
Cho, J.T. and Lee, J.-E.
Osaka J. Math.
52 (2015), 1063–1077

PSEUDOHERMITIAN BIMINIMAL LEGENDRE SURFACES IN
THE 5-DIMENSIONAL SPHERE

JONG TAEK CHO∗ and JI-EUN LEE

(Received January 6, 2014, revised August 5, 2014)

Abstract
In this paper, we determine nonminimal pseudohermitian biminimal Legendre

surfaces in the unit 5-sphereS5. In fact, the product of a circle and a helix of order
4 is realized as a nonminimal pseudohermitian biminimal Legendre immersion into
S5. In addition, we obtain that there exist no nonminimal pseudohermitian biminimal
Legendre surfaces in a 5-dimensional Sasakian space form ofnon-positive constant
holomorphic sectional curvature for the Tanaka–Webster connection.

1. Introduction

A Legendre submanifold in contact manifolds is one of important subjects in con-
tact geometry and the geometry of submanifolds. In a Sasakian manifold there exist
no Legendre submanifolds with parallel mean curvature vector other than the minimal
ones (cf. [17]). By using variational view point, the biminimality was introduced by
Loubeau and Montaldo [10] as an extension of minimality. Inoguchi [7] showed that a
3-dimensional Sasakian space form admits a proper biminimal Legendre curve if and
only if its holomorphic sectional curvature is greater than1. In a continuing paper [8]
he classified nongeodesic biminimal Legendre curves in a 3-dimensional Sasakian space
form. Recently, Sasahara [12] gave a classification of nonminimal biminimal Legendre
surfaces in a 5-dimensional Sasakian space form and showed that there exist no non-
minimal biminimal Legendre surfaces in a 5-dimensional Sasakian space form of con-
stant holomorphic sectional curvature� �3.

On the other hand, for a given contact form we have two compatible structures: one is
a Riemannian structure (or metric) and the other is a pseudohermitian structure (or almost
CR-structure). In pseudohermitian geometry (CR-geometry) we use theTanaka–Webster
connectionas a canonical connection instead of the Levi-Civita connection. In our pre-
vious works [5], [6], we defined pseudohermitian harmonicity, minimality, biharmonicity,
and biminimality, respectively by using the Tanaka–Webster connection. Particularly in
[5], we have classified pseudohermitian biharmonic curves (of constant contact angle) in a
3-dimensional Sasakian space form with respect to the Tanaka–Webster connection. While
for the Levi-Civita connection, the unit sphereS3 does not contain proper biharmonic
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Legendre curves,S3 does contain proper pseudohermitian biharmonic Legendre curves
with respect to the Tanaka–Webster connection, which are called pseudohermitian circles.
In these situations, it is natural and intriguing to study pseudohermitian biharmonic or bi-
minimal Legendre surfaces in a 5-dimensional Sasakian space form.

The main purpose of this paper is to prove their classification theorems (Theorem 4.1
and Corollary 5.1). In particular we show that the product ofa circle and a helix of or-
der 4 is realized as a nonminimal pseudohermitian biminimalLegendre immersion into
S5. Such a Legendre surface has another remarkable geometric property, namely, it is
mass-symmetricand of 2-type. In fact, in [1] it was proved that a mass-symmetric 2-type
Legendre surface ofS5 is the product of a plane circle and a helix of order 4 or the
product of two circles. The latter one is characterized as a nonminimal Legendre sur-
face in S5 with respect to the Levi-Civita connection by Sasahara [12]. Moreover, we
obtain that there exist no nonminimal pseudohermitian biminimal Legendre surfaces in a
5-dimensional Sasakian space form of non-positive constant holomorphic sectional curva-
ture for the Tanaka–Webster connection (Corollary 4.2).

