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Abstract

Letr be a positive integer. An-set is a pairX = (V(X), R(X)) consisting of a
set V(X) with a subsetR(X) of the direct product (X)". The object of this paper
is to investigate the Hom complexes io&ets, which were introduced for graphs in
the context of the graph coloring problem.

In the first part, we introduce simplicial sets which we catigsllar complexes,
and show that singular complexes and Hom complexes are atigturomotopy
equivalent. The second part is devoted to the generalizatfox-homotopy theory
established by Dochtermann. We show the folding theoremhjgergraphs which
was partly proved by Iriye and Kishimoto.

1. Introduction

One of the most remarkable applications of algebraic tapolto combinatorics
is Lovasz’s proof of Kneser’s conjecture [10]. He assignesimplicial complex to a
graph, and related its connectivity to the chromatic numbdom complex was also
introduced by Lovasz in the context of the graph coloringbfem, and was later de-
veloped by Babson and Kozlov in [1] and [2].

The object of the paper is to investigate Hom complexes. As mentioned in
[8], Hom complexes can be defined not only for graphs but forergeneral objects.
In fact, Hom complexes of -uniform hypergraphs were recently considered in [7] and
[12]. Thus we consider Hom complexes of more general objeamely,r-sets

Throughout this paper, shall denote a fixed positive integer. Anrset is a pair
X = (V(X), R(X)) consisting of a se¥ (X) with a subsetR(X) of the r-times direct
product of V(X). We call V(X) the vertex set ofX and R(X) ther-relation of X. We
note thatV(X) may be infinite.

Let &, denote the symmetric group on the $&t...,r}. An r-uniform hypergraph
is anr-set X whoser -relation is closed under th&;-action onV (X)" by permutation.
Therefore arr-set is a generalization of anruniform hypergraph.

As is the case of graphs, we define the Hom complex-séts in the following
way. A map f: V(X) — V(Y) is a homomorphismf f*"(R(X)) c R(Y). A map
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n: V(X) = 2V \ {@} is a multi-homomorphisnif
n(x1) X -+ x (%) C R(Y)

for every elementx,..., %) of R(X). For two multi-homomorphisms and»’, we write
n < n’ to indicate thaty(v) C »/(v) for all v € V(X). The Hom complexHom(X, Y) is
the poset consisting of multi-homomorphisms frofnto Y together with the ordering
mentioned above.

The contents of this paper are divided into two parts. In trst fiart, we construct
the simplicial set SingX, Y) which we callsingular complexand relate it to the Hom
complex. To give the precise definition of singular comphee, need some preparation.

Let Set denote the category af-sets whose morphisms are homomorphisms. It
will be shown in Section 3 thabet admits all small limits and colimits. For instance,
the productr-set X x Y of two r-setsX andY is defined by

V(X xY) = V(X) x V(Y),
RIXxY) = {((Xt, Y2)s - - -» (%, ¥)) | (X1s - -, %) € R(X), (Y1, ..., %) € R(Y)}.

For a non-negative integer, we define ther-set &, by V(%) = {0, 1,...,n}
and R(Z,) = V(Z,)". The singular complexSing(X, Y) which one associates to a pair
(X,Y) of r-sets is the simplicial set defined by

Sing(X, Y)h = {f: Xx Xy — Y| f is a homomorphism
In terms of these notions, our principal result is formulags follows.

Theorem 4.1. There is a natural homotopy equivalence
Sing(X, Y)| = |Hom(X, Y)|.

Theorem 4.1 gives another description of the homology ggafpHom complexes.
Let Ch(X, Y) denote the free abelian group generated by the set of honptiisms
from X x X, to Y. The differentiald: C (X, Y) = Cn_1(X, Y) is obviously defined.
Theorem 4.1 implies that the homology group of the complgkX, Y) is isomorphic
to the homology group (with integral coefficients) of Hoxa(Y). This description is
similar to the singular homology group of a topological spathis is why we call the
simplicial set SingX, Y) the singular complex.

Let SSetdenote the category of simplicial sets. We note that for aet X, the
functor Set — SSet Y — Sing(X, Y) is an associated functor of the cosimpliciatet
[n] = Xx Z,. As was mentioned, the categoBet of r-sets admits all small colimits.
Because of this and the well-known fact of simplicial setbgdrem 2.3), the functor
Y +— Sing(X, Y) has the left adjoint.
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The object of the second part which we discuss in Section b igeneralize the
x-homotopy theory of graphs introduced by Dochtermann [5f-&ets. We relate the
x-homotopy theory to the homotopy theory of posets and stiwogotopy theory of
finite simplicial complexes [4].

