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Abstract
The main result of this note gives an explicit presentation of the S1-equivariant

cohomology ring of the (n � k, k) Springer variety (in typeA) as a quotient of a
polynomial ring by an idealI , in the spirit of the well-known Borel presentation of
the cohomology of the flag variety.
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1. Introduction

The Springer varietySN associated to a nilpotent operatorN W Cn
! C

n is the
subvariety ofFlags(Cn) defined as

SN D {V
�

2 Flags(Cn) j N Vi � Vi�1 for all 1� i � n}

where V
�

denotes a nested sequence

0D V0 � V1 � � � � � Vn�1 � Vn D C
n

of subspaces ofCn and dim
C

Vi D i for all i . When N consists of two Jordan blocks
of sizesn � k and k with n � 2k, we denoteSN by S(n�k,k). The cohomology ring
of Springer varietySN has been much studied due to its relation to representationsof
the permutation group onn letters ([5], [6]). In fact, the ordinary cohomology ring
H�(SN IQ) is known to be the quotient of a polynomial ring by an ideal called Tanisaki’s
ideal ([7]). In this paper we study the equivariant cohomology ring of S(n�k,k) with re-
spect to a certain circle action onSN which we describe below.

Recall that then-dimensional compact torusT consisting of diagonal unitary ma-
trices of sizen acts onFlags(Cn) in a natural way. A certain circle subgroupS of T
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leavesSN invariant (cf. Section 2). The ring homomorphism

H�

T (Flags(Cn)IQ)! H�

S(SN IQ)

induced from the inclusions ofSN into Flags(Cn) and S into T is known to be surjec-
tive (cf. [3]). The main result of this paper is an explicit presentation ofH�

S(S(n�k,k)IQ)
as a ring using the epimorphism above (Theorem 3.3). In related work, Dewitt and
Harada [1] give a module basis ofH�

S(S(n�k,k)IQ) over H�(BSIQ) when k D 2 from
the viewpoint of Schubert calculus.

Finally, since the restriction map

H�

S(SN IQ)! H�(SN IQ)

is also known to be surjective for any nilpotent operatorN, our presentation of
H�

S(S(n�k,k)IQ) yields a presentation ofH�(S(n�k,k)IQ) as a ring (Corollary 3.4). How-
ever, the resulting presentation is slightly different from the one given in [7].

This paper is organized as follows. We briefly recall the necessary background in
Section 2. Our main theorem, Theorem 3.3, is formulated in Section 3 and proved
in Section 4.

2. Nilpotent Springer varieties and S1-fixed points

We begin by recalling the definition of the nilpotent Springer varieties in type A.
Since we work exclusively with type A in this paper, we henceforth omit it from our
terminology.

The flag varietyFlags(Cn) is the projective variety of nested subspaces inC

n, i.e.

Flags(Cn) D {V
�

D (0D V0 � V1 � � � � � Vn�1 � Vn D C
n) j dim

C

Vi D i }.

DEFINITION. Let N W Cn
! C

n be a nilpotent operator. The (nilpotent) Springer
variety SN associated toN is defined as

SN D {V
�

2 Flags(Cn) j N Vi � Vi�1 for all 1� i � n}.

Since SgNg�1 is homeomorphic (in fact, isomorphic as algebraic varieties) to SN

for any g 2 GLn(C), we may assume thatN is in Jordan canonical form with Jordan
blocks of weakly decreasing sizes. Let�N denote the partition ofn with entries the
sizes of the Jordan blocks ofN. The n-dimensional torusT consisting of diagonal
unitary matrices of sizen acts onFlags(Cn) in a natural way and the circle subgroup
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S of T defined as
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leaves SN � Flags(Cn) invariant (see [2]). TheT-fixed point set Flags(Cn)T of
Flags(Cn) is given by

{(he
w(1)i � hew(1), e

w(2)i � � � � � hew(1), e
w(2), : : : , e

w(n)i D C
n) j w 2 Sn}

wheree1, e2, : : : , en is the standard basis ofCn and Sn is the permutation group onn
letters{1, 2,: : : , n}, so we identifyFlags(Cn)T with Sn as is standard. Also, since the
S-fixed point setFlags(Cn)S of Flags(Cn) agrees withFlags(Cn)T , we have

SS
N D SN \ Flags(Cn)S

D SN \ Flags(Cn)T
� Sn.

We denote byS(n�k,k) the Springer variety corresponding to the partition�N D

(n � k, k) with 2k � n. We next describe theS-fixed points inS(n�k,k). Let wl1,l2,:::,lk

be an element ofSn defined by

wl1,l2,:::,lk(i ) D

�

n� kC j if i D l j ,
i � j if l j < i < l jC1,

(2.2)

where l0 WD 0, lkC1 WD nC 1. Note thatw�1
l1,l2,:::,lk

(i ) < w�1
l1,l2,:::,lk

(i 0) if 1 � i < i 0 � n� k
or n� kC 1� i < i 0 � n.