2. Preliminaries

A (2n C 1)-dimensional manifoldM2nC1 is said to be acontact manifoldif it
admits a global 1-form� such that�^ (d�)n

¤ 0 everywhere. Given a contact form�,
there exists a unique vector field� , the characteristic vector fieldsatisfying�(� ) D 1
and d�(� , X) D 0 for any vector fieldX. It is well-known that there exists anassoci-
ated Riemannian metric gand a (1, 1)-type tensor field' such that

(2.1) �(X) D g(X, � ), d�(X, Y) D g(X, 'Y), '

2X D �X C �(X)� ,

where X and Y are vector fields onM. From (2.1), it follows that

'� D 0, � Æ ' D 0, g('X, 'Y) D g(X, Y) � �(X)�(Y).

A Riemannian manifoldM equipped with the structure tensors (�, � , ', g) satisfying
(2.1) is said to be acontact Riemannian manifold. We denote it byM D (MI�,� ,',g).
Given a contact Riemannian manifoldM, we define an operatorh by h D (1=2)L

�

',
whereL

�

denotes Lie differentiation in the characteristic direction � . Then we may
observe that thestructural operator his self-adjoint and satisfies

h� D 0, h' D �'h,

rX� D �'X � 'hX,(2.2)

wherer is the Levi-Civita connection. A contact Riemannian manifold for which � is
a Killing vector field is called aK -contact manifold. It is at once shown that a contact
Riemannian manifold isK -contact if and only ifh D 0.
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For a contact Riemannian manifoldM one may define naturally an almost complex
structureJ on M � R:

J

�

X, f
d

dt

�

D

�

'X � f � , �(X)
d

dt

�

where X is a vector field tangent toM, t the coordinate onR and f a function on
M � R. If the almost complex structureJ is integrable,M is said to benormal or
Sasakian. It is known that a contact Riemannian manifoldM is normal if and only if
M satisfies

[', '] C 2 d�
 � D 0,

where [','] is the Nijenhuis torsion of'. We note that 3-dimensionalK -contact mani-
folds areSasakian(cf. p. 76 in [2]).

We denote byR the Riemannian curvature tensor define by

R(X, Y)Z D rX(rY Z) � rY(rX Z) � r[X,Y] Z,

where X, Y, Z are vector fields onM. A Sasakian manifold is also characterized by
the condition

(rX')Y D g(X, Y)� � �(Y)X,

for all vector fieldsX and Y on the manifold and this is equivalent to

R(X, Y)� D �(Y)X � �(X)Y,

for all vector fieldsX and Y.
Let (MI �, � , ', g) be a Sasakian manifold. ThenM is called a space of constant

holomorphic sectional curvature� if M satisfies

g(R(X, 'X)'X, X) D �

for any unit vector fieldX ? � . A complete and simply connected Sasakian space
of constant holomorphic sectional curvature is called a Sasakian space form. We de-
note by M2nC1(�) a Sasakian space form of constant holomorphic sectional curvature
�. Tanno ([14]) classified Sasakian space forms. The curvature tensorR of M2nC1(�)
is given by (see [2])

(2.3)

R(X, Y)Z D
�C3

4
{g(Y, Z)X�g(X, Z)Y}

C

��1

4
{�(X)�(Z)Y��(Y)�(Z)XCg(X, Z)�(Y)� �g(Y, Z)�(X)�

Cg(Z, 'Y)'X�g(Z, 'X)'YC2g(X, 'Y)'Z}.
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For more information on contact geometry, we refer to [2].
Now let (N, h) and (M, g) be Riemannian manifolds andf W N ! M a smooth

map. Then the section� ( f ) WD tr r f d f of the pull-back bundlef �T M is called the
tension fieldof f . Herer f is the connection onf �T M induced form the Levi-Civita
connectionr of M andr f d f is the second fundamental formof f . A map f is said
to be harmonic if its tension field vanishes identically.

DEFINITION 2.1. A smooth mapf W N ! M is said to bebiharmonic if it is a
critical point of thebienergy functional:

E2( f ) D
Z

N

1

2
j� ( f )j2 dvh.

