equivalence (Remark 6.3 of [5]). The folding theorem
for i � is not deduced from his results of [5] since he used it to prove(a part of) the
proposition associated to Corollary 5.2.

DEFINITION 5.8. An r -set isstiff if it has no dismantlable vertex.

Lemma 5.9. Let X be a stiff r -set and let fW X ! X be a homomorphism. If
f �s idX then f D idX .

Proof. Suppose that there is a multi-homomorphism� 2 Hom(X, X) such that
� > idX . Let x be a vertex ofX such that�(x) ¤ {x}, and let y 2 �(x) n {x}. Let
i 2 {1, : : : , r } and (x1, : : : , xi�1, x, xiC1, : : : , xr ) 2 R(X). Since

(x1, : : : , xi�1, y, xiC1, : : : , x) � �(x1) � � � � � �(x) � � � � � �(xr ) � R(Y).



MORPHISM COMPLEXES OF SETS WITH RELATIONS 281

Hencex is dismantlable.

Corollary 5.10. A homomorphism f between stiff r -sets is a strong equivalence
if and only if f is an isomorphism.

DEFINITION 5.11. A homomorphismi W X0

! X betweenr -sets is aweak core
of X if i is a strong equivalence andX0 is stiff.

An r -subsetX0 is a strong deformation retract ofX if there is a homomorphism

H W X � In ! X

such thatH (x0,i )D x0 for eachx0 2 V(X0) and i 2 {0,1,:::,n}, H (x,0)D x (x 2 V(X)),
and H (x, n) 2 V(X0) (x 2 V(X)). The r -subsetX0 is a core of X if X0 is stiff and is
a strong deformation retract ofX.

Proposition 5.3 implies that the inclusion of a core ofX is a weak core. The
following example shows that core and weak core are strictlydifferent notions.

EXAMPLE 5.12. The following graph is found in Example 6.7 in [5].

q q q q

q

✟✟✟✟❅
❅❝ ❝ ❝ ❝

a

Let G be a graph (2-uniform hypergraph) described above. Then themap 60 ! G,
0 7! a is a weak core but is not a core.

Lemma 5.13. Let i W X0

! X be a weak core of X. Then i has a retraction.

Proof. Letr W X! X0 be a homomorphism such thatr i �s idX0 . SinceX0 is stiff,
we have thatr i is the identity.

By Lemma 5.5, ifV(X) is finite thenX has a core. However, there is anr -set hav-
ing no weak core. Indeed, there is no weak core of the 2-setI

1

defined byV(I
1

)D N
and R(I

1

) D {(x, y) j jx � yj � 1}.

Lemma 5.14. Let X, Y be r-sets which are strongly homotopy equivalent. If X
has a weak core, then Y also has a weak core.

Proof. Let i W X0

! X be a weak core and letf W X ! Y be a strong homotopy
equivalence. By definitionf i is a weak core ofY.
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Theorem 5.15. Let X, Y be r-sets and let iW X0

! X and jW Y0

! Y be weak
cores. Then X and Y are strong homotopy equivalent if and onlyif X 0 and Y0 are
isomorphic.

Proof. Suppose thatX0 and Y0 are isomorphic and let' W X0

! Y0 be an iso-
morphism. Letr W X ! X0 be a retraction ofi W X0

! X. Then j'r W X ! Y is a
strong equivalence.

On the other hand, suppose thatX and Y are strong homotopy equivalent. Let
f W X ! Y be a strong equivalence. Leti W X0

! X and j W Y0

! Y be cores, and let
r W Y ! Y0 be a retraction ofj . Then r f i W X0

! Y0 is a strong equivalence between
stiff r -sets, and is an isomorphism.

Corollary 5.16. Let X be an r-set. If i0 W X0

0 ! X and i1 W X0

1 ! X are weak
cores, then X00 and X01 are isomorphic.
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