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Abstract
In the first part, this paper studies the characteristic rankof the canonical oriented

k-plane bundle over the Grassmann manifoldQGn,k of orientedk-planes in Euclidean
n-space. It presents infinitely many new exact values ifk D 3 or k D 4, as well as
new lower bounds for the number in question ifk � 5. In the second part, these
results enable us to improve on the general upper bounds for the Z2-cup-length of
QGn,k. In particular, for QG2t ,3 (t � 3) we prove that the cup-length is equal to 2t

� 3,
which verifies the corresponding claim of Tomohiro Fukaya’sconjecture from 2008.

1. Introduction and some preliminaries

Given a real vector bundle� over a path-connectedCW-complex X, the char-
acteristic rank of �, denoted charrank(�), is defined to be ([6]) the greatest integer
q, 0 � q � dim(X), such that every cohomology class inH j (X), 0 � j � q, is a
polynomial in the Stiefel–Whitney classeswi (�) 2 H i (X). Here and elsewhere in this
paper, we writeH i (X) instead ofH i (XI Z2).

In particular, ifT M is the tangent bundle of a smooth closed connected manifoldM,
then charrank(T M) is nothing but thecharacteristic rank of M, denoted charrank(M);
this homotopy invariant of smooth closed connected manifolds was introduced, and in
some cases also computed, in [3]. Results on the characteristic rank of vector bundles
over the Stiefel manifolds can be found in [4]. The characteristic rank is useful, for
instance, in studying the cup-length of a given space (see [3], [6], and also Section 3 of
the present paper).

It is readily seen that the characteristic rank of the canonical k-plane bundlen,k

(briefly  ) over the Grassmann manifoldGn,k (k � n � k) of all k-dimensional vector
subspaces inRn is equal to dim(Gn,k) D k(n � k). Indeed, as is well known ([1]), for
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the Z2-cohomology algebraH�(Gn,k) we can write

(1.1) H�(Gn,k) D Z2[w1, : : : , wk]=In,k,

where dim(wi ) D i and the idealIn,k is generated by thek homogeneous components
of (1Cw1C� � �Cwk)�1 in dimensionsn� kC1, : : : , n; here the indeterminatewi is a
representative of thei -th Stiefel–Whitney classwi ( ) in the quotient algebraH�(Gn,k).
For the latter classwi ( ), we shall also usewi as an abbreviation.

In contrast to the situation forGn,k, the Z2-cohomology algebraH�( QGn,k) (k �
n� k) of the “oriented” Grassmann manifoldQGn,k of all oriented k-dimensional vector
subspaces inRn is in general unknown. SinceQGn,1 can be identified with the (n� 1)-
dimensional sphere, and the complex quadricsQGn,2 are also well understood special
cases, we shall suppose thatk � 3 throughout the paper.

In Section 2, we derive infinitely many new exact values ifk D 3 or k D 4, as
well as new lower bounds for the characteristic rank of the canonical orientedk-plane
bundle Qn,k (briefly Q ) over QGn,k if k � 5. As a consequence, for oddn, we also
obtain better bounds (as compared to those known from [3, p. 73]) on the invariant
charrank(QGn,k). Then, in Section 3, our results on the characteristic rankof Q enable
us to improve on the general upper bounds for theZ2-cup-length of QGn,k. In particu-
lar, for QG2t ,3 (t � 3) we prove that the cup-length is equal to 2t

� 3; this verifies the
corresponding claim of Fukaya’s conjecture [2, Conjecture1.2].

2. On the characteristic rank of the canonical vector bundleover QGn,k

Using the notation introduced in Section 1, we now state our main result.