EXAMPLE . Take n D 4 and k D 2. Using one-line notation, the set of permuta-
tions of the form described in (2.2) are as follows:

[3, 4, 1, 2], [3, 1, 4, 2], [3, 1, 2, 4], [1, 3, 4, 2], [1, 3, 2, 4], [1, 2, 3, 4].

Lemma 2.1. The S-fixed pointsSS
(n�k,k) of the Springer varietyS(n�k,k) is the set

{wl1,l2,:::,lk 2 Sn j 1� l1 < l2 < � � � < lk � n}.

Proof. SinceSS
(n�k,k) � Flags(Cn)T , any elementV

�

of SS
(n�k,k) is of the form

V
�

D (he
w(1)i � hew(1), e

w(2)i � � � � � hew(1), e
w(2), : : : , e

w(n)i)

for somew 2 Sn. Since N is the nilpotent operator consisting of two Jordan blocks
with weakly decreasing sizes (n� k, k),

Nei D

�

0 if i D 1 or n� kC 1,
ei�1 otherwise.
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Therefore, if V
�

belongs toS(n�k,k), thenw(1) D 1 or n � k C 1. If w(1) D 1 then
w(2)D 2 or n � kC 1. If w(1)D n � kC 1 thenw(2)D 1 or n � kC 2, and so on.
This shows thatw D wl1,l2,:::,lk for some 1� l1 < l2 < � � � < lk � n. Conversely, one
can easily see thatwl1,l2,:::,lk 2 SS

(n�k,k).

3. Main theorem

In this section, we formulate our main theorem which gives anexplicit presentation
of the S-equivariant cohomology ring of the (n� k, k) Springer variety.

First, we recall an explicit presentation of theT-equivariant cohomology ring of
the flag variety. LetEi be the subbundle of the trivial vector bundleFlags(Cn) � Cn

over Flags(Cn) whose fiber at a flagV
�

is just Vi . We denote theT-equivariant first
Chern class of the line bundleEi =Ei�1 by Nxi 2 H2

T (Flags(Cn)IQ). The torusT con-
sisting of diagonal unitary matrices of sizen has a natural product decompositionT �
(S1)n where S1 is the unit circle ofC. This decomposition identifiesBT with (BS1)n

and induces an identification

H�

T (ptIQ) D H�(BTIQ) �
O

H�(BS1
IQ) � Q[t1, : : : , tn],

where ti (1 � i � n) denotes the element corresponding to a fixed generatort of
H2(BS1

IQ). Then H�

T (Flags(Cn)IQ) is generated byNx1,: : : , Nxn,t1,: : : ,tn as a ring. We
define a ring homomorphism� from the polynomial ring Q[x1, : : : , xn] to
H�

T (Flags(Cn)IQ) by �(xi ) D Nxi . It is known that� is an epimorphism and Ker�
is generated as an ideal byei (x1, : : : , xn)� ei (t1, : : : , tn) for all 1� i � n, where ei

is the i th elementary symmetric polynomial. Thus, we have an isomorphism:

H�

T (Flags(Cn)IQ)

� Q[x1, : : : , xn, t1, : : : , tn]=(ei (x1, : : : , xn) � ei (t1, : : : , tn), 1� i � n).

We consider the following commutative diagram:

(3.1)

H�

T (Flags(Cn)IQ) H�

T (Flags(Cn)T
IQ) D

L

w2Sn
Q[t1, : : : , tn]

H�

S(SN IQ) H�

S(SS
N IQ) D

L

w2SS
N�Sn

Q[t ]

 

!

�1

 

!

�1  

!

�2

 

!

�2

where all the maps are induced from inclusion maps, and we have an identification

H�

S(ptIQ) D H�(BSIQ) � H�(BS1
IQ) � Q[t ]

where we identifyS with S1 through the map diag(g, g2, : : : , gn) 7! g. The maps�1
and �2 in (3.1) are injective since the odd degree cohomology groups of Flags(Cn) and



COHOMOLOGY RINGS OF (n� k, k) SPRINGER VARIETIES 1055

SN vanish. The map�1 in (3.1) is known to be surjective (cf. [3]) and the map�2 is
obviously surjective. Since�1 is surjective, we have the following lemma. Let�i be
the image�1( Nxi ) of Nxi for eachi .

Lemma 3.1. The S-equivariant cohomology ring H�S(SN IQ) is generated by�1,:::,
�n, t as a ring where�i is the image ofNxi under the map�1 in (3.1).

We next consider relations between�1, : : : , �n, and t . We have

�2(�i )jw D w(i )t

because�1( Nxi )jw D t
w(i ), �1(ti )jw D ti , and �2(ti ) D i t , where f j

w

denotes the
w-component of f 2

L

w2Sn
Q[t1, : : : , tn].

Lemma 3.2. The elements�1, : : : , �n, t satisfy the following relations:

X

1�i�n

�i �
n(nC 1)

2
t D 0,(3.2)

(�i C �i�1 � (n� kC i )t)(�i � �i�1 � t) D 0 (1� i � n),(3.3)
Y

0� j�k

(�i j � (i j � j )t)) D 0 (1� i0 < � � � < ik � n),(3.4)

where�0 D 0.