The Euler–Lagrange equation of the bienergy is:

(2.4) �2( f ) WD �J f (� ( f )) D 0

(cf. Jiang [9]). The section�2( f ) is called thebitension fieldof f . The Jacobi equation
for the vector fieldV along f is given by

J f (V) WD 4 f V C tr R(d f, V) d f D 0,

where the operator4 f is the rough Laplacianacting on the space0( f �T M) of all
smooth sections off �T M is defined by

4 f WD �

n
X

iD1

�

r

f
ei
r

f
ei
� r

f
r

N
ei

ei

�

,

where{ei }
n
iD1 is a local orthonormal frame field ofN. Obviously, every harmonic map

is biharmonic.
In case f W (N, h)! (M, g) is an isometric immersion, thebiharmonic equationof

f is given by

J f (H) D 4 fHC tr R(d f, H) d f D 0,

whereH D � ( f )= dim N is the mean curvature vector field. Loubeau and Montaldo
introduced the notion of the biminimal immersions.

DEFINITION 2.2 ([10]). An isometric immersionf W (N, h) ! (M, g) is said to
be biminimal if it is a critical point of the bienergy functionalE2( f ) with respect to
all normal variation with compact support. Here, a normal variation means a variation
ft off f D f0 such that the variational vector fieldV D d ft=dtjtD0 is normal toN.
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We observe thatf is biminimal if and only it it satisfies abiminimal equation:

(2.5) J f (H)? D {4 fHC tr R(d f, H) d f }? D 0.

Every biharmonic submanifold is biminimal. However, thereare many nonbihar-
monic biminimal submanifolds (cf. [10]).

Generalizing submanifolds with harmonic mean curvature (4H D 0) or normal har-
monic mean curvature (4?

H D 0), submanifolds with property4H D �H or 4?

H D

�H have been extensively studied by many authors. We may find references in [7].
(Here,4? is the Laplace–Beltrami operator of the normal bundle, which is callednor-
mal Laplacian.) More generally, the notion of�-biminimal immersion was introduced
by Loubeau and Montaldo:

DEFINITION 2.3. An isometric immersionf W N ! M is called a�-biminimal
immersion if it is a critical point of the function:

E2,�( f ) D E2( f )C �E( f ), � 2 R.

The Euler–Lagrange equation for�-biminimal immersions is

�2( f )? D �� ( f ),

or equivalently,

J f (H)? D ��H.

3. CR structures

For a contact Riemannian manifoldM D (M2nC1
I�,� ,',g), the tangent spaceTpM

of M at a point p 2 M can be decomposed as the direct sumTpM D Dp� {�} p, with
Dp D {v 2 TpM j �(v) D 0}. Then D W p! Dp defines a 2n-dimensional distribution
orthogonal to� , called thecontact distribution. We see that the restrictionJ D 'jD

of ' to D defines an almost complex structure onD. Then the associatedalmost CR-
structureof the contact Riemannian manifoldM is given by the holomorphic subbundle

H D {X � i J X j X 2 D}

of the complexificationT MC of the tangent bundleT M. Then we see that each fiber
Hp is of complex dimensionn, H \ NH D {0}, andCD D H � NH. We say that the
associated almost CR-structure isintegrable if [H,H] �H. In such a case,H is called
a CR-structure associated to the contact Riemannian structure (�, � , ', g).