Theorem 2.1. For the canonical k-plane bundleQn,k over the oriented Grassmann
manifold QGn,k (3� k � n� k), with 2t�1

< n � 2t , we have

(1) charrank(Qn,3)

8

<

:

D n� 2 if n D 2t ,
D n� 5C i if n D 2t

� i , i 2 {1, 2, 3},
� n� 2 otherwise;

(2) charrank(Qn,4)

�

D n� 5C i if n D 2t
� i , i 2 {0, 1, 2, 3},

� n� 3 otherwise;
(3) if k � 5, then charrank(Qn,k) � n� kC 1.
In addition, if n is odd, then the replacement of the canonical bundleQn, j by the cor-

responding manifoldQGn, j , in (1)�(3), gives the corresponding result oncharrank(QGn, j ).

We shall pass to a proof of this theorem after some preparations.
For the universal 2-fold coveringp W QGn,k ! Gn,k (k � 3), the pullbackp�( ) is

Q , and for the induced homomorphism in cohomology we have thatp�(wi ) D Qwi for
all i , where Qwi is an abbreviated notation, used throughout the paper, for the Stiefel–
Whitney classwi ( Qn,k). Of course, now charrank(Qn,k) is, in other words, the greatest
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integer q, 0 � q � k(n � k), such thatp� W H j (Gn,k) ! H j ( QGn,k) is surjective for all
j , 0� j � q.

To the coveringp there is associated a uniquely determined non-trivial linebundle
� such thatw1(� ) D w1(n,k). This yields ([5, Corollary 12.3]) an exact sequence of
Gysin type,

(2.1) ! H j�1(Gn,k)
w1
�! H j (Gn,k)

p�

�! H j ( QGn,k)! H j (Gn,k)
w1
�! .

As is certainly clear from the context, we write here and elsewhere H j�1(Gn,k)
w1
�!

H j (Gn,k) for the homomorphism given by the cup-product with the Stiefel–Whitney
classw1.

Thus p� W H j (Gn,k)! H j ( QGn,k) is surjective if and only if the subgroup

(2.2) Ker(H j (Gn,k)
w1
�! H jC1(Gn,k))

vanishes.
By (1.1), aZ2-polynomial

(2.3) p j (w1, : : : , wk) D
X

i1C2i2C���CkikD j

ai1,i2,:::,ikw
i1
1w

i2
2 � � � w

ik
k ,

with at least one coefficientai1,i2,:::,ik 2 Z2 nonzero, represents zero inH j (Gn,k) pre-
cisely when there exist some polynomialsqi (w1, : : : , wk) (briefly qi ) such that

p j D q j�nCk�1 Nwn�kC1C � � � C q j�n Nwn,

where Nwi (w1, : : : , wk) (briefly Nwi ) is the homogeneous component of (1Cw1C � � � C

wk)�1
D 1Cw1C� � �CwkC (w1C� � �Cwk)2

C� � � in dimensioni . Of course, we have

(2.4) Nwi D w1 Nwi�1C w2 Nwi�2C � � � C wk Nwi�k.

We note thatNwi represents thei -th dual Stiefel–Whitney class of , that is, the Stiefel–
Whitney classwi (?n,k) 2 H i (Gn,k) of the complementary (n�k)-plane bundle?n,k (briefly



?); we shall also useNwi as an abbreviation forwi (?).
By what we have said, no nonzero homogeneous polynomials inw1, : : : , wk in

dimensions� n � k represent 0 in cohomology; therefore the kernel (2.2) is thezero-
subgroup for all j � n� k � 1, and we always have

(2.5) charrank(Qn,k) � n� k � 1.

For the Grassmann manifoldGn,k (3� k � n�k), let gi (w2,: : : ,wk) (briefly just gi )
denote the reduction ofNwi (w1, : : : , wk) modulow1.

The following fact is obvious.
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Fact 2.2. Let r < k. If Nwi (w1, : : : , wk) D 0, then also Nwi (w1, : : : , wr ) D 0 and,
similarly, if gi (w2, : : : , wk) D 0, then also gi (w2, : : : , wr ) D 0.