We note that a homomorphisri: X — Y betweenr-sets is identified with the
multi-homomorphismx +— { f (x)}. Recall that two continuous magsand i between
two (compactly generated) spaces are homotopic if and drlyere is a path joining
¢ to ¢ on the function space. From this viewpoint the following digfon is quite
natural. Two homomorphism$, g: X — Y are strongly homotopidf f and g belong
to the same connected component of H&EMY).

A vertex x of ther-set X is dismantlableif there is another vertey of X such
that py2(x) C pi(y) fori =1,...,r, wherep;: R(X) — V(X) is thei-th projection.
Let X \ x denote the maximat-subset of X whose vertex set i%/(X) \ {x}. As an
application of strong homotopy theory ofsets, we have that ik is a dismantlable
vertex of X, then the maps

i*: Hom(X, Y) —» Hom(X \ x, Y)
and
ix: Hom(Y, X \ x) — Hom(Y, X)

are homotopy equivalences (Theorem 5.6). In the case ohgra®abson and Kozlov
showed that * is a homotopy equivalence (Proposition 5.1 of [1]), and Kezlater
showed that, is a homotopy equivalence [9]. Iriye and Kishimoto showedt ilf is
a homotopy equivalence for uniform hypergraphs (Theorenofl[7]). The parti, is
a homotopy equivalence for uniform hypergraphs is a newlttesu

The strong homotopy type of anset is determined by itweak corgTheorem 5.15).
A weak core is a homomorphism X’ — X wherei is a strong homotopy equivalence
and X’ has no dismantlable vertices.

We conclude this section by mentioning our terminology. rAaniform hypergraph
X is non-degeneratdéf for each elementxi, ..., %) of R(X), X3, ..., X are distinct.
In some literature r-uniform hypergraph” means non-degenenateniform hypergraph
in our sense. One of the reasons why we employ such termipdbghat, as was
mentioned in [7], we need to admit degeneracies to apply tbe ldomplexes to the
hypergraph coloring problem. The second reason is thatdtegory of non-degenerate
uniform hypergraphs does not admit small limits and coknfgee Remark 3.6).

2. Preliminaries

In this section, we review definitions and some propertiesal$tract simplicial
complexes, posets, and simplicial sets following [6], [&hd [11].
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2.1. Simplicial complex and poset. An (abstrac) simplicial complexis a pair
(V, K) consisting of a seV together with a collection of finite subsets éf such that
if o € K andt C o thent € K. Furthermore, we require thate V implies {v} € K.
The setV is the vertex setof the simplicial complex ¥, K). We call an element of
K a simplex A simplicial complex is often denoted simply b¥. In this notation, we
write V(K) to indicate the vertex set dk. A map f: V(K) — V(K’) is a simplicial
mapif f(o) € K’ for everyo € K.

Let V be a set and IeR(") be the freeR-module generated by. We regardR(")
as a topological space whose topology is induced by finiteedsionalR-submodules,
and regard an element & as a point ofR") in the usual way. Theyeometric real-
ization of the simplicial complexK is the union of the convex hulls iR ¥)

K| = [ convp)

oeK

of simplices ofK.

Let P be a partially ordered set (poset, for short). A sulisef P is a chainin
P if the restriction of the ordering oP to c is a total ordering. The order complex of
P, denoted byA(P), is the simplicial complex whose vertices are element$adnd
whose simplices are finite chains . We write |P| instead of|A(P)|, and call it the
geometric realization oP.

The geometric realization functor allows us to assign togigial concepts to posets
and simplicial complexes. For example, we call two ordersereing mapsf and g
homotopic if | f| and |g| are homotopic.

Let K be a simplicial complex. The face posetK of K is the poset of non-
empty simplices ofK by inclusion. Thebarycentric subdivisiorof K is the order
complex of FK.

Theorem 2.1. There is a natural homeomorphism
IFK| = |K].

Theorem 2.2 (Quillen [13]). Let f: P — Q be an order preserving map. If
f‘l(st) is contractible for all ye Q, then f is a homotopy equivalence.