For an associated almost CR-structureH of a contact Riemannian manifoldM, we
define the Levi formL by

L W D � D ! F (M), L(X, Y) D �d�(X, JY),
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whereF (M) denotes the algebra of differential functions onM. Then we see that the
Levi form is Hermitian and positive definite. We call the pair(�, L) a strongly pseudo-
convex pseudohermitian structureon M. Now, we review theTanaka–Webster connec-
tion [13], [16] on a strongly pseudoconvex pseudohermitian manifold M D (MI �, L)
with the associated contact Riemannian structure (�, � ,', g). The Tanaka–Webster con-
nection Or is defined by

O

rXY D rXY C �(X)'YC (rX�)(Y)� � �(Y)rX� ,

for all vector fieldsX, Y on M. Together with (2.2),Or may be rewritten as

(3.1) O

rXY D rXY C A(X, Y),

where we have put

(3.2) A(X, Y) D �(X)'YC �(Y)('X C 'hX) � g('X C 'hX, Y)� .

We see that the Tanaka–Webster connectionOr has the torsion

(3.3) OT(X, Y) D 2g(X, 'Y)� C �(Y)'hX� �(X)'hY.

In particular, for aK -contact manifold (3.2) and the above equation reduce as follows:

A(X, Y) D �(X)'Y C �(Y)'X � g('X, Y)� ,(3.4)

OT(X, Y) D 2g(X, 'Y)� .

Furthermore, it was proved in [15] that

Proposition 3.1. The Tanaka–Webster connectionOr on a contact Riemannian
manifold MD (M2nC1

I �, � , ', g) with the associated(integrable) CR-structure is the
unique linear connection satisfying the following conditions:
(i) O

r� D 0, Or� D 0;
(ii) Org D 0, Or' D 0;
(iii-1) OT(X, Y) D ��([X, Y])� , X, Y 2 D;
(iii-2) OT(� , 'Y) D �' OT(� , Y), Y 2 D.

We define thepseudohermitian curvature tensor(or Tanaka–Webster curvature ten-
sor) OR on a contact Riemannian manifold equipped with the associated CR-structure
and Tanaka–Webster connectionOr by

(3.5) OR(X, Y)Z D OrX( OrY Z) � OrY( OrX Z) � Or[X,Y] Z
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for all vector fieldsX, Y, Z in M. Then from the definition ofOR, we have

(3.6)

OR(X, Y)Z D R(X, Y)Z

C �(Y)((rX')Z � g(X C hX, Z)� )

� �(X)((rY')Z � g(Y C hY, Z)� )

C �(Z)((rX')Y � (rY')X C (rX'h)Y � (rY'h)X

C �(Y)(X C hX) � �(X)(Y C hY)) � 2g('X, Y)'Z

� g('X C 'hX, Z)('Y C 'hY)C g('Y C 'hY, Z)('X C 'hX)

� g((rX')Y � (rY')X C (rX'h)Y � (rY'h)X, Z)�

for all vector fieldsX, Y, Z in M. In [4] the first author studied the relation between
pseudohermitian geometry and Riemannian geometry. Indeed, for Sasakian space forms
M2nC1(�) the holomorphic sectional curvature forOr is O� D � C 3.

4. Pseudohermitian biminimal submanifolds

Let M2nC1 be a contact Riemannian manifold andf W Nm
! M2nC1 be an isometric

immersion of a Riemannian manifold (N, h). Then we have the basic formulas forOr:

(4.1) O

r

f
XY D f

�

O

r

h
XY C O� (X, Y) and O

r

f
X V D � f

�

OSV X C ODXV ,

where X, Y 2 T Nm, V 2 T?Nm, O� , OS and OD are thesecond fundamental form, the
shape operatorand thenormal connectionwith respect toOr. The connectionOrh is the
connection onN induced from Or. The first formula is called theGauss formulaand
the second formula is called theWeingarten formulawith respect to Tanaka–Webster
connection. Then we can find the relation:

g( O� (X, Y), V) D h( OSV X, Y).

If � restricted toNm vanishes, thenNm is called anintegral submanifold, in particular
if mD n, it is called aLegendre submanifold.