For Gn,k, the formula (2.4) implies thatgi D w2gi�2Cw3gi�3C � � � Cwkgi�k, and
an obvious induction proves that

(2.6) gi D w
2s

2 gi�2�2s
C w

2s

3 gi�3�2s
C � � � C w

2s

k gi�k�2s

for all s such thati � 1C k � 2s.
In our proof of Theorem 2.1, we shall use the following.

Lemma 2.3. For the Grassmann manifold Gn,k (3� k � n� k),
(i) gi (w2, w3) D 0 if and only if i D 2t

� 3 for some t� 2;
(ii) gi (w2, w3, w4) D 0 if and only if i D 2t

� 3 for some t� 2;
(iii) if k � 5 then, for i � 2, we never have gi (w2, : : : , wk) D 0.

Proof of Lemma 2.3. PART (i). In view of Fact 2.2, the equality

g2t
�3(w2, w3) D 0

for t � 2 (already proved, in a different way, in [3]) is a direct consequence of the
equality g2t

�3(w2, w3, w4) D 0; the latter will be verified in the proof of Part (ii).
Now we prove thatgi (w2, w3) ¤ 0 for i ¤ 2t

� 3. For i < 14, this is readily
verified by a direct calculation. Let us suppose thati � 14. Then, for eachi , there
exists a uniquely determined integer� (� � 2) such that 2� < i =3� 2�C1. For proving
the claim, it suffices to verify it in each of the following three situations:
(a) 3� 2� C 1� i < 5 � 2�;
(b) i D 5 � 2�;
(c) 5 � 2� C 1� i � 6 � 2�.

CASE (a). By (2.6), we have

gi D w
2�

2 gi�2�2�

C w

2�

3 gi�3�2� .

By our assumption,i is not of the form 2j � 3, and one sees thati � 2 �2� or i � 3 �2�

is not of the form 2j � 3. If just one of the numbersi � 2 � 2�, i � 3 � 2� is not of the
form 2j

�3, then it suffices to apply the inductive hypothesis (and theproved fact that
g2t

�3 D 0 for t � 2). If none of the numbersi � 2 � 2� and i � 3 � 2� have the form
2 j
� 3 then, by the inductive hypothesis, bothgi�2�2� and gi�3�2� are nonzero and, as a

consequence, alsogi ¤ 0. Indeed, now a necessary condition forgi D 0 is that gi�2�2�

should contain the termw2�

3 ; but the latter implies thati �2 �2� � 3 �2�, thus i � 5 �2�,
which is not fulfilled.

CASE (b). One directly sees, from (1C w2 C w3)�1
D 1 C w2 C w3 C (w2 C

w3)2
C � � � , that

g5�2�

D w

5�2��1

2 C different terms¤ 0.
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CASE (c). By a repeated use of (2.6), we now have that

(2.7)

gi D w
2�

2 (w2�

2 gi�4�2�

C w

2�

3 gi�5�2�)

C w

2�

3 (w2��1

2 gi�4�2�

C w

2��1

3 gi�9�2��1)

D (w2�C1

2 C w

2��1

2 w

2�

3 )gi�4�2�

C w

2�

2 w
2�

3 gi�5�2�

C w

3�2��1

3 gi�9�2��1.

If i � 4 � 2� is of the form 2j
� 3, then one verifies thati � 5 � 2� or i � 9 � 2��1

is not of the form 2j � 3. If just one of the numbersi � 5 � 2�, i � 9 � 2��1 is not
of the form 2j

� 3, then it suffices to apply the inductive hypothesis (and theproved
fact that g2t

�3 D 0 for t � 2). If none of the numbersi � 5 � 2� and i � 9 � 2��1 have
the form 2j

�3 then, by the inductive hypothesis, bothgi�5�2� and gi�9�2��1 are nonzero
and, as a consequence, alsogi ¤ 0. Indeed, now a necessary condition forgi D 0 is
that gi�5�2� should contain the termw2��1

3 ; but the latter implies thati �5 �2� � 3 �2��1,
thus i > 6 � 2�, which is not fulfilled.