2.2. Strong homotopy of posets. Let P, Q be posets, and lef,g: P — Q be
order preserving maps. We write < g to indicate thatf (x) < g(x) for every element
x of P. Let PosetP, Q) denote the poset consisting of all order preserving maps fr
P to Q together with the above ordering. L& x Q denote the categorical product
of posetsP, Q. Namely, the underlying set d? x Q is the cartesian product of their
underlying sets, and the ordering is given by thaty) < (X, y') if and only if x < x’
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andy < y'. Then one can verify that there is a natural isomorphism
PosetP, PosetQ, R)) =~ PosetP x Q, R)

for posetsP, Q, and R.

Order preserving mapg, g: P — Q are strongly homotopidf f and g belong
to the same connected component|BbsetP, Q)|. We write f ~5 g to mean thatf
and g are strongly homotopic. It is known that i < g, then f andg are homotopic.
Hence if f and g are strongly homotopic, then they are homotopic.

An order preserving mag : P — Q is a strong equivalencéf there is an order
preserving mam: Q — P such thatgf ~sidp and fg ~s idg.

The terminology “strongly homotopic” and “strong equivate” are not standard.
However, these notions have been known in terms of finiteesp§®]. Recall that the
category of finite posets and the category of fifitespaces are equivalent. From this
viewpoint, two order preserving maplk and g are strongly homotopic in our sense if
and only if continuous maps associatedftand g are homotopic. The reason why we
use such terminology is that a strong equivalence of posettosely related to strong
equivalence of finite simplicial complexes introduced byriBak and Minian [4]. For
instance, Barmak and Minian show that if an order preserviag ihn P — Q between
finite posets is a strong equivalence, then the associatgalisial map A(f): A(P) —
A(Q) is a strong equivalence of finite simplicial complexes.c8ia strong equivalence
between finite simplicial complexes is a simple homotopyijence (Proposition 2.5
of [4]), a simplicial mapA(f): A(P) — A(Q) associated to a strong equivalenée
between finite posets is a simple homotopy equivalence.

2.3. Simplicial set. For a non-negative integer, we write [n] to mean the lin-
early ordered set0, 1,...,n}. Let A be the small category whose objects amg fpr
n > 0 and whose morphisms are order preserving mapssindplicial setis a func-
tor from the opposite category af to the category of sets. Morphisms between two
simplicial sets are defined by natural transformations. $8étdenote the category of
simplicial sets. For a simplicial sé{, we write K, instead ofK[n].

The canonicah-simplex A" is the subspace dk"*! defined by

A" = {ero+---+xnen

x>0(@{=01,...,n), inzl}
i=0

whereey, ..., e, are the canonical basis @&"+1.

The geometric realization of a simplicial s&t is defined as follows. First we
assign a canonical-simplex A(o) to each element of K,,. The geometric realization
of the simplicial setK is the quotient space

[ AW/~

n>0,0eK,
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where the equivalence relation is generated by the relation
A(f*0) 2 Xo€p + - -+ + Xn€h ~ Xo€f(0) + - - - + Xn€t(n) € A(o), (f:[n] — [m]).

Let C be a category. Acosimplicial objectof the categoryC is a functor fromA
to C. Let A*: A — C be a cosimplicial object of. The functorC(A®, —): C — SSet
is defined byC(A*, X), = C(A", X).

Theorem 2.3 (Proposition 3.1.5 of [6]) If the categoryC admits all small co-
limits, then the functoiC(A*, —) has the left adjoint.

2.4. Gluing lemma. We will need the following theorem in Section 4.

Theorem 2.4. Let X and Y be CW-complexes and let A be a set.(Kg),ca
(or (Ya)aea) be an A-indexed family of subcomplexes ofaX Y) which is a covering
of X (or Y respectively Let f: X — Y be a continuous map such thatX,) C Y,
for all @« € A. Suppose that for any finite subset A, the map

flA, X, ﬂxaaﬂ\(a

oeo aEo

is a homotopy equivalence. Then the map f is a homotopy deno&a

Proof. This theorem is well-known i is finite (see Section 15.5.1 of [8]). Hence
we only deal with the infinite case. First we introduce theatioh. For a subset of A,
we write X, (or Y,) to indicate the unioth J,., X, (or |,c, Y« respectively). It follows
from the finite case thaX, — Y, is a homotopy equivalence.