Let Nn be a Legendre submanifold of a Sasakian manifoldM2nC1 and letei (i D
1, : : : , n) be an orthonormal frame alongNn such that{ei } are tangent toNn, 'e1 D

enC1, : : : , 'en D e2n, � D e2nC1. It follows from (3.4), we can see that

(4.2) A(X, Y) D 0,

for X, Y 2 T N, and then we find thatO� D � . This implies that Orh coincides with the
Levi-Civita connectionrh of (N, h). Moreover, we have

(4.3) f
�

S
'Y X D �'� (X, Y) D f

�

S
'XY, S

�

D 0.
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Differentiating g(� (X, Y), Z) D 0, we get

0D g( OrW� (X, Y), Z)C g(� (X, Y), OrW Z)

D g(( OrW� )(X, Y), Z)C g(� (X, Y), � (W, Z))

D g(( OrW� )(X, Y), Z)C h(S
� (X,Y)W, Z),

for W, X, Y, Z 2 T N.

Proposition 4.1. Let N be an n-dimensional Legendre submanifold of a(2nC1)-
dimensional Sasakian manifold M. If the second fundamentalform of N is is parallel
with respect to Tanaka–Webster connection, then N is totally geodesic in M.

Now we suppose that the ambient spaceM D M2nC1(O�) be a Sasakian space form.
Since' is parallel for Tanaka–Webster connectionOr, we get

ODX'Y D ' f
�

O

r

h
XY, f

�

S
'Y X D �'� (X, Y).

Then by using a straightforward computation the equations of Gauss and Codazzi of
Legendre submanifolds for Tanaka–Webster connection are given respectively by:

h(Rh(X, Y)Z, W) D g( OR( f
�

X, f
�

Y) f
�

Z, f
�

W)C h([S
'Z , S

'W]X, Y),(4.4)

( OrX� )(Y, Z) D ( OrY� )(X, Z).(4.5)

We prepare some more notions which will be needed. (cf. [6]).

DEFINITION 4.1. Let (N, h) be a Riemannian manifold andf W N! (M,�, g, Or)
a smooth map into a strongly pseudoconvex pseudohermitian manifold equipped with
Tanaka–Webster connection. Thenf is said to bepseudohermitian harmonicif it is
harmonic with respect to the metrich and the Tanaka–Webster connectionOr of M.
The tension fieldO� ( f ) D trh( Or d f ) is called thepseudohermitian tension field.

DEFINITION 4.2 ([6]). Let (N, h) be a Riemannianm-manifold and f W N !
(M, �, g, Or) an isometric immersion into a strongly pseudoconvex pseudohermitian
manifold equipped with Tanaka–Webster connection. Then (N, f ) is said to bepseudo-
hermitian minimalif its pseudohermitian mean curvature vector fieldOH vanishes. Here
the pseudohermitian mean curvature vector field is defined by

O

H D

1

m
O� ( f ),

where O� ( f ) is the pseudohermitian tension field.
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Now let f W N ! M2nC1 be a Legendre submanifold in a Sasakian manifold. Then
as we have seen before,Orh

D r

h and O� D � , so the pseudohermitain mean curvature
vector vector fieldOH is nothing but the mean curvature vector fieldH. Thus minimality
and pseudohermitian minimality is equivalent for Legendresubmanifolds in Sasakian
manifolds. From Proposition 4.1 we get at once

Corollary 4.1. In a Sasakian manifold, there exist no Legendre submanifolds with
pseudohermitian parallel mean curvature vector, which meansOrHD 0, other than min-
imal ones.

We consider some extensions of pseudohermitian minimal Legendre submanifolds.

DEFINITION 4.3. A smooth mapf W (N, h)! (M, �, g, Or) is said to bepseudo-

hermitian biharmonicif it satisfies the Jacobi equation for theOr-tension field O� ( f )
of f :

OJ f ( O� ( f )) D O1 f O� ( f )C trh OT(d f, Or f
O� ( f ))C trh OR(d f, O� ( f )) d f D 0.(4.6)

f is pseudohermitian biminimal immersion if and only if

(4.7) { O1 f OHC trh OT(d f, Or f
O

H)C trh OR(d f, OH) d f }? D 0.