Finally, let us suppose thati � 4 � 2� is not of the form 2j � 3 (thus, by the in-
ductive hypothesis,gi�4�2�

¤ 0). Then, in order to havegi D 0, it would be necessary
to “eliminate” w2�C1

2 gi�4�2� . This would only be possible ifgi�5�2� containsw2�

2 , thus if

i � 5 � 2� � 2 � 2�, hencei � 7 � 2�, which is not fulfilled, or if gi�9�2��1 containsw2�C1

2 ,
thus if i � 9 � 2��1

� 2 � 2�C1, hencei � 17 � 2��1
� 8 � 2�, which is not fulfilled.

PART (ii). We first prove thatg2t
�3(w2, w3, w4) D 0 for t � 2. We directly see

that g1 D 0 andg5 D 0. For t � 3 we have, by (2.6) and the inductive hypothesis, that

(2.8) g2t
�3 D w

2t�3

2 g3�2t�2
�3C w

2t�3

3 g5�2t�3
�3.

Thus, again by (2.6) and the inductive hypothesis, we obtain

(2.9)

g2t
�3 D w

2t�3

2 (w2t�3

2 g2t�1
�3C w

2t�3

3 g3�2t�3
�3C w

2t�3

4 g2t�2
�3)

C w

2t�3

3 (w2t�3

2 g3�2t�3
�3C w

2t�3

3 g2t�2
�3C w

2t�3

4 g2t�3
�3)

D 0.

PART (iii). First, one readily calculates thatg5(w2, w3, w4, w5) D w5 ¤ 0. Then
for completing the proof of Part (iii), in view of what we haveproved up to now and
Fact 2.2, it suffices to verify thatg2t

�3(w2,w3,w4,w5)¤ 0 for t � 4. For this, we show
that h2t

�3(w4, w5) is nonzero fort � 4, whereh2t
�3(w4, w5) (briefly h2t

�3) is obtained
by reducingg2t

�3(w2, w3, w4, w5) modulow2 andw3. Indeed, by (2.6), we see that

(2.10) h2t
�3 D w

2t�3

4 h2t�1
�3C w

2t�3

5 h3�2t�3
�3.

By the inductive hypothesis,h2t�1
�3 ¤ 0; thus a necessary condition forh2t

�3 D 0 is
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that the termw2t�3

5 should be contained inh2t�1
�3. But this would require that 2t�1

�3�
5 � 2t�3, which is not fulfilled. This finishes the proof of Lemma 2.3.

The announced preparations are finished, and we can prove Theorem 2.1.

Proof of Theorem 2.1. Recall that, forGn,k (k � n� k) there are no polynomial
relations amongw1, w2, : : : , wk in dimensions� n � k, and a nonzero polynomial
pn�kC1 2 Z2[w1, w2, : : : , wk] represents 02 Hn�kC1(Gn,k) if and only if pn�kC1 D

Nwn�kC1. From the Gysin sequence (2.1) we see that

p� W Hn�k(Gn,k)! Hn�k( QGn,k) is surjective

and, equivalently, charrank(Qn,k) � n� k,

precisely whengn�kC1(w2, : : : , wk) ¤ 0.

(2.11)

We still observe that, for 3� k � n� k,

(2.12) if gn�kC1 ¤ 0 and gn�kC2 ¤ 0, then charrank(Qn,k) � n� kC 1.

Indeed, by the criterion (2.11), we have charrank(Qn,k) � n � k. To show that
this inequality can be improved as claimed in (2.12), let us suppose that a nonzero

polynomial pn�kC1 2 Z2[w1, : : : , wk] represents an element in Ker(Hn�kC1(Gn,k)
w1
�!