We can assume thaX andY are non-empty. Lek € X. It is enough to show
that mp (X, x) — (Y, f(x)) is bijective forn > 0. Let ¢: (S, ) — (Y, f(x)) be a
continuous map. Since(S") is compact there is a finite subsetc A such that

Xe€ Xy, o(8)CY,.

Since f|x, «: mn(Xo, X) = 7mn(Ys, f(X)) is bijective, there isy: (S, %) — (X,, X) such
that f oy >~ ¢. This implies thatf,: 7,(X, X) — m,(Y, f(x)) is surjective. The inject-
ivity of f, is similarly obtained. O

3. Limits and colimits

Let Set be the category of-sets and leiGraph, be the category of -uniform
hypergraphs. The aim of this section is to show t8at and Graph, admit all small
limits and colimits. First we deal with the case o&ets.
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Throughout this sectio shall denote a small category. We typically writes 7
to indicate thatj is an object of7. Let ¢: 7 — Set be a functor. The limit limg) €
Set of ¢ is defined by

V(lim(¢))

p(u)(Xj,) = Xxj, for a morphismu: jo — j1 in j},

= {(x,-)jej e [T Vi)

jeJg
R(IM(¢)) = {((x}jes -+ (]ier) LK, -+, X]) € Rp())) for j € 7).

Let J be a small set and letX);c; be a J-indexed family ofr-sets. The co-
product] [, X;j is defined by

V(]_[ x,—) =[Tvexy.

jed jed
R(L[ x,-) =[] rRCXp).
jed jed

Let X be anr-set and let~ be an equivalence relation ovi(X). The quotient
r-set X/~ is defined by

V(X/~) = V(X)/~,
ROX/~) = {(0a, - -y o) | (e x - x ar) N R(X) # @),

Then the quotient map: V(X) — V(X/~) is a homomorphism. Furthermore, this has
the following universality.

Lemma 3.1. Let f: X - Y be a homomorphism such that i~xy then f(x) =
f(y). Then there is a unique homomorphisim (X/~) — Y satisfyingf o7 = f.

Proof. It suffices to show that the set mdp V(X/~) — V(Y) induced by the
set mapf: V(X) = V(Y) is a homomorphism. Leto, ..., o) € R(X/~) and let
Xi€ap (i=1,...,r)such thatXy, ..., x) € R(X). Then we have

(o), ..., fe)) = (f(x1), ..., F(x)) € R(Y).

Therefore the magf is a homomorphism of -sets. O

Let us construct the colimit of the functgr 7 — Set. Let ~, denote the equiva-
lence relation on the vertex set of the coprodhhtej ©(j) generated by the relations:



274 T. MATSUSHITA

X ~¢ @(u)(x) for x € ¢(jo) and a morphismu: jo — j1 in J. Then the colimit ofy
is defined by

colim(e) = [ [ ¢(j)/~,-

jeg
Theorem 3.2. The categorySet of r-sets admits all small limits and colimits.
Next we deal with the categor§raph, of r-uniform hypergraphs.

DEFINITION 3.3. LetX be anr-set.
(1) Let FX denote ther-uniform hypergraph defined by (F X) = V(X) and

R(FX) = {(X1, ..., %) | there isoc € &, such that X,(), .. ., Xo¢r)) € R(X)}.
(2) Let UX denote ther-uniform hypergraph defined by (U X) = V(X) and
RUX) = {(X1, ..., %) | Xo(2), - - - » Xo(r)) € R(X) for everyo € &,}.

For a homomorphisnmf: X — Y of r-sets, we put-f =Uf = f. ThenF andU
are functors fromSet to Graphs,. Let ¢ denote the inclusion functdgraph, — Set.
Then we have the following proposition.

Proposition 3.4. The functor F is the left adjoint of and the functor U is the
right adjoint of ¢.

Proof. LetX be anr-set and lety be anr-uniform hypergraph. Letf: X — Y
be a homomorphism. We want to show that V(FX) = V(X) — V(Y) is again a
homomorphism fromF X to Y. Let (X, ..., %) € R(FX). Then there isr € &, such
that Ko (1),. ... %)) € R(X). We have §(X,),..., f (X)) € R(Y) since f is a homo-
morphism. SinceY is anr-uniform hypergraph, we havef (x3), ..., f(x)) € R(Y).