We call (4.7) a pseudohermitian biminimal equation. Clearly, pseudohermitian bihar-
monic submanifolds are pseudohermitian biminimal.

Analogously to�-biminimal immersion, we may define the following

DEFINITION 4.4. An isometric immersionf W N! M is called apseudohermitian
�-biminimal immersion if it satisfies:

O�2( f )? D � O� ( f ).

More explicitly,

{ O1 f OHC trh OT(d f, Or f
O

H)C trh OR(d f, OH) d f }? D �� OH.

The main purpose of the present paper is to prove

Theorem 4.1. Let N2 be a nonminimal pseudohermitian biminimal Legendre sur-
face in a5-dimensional Sasakian space form M5(O�) of constant holomorphic sectional
curvature O� for Or. Then O� > 0 and at each point p2 N2 we have a local coordinate
system{UI x, y} on a neighborhoodU(p) such that the metric tensor
(1) g D dx2

C dy2

and the second fundamental form� takes the form
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(2)
8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

�

�

�

�x
,
�

�x

�

D

O�

�

'

�

�x
,

�

�

�

�x
,
�

�y

�

D

�

� �

O�

�

�

'

�

�y
,

�

�

�

�y
,
�

�y

�

D

�

� �

O�

�

�

'

�

�x
,

where� D
q

(O�=8)(13�
p

41).
Conversely, suppose that g is the metric tensor on a(simply connected) domain

V � R2 defined by(1). Then there exists a unique Legendre immersion of(V, g) into
M5(O�) whose second fundamental form is given by(2) (up to rigid motions of M5(O�)).
In addition, such an immersion is nonminimal pseudohermitian biminimal.

Corollary 4.2. There exist no nonminimal pseudohermitian biminimal Legendre
surfaces in a5-dimensional Sasakian space form M5(O�) for O� � 0.

Here we recall some fundamental results on submanifolds in the unit sphere. A
compact submanifoldMn of the unit hypersphereSm of EmC1 is said to bemass-
symmetricin Sm if the center of mass ofMn in EmC1 is exactly the center ofSm

in EmC1. Mass symmetric 2-type submanifolds of a hypersphere can be regarded as
the “simplest” submanifolds ofEmC1 next to minimal submanifolds (for the definition
of 2-type submanifold, we refer to Chen’s book [3]).

Lemma 4.1 ([1]). Let M be a mass-symmetric2-type Legendre surface in S5 in
E6. Then M is locally isometric to the Riemannian product of a circle and a helix of
order 4 or the product of two circles.

Now we putc D � � O�=�. Then for the unit 5-sphereS5, O� D 4, and we can see
that c2

¤ 1 in S5 and by the similar arguments in [1] we can see thatN2 in The-
orem 4.1 is locally isometric to the Riemannian product of a circle and a helix of or-
der 4. Namely, we have

Corollary 4.3. Let f W N2
! S5

� C3 be a nonminimal pseudohermitian bimini-
mal Legendre immersion into the unit5-sphere. Then the position vector f(x, y) of N2

in C3 is given by

f (x, y) D
1

p

c2
C 1

(cei (x=c), ie�icx sin
p

c2
C 1y, ie�icx cos

p

c2
C 1y).
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REMARK 4.1. The above corollary says that the product of a circle anda helix
of order 4 is characterized by a nonminimal pseudohermitianbiminimal Legendre im-
mersion into the unit 5-sphere. On the other hand, Sasahara [12] showed that the prod-
uct of two circles is realized as a nonminimal biminimal (with respect tor) Legendre
immersion into the unit 5-sphere.