Hn�kC2(Gn,k)). Thus w1 pn�kC1 represents 02 Hn�kC2(Gn,k). This means that, in
Z2[w1, : : : ,wk], w1 pn�kC1 D aw1 Nwn�kC1Cb Nwn�kC2, whereaD 1 or bD 1. Of course,
since gn�kC2 ¤ 0, necessarilyb D 0, a D 1. But the polynomial equalityw1 pn�kC1 D

w1 Nwn�kC1 implies that pn�kC1 D Nwn�kC1, thus pn�kC1 represents 02 Hn�kC1(Gn,k). So

we see that Ker(Hn�kC1(Gn,k)
w1
�! Hn�kC2(Gn,k)) D 0 and charrank(Qn,k) � n� kC 1.

Proof of Parts (1) and (2). By Lemma 2.3(i), (ii),gn�kC1(w2, : : : , wk) vanishes
if (n, k) 2 {(2t

� 1, 3), (2t , 4)}. By the criterion (2.11), for these pairs (n, k), the
homomorphismp� W Hn�k(Gn,k) ! Hn�k( QGn,k) is not surjective; thus, there is a non-
Stiefel–Whitney generator inHn�k( QGn,k) if (n,k) 2 {(2t

�1,3), (2t ,4)}, and we conclude
that charrank(Q2t

�1,3) D 2t
� 5D charrank(Q2t ,4).

Of course, again by Lemma 2.3 (i), (ii), we havegn�kC1(w2, : : : ,wk)¤ 0 if (n,k) �
{(2t
� 1, 3), (2t , 4)} and k 2 {3, 4}. By the criterion (2.11), for these pairs (n, k), the

homomorphism p� W Hn�k(Gn,k) ! Hn�k( QGn,k) is surjective; so we have that
charrank(Qn,3) � n� 3 if n ¤ 2t

� 1 and charrank(Qn,4) � n� 4 if n ¤ 2t .
To prove the result for QG2t

�2,3, we first recall (Lemma 2.3 (i)) thatg2t
�4 ¤ 0,

g2t
�3 D 0, andg2t

�2 ¤ 0. Thus Nw2t
�3 D w1 p2t

�4 for some polynomialp2t
�4. The latter

cannot represent 0 in the cohomology groupH2t
�4(G2t

�2,3); indeed, if p2t
�4 represents

zero, then necessarilyp2t
�4 D Nw2t

�4 (as polynomials), thus we have a relationNw2t
�3 D

w1 Nw2t
�4, which is impossible. This implies (see (2.1)) thatp� W H2t

�4(G2t
�2,3) !
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H2t
�4( QG2t

�2,3) is not an epimorphism, thus charrank(Q2t
�2,3) � 2t

� 5. By (2.11), since
g2t

�4 ¤ 0, we have charrank(Q2t
�2,3) � 2t

� 5, which proves the claim forQG2t
�2,3. The

result for QG2t
�1,4 can be derived in an analogous way.

Now we prove the claim forQG2t
�3,3. We haveg2t

�5 ¤ 0, g2t
�4 ¤ 0, andg2t

�3 D

0. Thus Nw2t
�3 D w1 p2t

�4 for some polynomialp2t
�4. The latter cannot represent 0

in H2t
�4(G2t

�3,3). Indeed, if p2t
�4 represents zero, thenp2t

�4 D aw1 Nw2t
�5 C b Nw2t

�4

in Z2[w1, w2, w3], with a D 1 or b D 1; as a consequence, we would haveNw2t
�3 D

aw2
1 Nw2t

�5C bw1 Nw2t
�4, which is impossible. From the Gysin sequence (2.1), we see that

p� W H2t
�4(G2t

�3,3) ! H2t
�4( QG2t

�3,3) is not an epimorphism. Thus charrank(Q2t
�3,3) �

2t
� 5. At the same time, by the observation (2.12), we have charrank( Q2t

�3,3) � 2t
� 5.