Next let g be a homomorphism frony to X. We want to show thag: V(Y) —
V(X) = V(U X) is a homomorphism fronY to U X. Let (y1,..., ¥r) € R(Y). Then we
have that ¥, (1),...,Y»()) € R(Y) for eacho € &,;. Hence we havef((yy1),..., T (Yo())) €
R(X) for eacho € &;. This implies that €(y1), ..., f(¥)) € R(X). ]

Corollary 3.5. The categoryGraph, of r-uniform hypergraphs admits all small
limits and colimits.
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Proof. Letg: J — Graphs, be a functor. For each-uniform hypergraphX,
we have

Graphs, (X, U(lim wp)) = Set (¢ X, lim ¢p)
= lim(Set (X, w (1))

o~ IiEn(Graphsr(X, ().

This implies thatU (lim(tg)) is the limit of ¢. We have similarly that~(colim(¢)) is
the colimit of ¢. O

REMARK 3.6. As was mentioned in Section 1, aruniform hypergraphX is
non-degenerate if for each element,f(. .., x;) of R(X), X1,...,X% are distinct. Letg
be the full subcategory of the categaBraph, consisting of non-degenerateuniform
hypergraphs. The@ does not admit finite limits and finite colimits.

In fact G does not admit finite limits sinc€ does not have the terminal object. On
the other hand, leK; be ther-uniform hypergraph defined by (K;) = {1,...,r} and
R(Kr) = {(X1,..., %) | X #X; (i #])}. We regard the symmetric grou§s, as a small
category in a usual way. Namely, the object &f is only one* and the morphism
set from= to * is the groupS;. Let ¢: &, — G be the functor defined by(x) = K;
and ¢(o)(X) = o(x) for o € &,. This functor does not have the colimit.

4. Singular complex

Recall that the singular complex is defined by the right adjofunctor
Sing(X, —): Set — SSetassociated to the cosimpliciatset

A — Set, [N XxZ,
for anr-set X. Namely, the singular complex Sing(Y) is the simplicial set
SingX, Y), = {f: Xx X, —> Y| f is a homomorphism of-setg

with obvious face maps and degeneracy maps. The aim of thiosds to show the
following theorem.

Theorem 4.1. There is a natural homotopy equivalence
Sing(X, Y)| = |[Hom(X, Y)|.
Let X andY ber-sets. A multi-homomorphism € Hom(X, Y) is finite if n(x) is

finite for eachx € V(X). The induced subposet of HoX(Y) consisting of all finite
multi-homomorphisms is denoted by He(X, Y).
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If X andY are finiter-sets then Hom(X, Y) = Hom(X, Y). In general the inclu-
sion Hom (X, Y) — Hom(X,Y) is a homotopy equivalence. This fact is deduced from
the following lemma and Quillen’s Theorem A (Theorem 2.2).

Lemma 4.2. Let P be a poset. If there is an upper bound for every finite etubs
of P, then P is contractible.

Proof. Since the empty subset has an upper bolhis not empty. By the hy-
pothesis, every finite subcomplex of(P) is included in a certain contractible subcom-
plex. This implies that a map from a sphere |t(P)| is null-homotopic, and hence
P is contractible by the Whitehead theorem. ]

DEFINITION 4.3. LetX andY ber-sets. Themorphism r-set ¥ is defined by

VYX*) = {f:V(X)— V(Y) | f is a map of seis
ROYX) = {(fy, ..., ) | (fix -+ x f)(R(X)) € R(Y)}.

It can be verified that there is a natural isomorphiSet (X x Y, Z) = Set (X, ZY).
Hence we have Sing(x Y, Z) = Sing(X, Z¥). On the other hand the following holds
in the case of Hom complexes.

Lemma 4.4. There is a natural strong equivalence
Hom(X, ZY) — Hom(X x Y, Z).

Proof. Dochtermann proved this lemma in the case of graptep{Bition 3.5 of
[5]) although he did not use the term “strong equivalence Siwilar proof works well.
Hence we give a sketch of the proof.

The mapsd: Hom(X xY, Z) — Hom(X,ZY) and ¥: Hom(X,Z") — Hom(X xY, Z)
are defined by

Pm(x) = {f:V(Y) = V(2) | f(y) e n(x,y) fory e V(Y)},
Y(mx, y) ={f(y) | f enlx)}.