From Definition 2.2 and Definition 4.4, we can see that a nonminimal biminimal
Legendre surfaceM in a 5-dimensional Sasakian space form corresponds to pseudo-
hermitian 4-biminimal (for Or) Legendre surface. Thus Corollary 2 in [12] can be re-
stated as:

Corollary 4.4. Let f W N2
! S5

� C3 be a nonminimal pseudohermitian
4-biminimal Legendre immersion into the unit5-sphere. Then the position vector f(x,y)
of N2 in C3 is given by

f (x, y) D
1
p

2
(ei x , ie�i x sin

p

2y, ie�i x cos
p

2y).

5. Proof of Theorem 4.1

Let f W N2
! M5(O�) be a Legendre surface. Then from (4.2) and (4.3) we have

A(X, Y) D 0,(5.1)

S
'Y X D �'� (X, Y) D S

'XY, S
�

D 0.(5.2)

for X,Y 2 T N. Assume that the mean curvature vanishes nowhere. Letei (i D 1,: : : ,5)
be an orthonormal frame field alongN2 such thate1, e2 are tangent toN2, 'e1 D

e3, 'e2 D e4, � D e5 and OH D H D (�=2)'e1, with � > 0. Using (5.2), we have
g(� (e1, e1), 'e2) D g(� (e1, e2), 'e1) and g(� (e2, e2), 'e1) D g(� (e1, e2), 'e2). Then
we may write the second fundamental form� as follows:

(5.3)

� (e1, e1) D (� � c)'e1C b'e2,

� (e1, e2) D b'e1C c'e2,

� (e2, e2) D c'e1 � b'e2,

for some functionsb, c. We put! j
i (ek) D g( Orh

ek
ei , ej ). Then we compute

(5.4)

O

re1e1 D !
2
1(e1)e2C (� � c)'e1C b'e2, O

re1e2 D �!
2
1(e1)e1C b'e1C c'e2,

O

re2e1 D !
2
1(e2)e2C b'e1C c'e2, O

re2e2 D �!
2
1(e2)e1C c'e1 � b'e2,

O

re1'e1 D �(� � c)e1 � be2C !
2
1(e1)'e2, O

re1'e2 D �be1 � ce2 � !
2
1(e1)'e1,

O

re2'e1 D �be1 � ce2C !
2
1(e2)'e2, O

re2'e2 D �ce1C be2 � !
2
1(e2)'e1,

O

re1� D
O

re2� D 0.
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Since Or parallelize', from (5.3) we have

( Ore1� )(e2, e2) D {e1cC 3b!2
1(e1)}'e1 � {e1b� 3c!2

1(e1)}'e2,

( Ore2� )(e1, e2) D {e2bC (� � 3c)!2
1(e2)}'e1C {e2cC 3b!2

1(e2)}'e2,

( Ore1� )(e1, e2) D {e1bC (� � 3c)!2
1(e1)}'e1C {e1cC 3b!2

1(e1)}'e2,

( Ore2� )(e1, e1) D {e2(� � c) � 3b!2
1(e2)}'e1C {e2bC (� � 3c)!2

1(e2)}'e2.

From the Codazzi equation (4.5) we get

e1cC 3b!2
1(e1) D e2bC (� � 3c)!2

1(e2),(5.5)

� e1bC 3c!2
1(e1) D e2cC 3b!2

1(e2),(5.6)

e2(� � c) � 3b!2
1(e2) D e1bC (� � 3c)!2

1(e1).(5.7)

Use (5.6) and (5.7) together to obtain

(5.8) e2� D �!
2
1(e1).

Now we compute the pseudohermitian biminimal equation (4.7). First by using (5.4)
we compute

(5.9)
2 O1h

H D [ O1h
� C �{(� � c)2

C c2
C 2b2

C (!2
1(e1))2

C (!2
1(e2))2}]'e1

� [2(e1�)!2
1(e1)C 2(e2�)!2

1(e2)C �{e1!
2
1(e1)C e2!

2
1(e2)} � �2b]'e2.