This proves the claim forQG2t
�3,3; again, the result forQG2t

�2,4 can be proved analogously.
We pass to proving the result forQG2t ,3. We know that none ofg2t

�2, g2t
�1, g2t

vanishes. By (2.12), we see that charrank(Q2t ,3) � 2t
� 2. At the same time, since

w2g2t
�2Cg2t

D w3g2t
�3D 0, we have (as forZ2-polynomials)w2 Nw2t

�2C Nw2t
D w1 p2t

�1,
for some polynomialp2t

�1. The latter cannot represent 02 H2t
�1(G2t ,3). Indeed,p2t

�1

representing 0 would mean thatp2t
�1 D aw1 Nw2t

�2 C b Nw2t
�1 (where a D 1 or b D 1),

which implies an impossible relationNw2t
D (aw2

1 C w2) Nw2t
�2 C bw1 Nw2t

�1. Thus p2t
�1

represents a nonzero element in

Ker(H2t
�1(G2t ,3)

w1
�! H2t

(G2t ,3)),

and we have that charrank(Q2t ,3) � 2t
� 2, which proves the claim forQG2t ,3.

Now we shall pass toQG2t
�3,4. Then we haveg2t

�6 ¤ 0, g2t
�5 ¤ 0, g2t

�4 ¤ 0,
g2t

�3 D 0. By (2.12), we know that charrank(Q2t
�3,4) � 2t

� 6. To improve this in-
equality, we now show that

(2.13) Ker(H2t
�5(G2t

�3,4)
w1
�! H2t

�4(G2t
�3,4)) D 0.

Let a nonzero polynomialp2t
�5 represent an element in the kernel under question.

This means that the polynomialw1 p2t
�5 represents 02 H2t

�4(G2t
�3,4). Consequently,

w1 p2t
�5 D aw2

1 Nw2t
�6 C bw2 Nw2t

�6 C cw1 Nw2t
�5 C d Nw2t

�4 in Z2[w1, w2, w3, w4], where
at least one of the coefficientsa, b, c, d is equal to 1. We cannot haveb D d D 1,
becausew2 Nw2t

�6C Nw2t
�4 reduced modw1 is w2g2t

�6Cg2t
�4 and, as we shall see in the

next step, the latter is not zero. Indeed, letzi denote the reduction ofgi modulow2

andw3. Thenw2g2t
�6 C g2t

�4 reduced modulow2 andw3 is equal toz2t
�4. A direct

calculation gives thatz12D w
3
4 and, by induction, we obtain thatz2t

�4 D w
2t�3

4 z2t�1
�4 D

w

2t�3

4 w

2t�3
�1

4 D w

2t�2
�1

4 ¤ 0. So we have shown thatw2g2t
�6 C g2t

�4 ¤ 0. One also
readily sees that it is impossible to have (b, d) D (1, 0) as well as (b, d) D (0, 1). Thus
the only remaining possibility is (b,d)D (0,0). So we obtainw1 p2t

�5D w1(aw1 Nw2t
�6C

c Nw2t
�5), thus p2t

�5 D aw1 Nw2t
�6 C c Nw2t

�5. This means thatp2t
�5 represents 02

H2t
�5(G2t

�3,4), and we have proved the equality (2.13).
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As a consequence, we have charrank(Q2t
�3,4) � 2t

� 5. Sinceg2t
�3 D 0, we have

that Nw2t
�3 D w1 p2t

�4 for some polynomialp2t
�4, about which one can show (similarly

to situations of this type dealt with above) that it cannot represent zero in cohomology.
Thus we also have charrank(e 2t

�3,4) � 2t
� 5, and finally charrank(Q2t

�3,4) D 2t
� 5.

In view of Lemma 2.3 (i), (ii), for all the manifoldsQGn,3 and QGn,4 that remain,
the observation (2.12) implies the lower bounds stated in Theorem 2.1 (1), (2).