Then one can show thak o ® = id, and ® o ¥ > id. O

Since Iy x X = X, we have that Sing(, Y) = Sing(Zo, Y*) and Hom, Y) ~
Hom(Zo, YX) >~ Hom; (X, YX). Hence it suffices to construct a homotopy equivalence
|Sing(Zo, X)| — [Hom¢ (Zo, X)|.

A subsetA of anr-set X is aclique if A" is included inR(X). The clique com-
plex Clig(X) is the simplicial complex whose simplices are finite cligug X. Since
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Hom; (X2, X) is isomorphic to the face poset of CIXj), there is a homeomorphism
[Clig(X)| — |[Hom¢ (X0, X)|.

We write SingK) to mean the singular complex Sirgy, X). Corresponding to an
n-simplexo of Sing(X), A, denotes the canonicatsimplex inR"**. Define the map
9o 1 Mg — |Cliq(X)| by

to€ + -+ + thén > too (0) + - - - + tho ().

For an order preserving map: [n] — [m], one can verify the following diagram is
commutative.

Afeg — S A,
‘/’f*al \l]‘ﬁn
[Clig(X)] == |Clig(X)l,

where f,(to€p + - - - +th€n) = to€5 () + - - - +tn€s(n). Hence these, induce a continuous
map ¢x: |Sing(X)| — |Clig(X)|. To provegx is a homotopy equivalence, we need the
following lemma.

Lemma 4.5. If X is a non-empty cliquethen |Sing(X)| is contractible.

Proof. We note that if a homomorphisrh: X — Y betweenr-sets is constant
then |Sing(f)|: |Sing(X)| — |Sing(Y)| is again constant. This is deduced from the fact
that Singg&op) is a point.

Suppose tha is a non-empty clique. It is clear th#bing(X)| is connected. Let
Xo € V(X) and let f: X x X3 — X be the map

L (x (=0),
=15 (29

Let i: o — X1 (k =0, 1) be the homomorphism mapping 0ko Then f o = idx
and f oy is the constant homomorphismi— Xo (x € V(X)). Since SingK x ¥;) =~
Sing(X) x Sing(Z;) and Singg;) is connected, we have that the identity |8ing(X)|
is null-homotopic. O

Lemma 4.5 implies thapx|a: |Sing(A)| — |Clig(A)| is a homotopy equivalence
for a finite cligue A which may be empty. IfA, ..., Ay be a family of finite cliques
of X, thenA;N---N A, is also a clique. Therefore the map

@xisingay)n-nising@nl - 1SING(AL)| N -+ - N [SiNg(An)| — [Clig(A1)| N - - - N [Clig(An)l

is again a homotopy equivalence. By gluing homotopy eqeiveds (Theorem 2.4), we
have thatpy is a homotopy equivalence. This completes the proof of Tdreo#.1.
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We conclude this section by giving a few remarks. Recall thhbmomorphism of
r-sets is identified with a minimal point of Ho(Y) and with a vertex of Sing(,Y).

By chasing the proof carefully, one can show that the coosttl homotopy equiva-
lence preserves homomorphismsregets.

Let X be anr-set. The functorSet — SSet Y — Sing(X, Y) is a right adjoint
functor by Theorem 2.3 and Theorem 3.2. Since the inclusiorctbr is a right ad-
joint functor (Proposition 3.4), the functdgraph, — SSet Y +— Sing(X, Y) is also
a right adjoint functor. In particular, this functor preges limits. On the other hand,
[Hom(X, limY)| and |lim Hom(X, Y)| are not isomorphic but homotopy equivalent (see
Proposition 3.7 in [5]).

5. Strong homotopy theory of r-sets

Let f,g: X —> Y be homomorphisms aof-sets. As was mentioned in Section 1,
f and g are strongly homotopidf they belong to the same connected component of
Hom(X, Y). We write f ~5 g to mean thatf and g are strongly homotopic.