Here we should remark that the LaplacianO1h acting on the algebraC1(N) of smooth
functions onM is defined by

O

1

h
D �

2
X

iD1

�

O

r

h
ei
O

r

h
ei
�

O

r

h
O

r

h
ei

ei

�

,

where{e1,e2} is a local orthonormal frame field onN. SinceN is Legendre,Orh
D r

h,
so we get O1h is the Laplacian1 of (N, h) with respect to the Riemannian metrich.
From Proposition 3.1 and (5.4), we have

(5.10) trh OT(d f, Or f
H) D �{e1(�)C �!2

1(e2)}� .

Using (2.3) and (3.6), we get

(5.11) trh OR(d f, H) d f D �
5

4
O�H.
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Combining (5.9), (5.10) and (5.11), then the pseudohermitian biminimal equation yields:

1� C �

�

�

5

4
O� C (� � c)2

C c2
C 2b2

C (!2
1(e1))2

C (!2
1(e2))2

�

D 0,(5.12)

2(e1�)!2
1(e1)C 2(e2�)!2

1(e2)C �{e1!
2
1(e1)C e2!

2
1(e2)} � �2bD 0,(5.13)

e1� C �!
2
1(e2) D 0.(5.14)

Use (5.8) and (5.14) to get
�

1

�

e1,
1

�

e2

�

D 0.

From this observation, we may take a suitable local coordinate system{x, y} such that

(5.15) e1 D �
�

�x
, e2 D �

�

�y
.

We adapt similar arguments in the proof of Theorem 1 in [12]. Then it follows from
(5.15) that the metric tensor is given by

g D
1

�

2
(dx2

C dy2).

Hence we have

(5.16) !

2
1(e1) D �y, !

2
1(e2) D ��x,

where�x D ��=�x and�y D ��=�y. By substituting (5.15) and (5.16) into (5.13), we
get bD 0. Hence, from (5.5), (5.6) and (5.12) we have

�cx D �(� � 3c)�x,(5.17)

3c�y D �cy,(5.18)

��yyC ��xx C
5

4
O� � �

2
� 2c2

C 2�c� (�x)2
� (�y)2

D 0,(5.19)

respectively. On the other hand, from the Gauss equation (4.4) we have

(5.20)
�c� 2c2

C

1

4
O� D �(!2

1(e1))2
� (!2

1(e2))2
C e2(!2

1(e1)) � e1(!2
1(e2))

D �(�y)2
� (�x)2

C ��yyC ��xx.

Combining (5.19) and (5.20) together, we obtain

(5.21) �

2
� 3�cC 4c2

�

3

2
O� D 0.
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Differentiating (5.21) forx and y, respectively, then we have

(5.22) (2� � 3c)�i C (8c� 3�)ci D 0,

where i D x, y. Since� ¤ 0, from the system: (5.17), (5.18) and (5.22) forx and y,
we find that� is a (positive) constant. Thus we have!2

1 D 0 by (5.16) and haveO� > 0
in (5.12). Consequently, the equation (5.19) is reduced to

(5.23)
5

4
O� � �

2
� 2c2

C 2�cD 0.

Solve (5.21) and (5.23) to getc D � � (1=�)O�. Then we get� D
q

(O�=8)(13�
p

41)

again from (5.23). After all, we haveg D (1=�2)(dx2
C dy2) and

� (e1, e1) D
O�

�

'e1,

� (e1, e2) D

�

� �

O�

�

�

'e2,

� (e2, e2) D

�

� �

O�

�

�

'e1.

By virtue of the existence and uniqueness theorem (cf. Theorem 1 and Theorem 2 in
[11]) we can prove the converse. Thus, we have proved Theorem4.1.

Corollary 5.1. Let N2 be a nonminimal pseudohermitian biharmonic Legendre
surface in a5-dimensional Sasakian space form M5(O�) of constant holomorphic sec-
tional curvature O� for Or. Then we have the same result asTheorem 4.1.
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