Proof of Part (3). Fork � 5, Lemma 2.3 (iii) says thatgn�kC1 ¤ 0 andgn�kC2 ¤

0; thus the observation (2.12) applies, giving that charrank( Qn,k) � n � k C 1 in all
these cases.

To prove the final statement of the theorem, it suffices to recall that, if n is odd,
then (see [3, p. 72]) we havewi ( QGn,k) D Qwi C Qi ( Qw2, : : : , Qwi�1) (i � k), where Qi is
a Z2-polynomial, and Qw j D w j ( QGn,k)C Pj (w2( QGn,k), : : : ,w j�1( QGn,k)) ( j � 2) for some
Z2-polynomial Pj .

The proof of Theorem 2.1 is finished.

3. On the cup-length of the Grassmann manifold QGn,k

Recall that theZ2-cup-length, cup(X), of a compact path connected topological
spaceX is defined to be the maximum of all numbersc such that there exist, in posi-
tive degrees, cohomology classesa1,: : : ,ac 2 H�(X) such that their cup producta1 � � �ac

is nonzero. In [3] and, independently, in [2], it was proved that for t � 3 we have

cup( QG2t
�1,3) D 2t

� 3I

in addition, [3, Theorem 1.3] gave certain upper bounds for cup( QGn,k).
Now Theorem 2.1 implies the following exact result forQG2t ,3, confirming the cor-

responding claim in Fukaya’s conjecture [2, Conjecture 1.2], or improvements on the
results of [3, Theorem 1.3] in the other cases.

Theorem 3.1. For the oriented Grassmann manifoldQGn,k (3 � k � n � k), with
2t�1

< n � 2t , we have

(1) cup(QGn,3)

8

<

:

D n� 3 if n D 2t ,
� (2n� 3� i )=2 if n D 2t

� i , i 2 {2, 3},
� n� 3 otherwise, for n ¤ 2t

� 1;

(2) cup(QGn,4)

�

� (3n� 10� i )=2 if n D 2t
� i , i 2 {0, 1, 2, 3},

� (3n� 12)=2 otherwise;

(3) if k � 5, then cup( QGn,k) � (k � 1)(n� k)=2.

Proof. For a connected finiteCW-complex X, let r X denote the smallest positive
integer such that QHr X (X) ¤ 0. In the case that such an integer does not exist, that
is, all the reduced cohomology groupsQH i (X) (1 � i � dim(X)) vanish, we setr X D
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dim(X)C1; thus alwaysr X � 1. To obtain the upper bounds stated in the theorem, we
use the following generalization of [3, Theorem 1.1].

Theorem 3.2 (A. Naolekar–A. Thakur [6]). Let X be a connected closed smooth
d-dimensional manifold. Let� be a vector bundle over X satisfying the following:
there exists j, j � charrankX(� ), such that every monomialwi1(� ) � � �wi r (� ), 0� i t � j ,
in dimension d vanishes. Then

cup(X) � 1C
d � j � 1

r X
.

For the manifold QGn,k, every top-dimensional monomial in the Stiefel–Whitney
classes of the canonical bundleQn,k vanishes (indeed, if a top-dimensional monomial
in the Stiefel–Whitney classes ofQn,k does not vanish, then it is ap�-image of the
corresponding non-vanishing top-dimensional monomial inthe Stiefel–Whitney classes
of n,k; due to Poincaré duality, the latter monomial can be replaced with a monomial
divisible by w1(n,k); but p� maps this monomial to zero). Now the upper bounds
stated in Theorem 3.1 are obtained by takingX D QGn,k (3� k � n� k), � D Qn,k, and
j equal to the right-hand side of the corresponding (in)equality given in Theorem 2.1.

For QG2t ,3, it was proved in [3, p. 77] thatw2(e )2t
�4 does not vanish. This implies

that cup(QG2t ,3) � 2t
�3; this lower bound coincides with the upper bound proved above.

The proof is finished.
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