Most of results in this section are known for graphs as #hibomotopy theory
by Dochtermann [5]. However, we relate the strong homotdmpoty ofr-sets to the
strong homotopy theory of posets and finite simplicial cares. For the sake of
our treatment, we have that a strong homotopy equivaleitcX — Y induces strong
equivalences HonZ, X) - Hom(Z, Y) and HomY, Z) —- Hom(X, Z). Furthermore,
we have an alternative proof of the folding theorem (Theof6). The notion of a
weak core is new. This notion is easier to handle than a caomeed, the associated
proposition for cores of Lemma 5.14 is not trivial and is open

Let X, Y, and Z be r-sets. The composition map

x: Hom(Y, Z) x Hom(X, Y) - Hom(X, Z)
is defined by
T = J =

yen(x)

It is easy to verify thatr « f = f*(r) and g * 0 = g.(c) for homomorphisms
f: X—>Yandg:Y — Z.

Proposition 5.1. Let X, Y, and Z be r-sets. Suppose that two homomorphisms
f, g: X = Y are strongly homotopic. Then the following hold.
(1) Poset maps .f g.: Hom(Z, X) — Hom(Z, Y) are strongly homotopic.
(2) Poset maps *, g*: Hom(Y, Z) - Hom(X, Z) are strongly homotopic.

Proof. Let

®: Hom(X, Y) — Poset(HomZ, X), Hom(Z, Y))
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be the adjoint of the composition map One can show tha®(f) = f, and ®(g) =
g.. Since f and g belong to the same connected component of BONY(), we have
that f, and g, are strongly homotopic. The proof of (2) is similarly obtaih 0

Corollary 5.2. Let f: X - Y be a homomorphism of r-sets. Then the following
are equivalent.
(1) The homomorphism f is a strong homotopy equivalence.
(2) For each r-set Z the poset map .f Hom(Z, X) - Hom(Z, Y) is a homotopy
equivalence.
(38) For each r-set Z the poset map .f Hom(Z, X) - Hom(Z, Y) is a strong homo-
topy equivalence of posets.
A similar result holds for f.

Proof. By Proposition 5.1, (1) implies (3). It is clear th&) (mplies (2).

Suppose that the condition (2) holds. Simg€f.): mo(Hom(Y, X)) — mo(Hom(Y,Y))
is surjective, there is a homomorphigmY — X such thatfg ~¢ idy. On the other hand
we can deducgf ~gidyx from fgf ~5 f and the injectivity ofrg(f,). Thereforef is
a strong homotopy equivalence. ]

Corresponding to a non-negative integerther-set |, is defined by

V(l,) ={0,1,...,n},
R(ln) = {(X1, ..., X) | there isk € {1, ..., n} such that{x;, ..., x} C {k—1,k}}.

We note thatl; coincides withX;.

Proposition 5.3. Let f, g: X =Y be homomorphisms of r-sets. Then f and g
are strongly homotopic if and only if there are a non-negatimteger n and a homo-
morphism H X x I, — Y such that Hx, 0) = f(x) and H(x, n) = g(x) for every
x € V(X).

Proof. Note that by Theorem 4.1 and a remark given in the en&edftion 4,
f and g are strongly homotopic if and only iff and g belong to the same con-
nected component of Sing(Y). The proposition follows from the fact that for a pair
of homomorphismsp, ¥: X — Y, a 1l-simplex of SingX, Y) joining ¢ to v is the
homomorphismH: X x I; — Y such thatH(x, 0) = ¢(x) and H(x, 1) = ¥ (x) for all
x € V(X). ]

DEFINITION 5.4. LetX be anr-set. A vertexx of X is dismantlableif there is
y € V(X)\ {x} such thatp~%(x) C p7i(y) for i € {1,...,r} wherepi: R(X) = V(X)
is thei-th projection.
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Let X be anr-set. Anr-subset ofX is anr-setY such thatV(Y) C V(X) and
R(Y) € R(X). An inducedr-subsetY of X is anr-subset such thaR(Y) = V(Y)' N
R(X). Let X be anr-set and letx be a vertex ofX. The inducedr-subset of X
consisting of all vertices oKX except forx is denoted byX \ x.

Lemma 5.5. Let X be an r-set and let x be a vertex of X. If x is dismantlable
then the inclusion i X \ x — X is a strong homotopy equivalence.

Proof. Lety € V(X)\ {x} such thatp (x) C p7i(y) fori € {1,...,r}. Let
f: V(X) > V(X)\ {x} be the map

v %),
f(”)‘{y (v = )

Then f is a homomorphism of -sets andfi is the identity of X\ x. Let n: V(X) —
2V \ {@} be the mapn(v) = {v, f(v)}. It is easy to verify thaty is a multi-
homomorphism. Since jd<n and f <5, if and idk are strongly homotopic. []

By Corollary 5.2 and Lemma 5.5, we have the following thearem

Theorem 5.6 (Folding theorem) Let X and Y be r-sets and let x be a disman-
tlable vertex of X. We denote by i the inclusion\ X — X. Then the following two
maps are strong equivalences

i*: Hom(X, Y) = Hom(X \ x, Y),
i.: Hom(Y, X\ x) — Hom(Y, X).

REMARK 5.7. Kozlov also proved that andi* are strong equivalences although
he did not use the term.

Dochtermann pointed out that by thehomotopy theory, the folding theorem for
i* yields thati, is a homotopy equivalence (Remark 6.3 of [5]). The foldingadtem
for i* is not deduced from his results of [5] since he used it to pr@veart of) the
proposition associated to Corollary 5.2.

DEFINITION 5.8. Anr-set isstiff if it has no dismantlable vertex.

Lemma 5.9. Let X be a stiff r-set and let :f X — X be a homomorphism. If
f ~gidx then f=idy.

Proof. Suppose that there is a multi-homomorphigsre Hom(X, X) such that
n > idx. Let x be a vertex ofX such thatn(x) # {x}, and lety € n(x) \ {x}. Let
ie{l,...,r}and &, ...,X-1, X Xi+1, ..., %) € R(X). Since

(X1, ooy X1y Yy Xidy v ooy X) C0(Xg) X =+ X (X)) X -+ - x n(X%) C R(Y).
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Hencex is dismantlable. U]

Corollary 5.10. A homomorphism f between stiff r-sets is a strong equivalenc
if and only if f is an isomorphism.

DEFINITION 5.11. A homomorphism: X" — X betweenr-sets is aweak core
of X if i is a strong equivalence ang’ is stiff.
An r-subsetX’ is a strong deformation retract of if there is a homomorphism

H: Xx Iy —> X
such thatH (x',i) = x’ for eachx’ € V(X’) andi € {0,1,...,n}, H(X,0) = x (X € V(X)),
and H(x, n) € V(X') (x € V(X)). Ther-subsetX’ is a core of X if X' is stiff and is

a strong deformation retract of.

Proposition 5.3 implies that the inclusion of a core Xfis a weak core. The
following example shows that core and weak core are stritdiffigrent notions.

ExampLE 5.12. The following graph is found in Example 6.7 in [5].
a

Let G be a graph (2-uniform hypergraph) described above. Themtap o — G,
0+ a is a weak core but is not a core.

Lemma 5.13. Leti: X’ — X be a weak core of X. Then i has a retraction.

Proof. Letr: X — X’ be a homomorphism such thit ~5 idx.. Since X’ is stiff,
we have thati is the identity. ]

By Lemma 5.5, ifV(X) is finite thenX has a core. However, there is esset hav-
ing no weak core. Indeed, there is no weak core of the 2:sadefined byV(l) = N
and R(l) = {(x, y) | Ix—y[ = 1}.

Lemma 5.14. Let X, Y be r-sets which are strongly homotopy equivalent. If X
has a weak corethen Y also has a weak core.

Proof. Leti: X’ — X be a weak core and let: X — Y be a strong homotopy
equivalence. By definitionfi is a weak core ofy. ]
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Theorem 5.15. Let X Y be r-sets and let:iX’ — X and j: Y — Y be weak
cores. Then X and Y are strong homotopy equivalent if and dnk and Y are
isomorphic.

Proof. Suppose thaK’ and Y’ are isomorphic and lep: X’ — Y’ be an iso-
morphism. Letr: X — X’ be a retraction ofi: X’ — X. Then jer: X - Y is a
strong equivalence.

On the other hand, suppose thdtand Y are strong homotopy equivalent. Let
f: X - Y be a strong equivalence. Let X’ — X and j: Y — Y be cores, and let
r: Y — Y be a retraction ofj. Thenrfi: X’ — Y’ is a strong equivalence between
stiff r-sets, and is an isomorphism. ]

Corollary 5.16. Let X be an r-set. Ifg: X{ — X and i: X; — X are weak
cores then X, and X, are isomorphic.
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