Proof. The relation (3.2) follows from a relation inH�

T (Flags(Cn)IQ). In fact,

X

1�i�n

�i �
n(nC 1)

2
t D �1((e1( Nx1, : : : , Nxn) � e1(t1, : : : , tn))) D 0.

In the following, we denote�2(�i ) by the same notation�i for each i . To prove
the relation (3.3), it is sufficient to prove either

(3.5) (�i C �i�1 � (n� kC i )t)j
wl1,l2,:::,lk

D 0 or (�i � �i�1 � t)j
wl1,l2,:::,lk

D 0

for any wl1,l2,:::,lk 2 SS
(n�k,k) since the restriction map�2 in (3.1) is injective.

We first treat the casei D 1. By the definition ofwl1,l2,:::,lk in (2.2) the following
holds:

�1jwl1,l2,:::,lk
D wl1,l2,:::,lk(1)t D

�

(n� kC 1)t if l1 D 1,
t if l1 ¤ 1.

This shows (3.5) fori D 1 because�0 D 0.
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We now treat the case 1< i � n. Note that

(�i � �i�1)j
wl1,l2,:::,lk

D (wl1,l2,:::,lk(i ) � wl1,l2,:::,lk (i � 1))t ,(3.6)

(�i C �i�1)j
wl1,l2,:::,lk

D (wl1,l2,:::,lk(i )C wl1,l2,:::,lk(i � 1))t .(3.7)

We take four cases depending on whetheri � 1 and i appear inl1, : : : , lk or not.
(i) If l j D i � 1< i D l jC1 for some 1� j � k � 1, then by (2.2) and (3.6),

(�i � �i�1)j
wl1,l2,:::,lk

D ((n� kC j C 1)� (n� kC j ))t D t .

(ii) If l j < i � 1< i < l jC1 for some 0� j � k, then by (2.2) and (3.6),

(�i � �i�1)j
wl1,l2,:::,lk

D ((i � j ) � (i � j � 1))t D t .

(iii) If l j D i � 1< i < l jC1 for some 1� j � k, then by (2.2) and (3.7),

(�i C �i�1)j
wl1,l2,:::,lk

D ((i � j )C (n� kC j ))t D (n� kC i )t .

(iv) If l j�1 < i � 1< i D l j for some 1� j � k, then by (2.2) and (3.7),

(�i C �i�1)j
wl1,l2,:::,lk

D ((n� kC j )C (i � j ))t D (n� kC i )t .

Therefore, (3.5) holds in all cases, proving the relations (3.3).
Finally we prove the relations (3.4). For anywl1,l2,:::,lk 2 S

S
(n�k,k), there is a positive

integer i j such thatl j < i j < l jC1 for some 0� j � k. Thus, we have

wl1,l2,:::,lk (i j ) D i j � j .

This means that
Y

0� j�k

(�i j � (i j � j )t)j
wl1,l2,:::,lk

D 0.

Therefore, the relations (3.4) hold, and the proof is complete.

It follows from Lemma 3.2 that we obtain a well-defined ring homomorphism

' W Q[x1, : : : , xn, t ]=I ! H�

S(S(n�k,k)IQ)(3.8)

where I is the ideal of a polynomial ringQ[x1, : : : , xn, t ] generated by the following
three types of elements:

X

1�i�n

xi �
n(nC 1)

2
t ,(3.9)

(xi C xi�1 � (n� kC i )t)(xi � xi�1 � t) (1� i � n),(3.10)
Y

0� j�k

(xi j � (i j � j )t) (1� i0 < � � � < ik � n),(3.11)
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where x0 D 0. Moreover,' is surjective by Lemma 3.1.
The following is our main theorem and will be proved in the next section.

Theorem 3.3. Let S(n�k,k) be the(n�k,k) Springer variety with0� k � n=2 and
let the circle group S act onS(n�k,k) as described inSection 2. Then the S-equivariant
cohomology ring ofS(n�k,k) is given by

H�

S(S(n�k,k)IQ) � Q[x1, : : : , xn, t ]=I

where H�S(ptIQ) D Q[t ] and I is the ideal of the polynomial ringQ[x1, : : : , xn, t ]
generated by the elements listed in(3.9), (3.10),and (3.11).

Since the ordinary cohomology ring ofS(n�k,k) can be obtained by takingt D 0 in
Theorem 3.3, we obtain the following corollary.

Corollary 3.4. Let S(n�k,k) be (n� k, k) Springer variety with0� k � n=2. Then
the ordinary cohomology ring ofS(n�k,k) is given by

H�(S(n�k,k)IQ) � Q[x1, : : : , xn]=J

where J is the ideal of the polynomial ringQ[x1, : : : , xn] generated by the following
three types of elements:

X

1�i�n

xi ,

x2
i (1� i � n),
Y

1� j�kC1

xi j (1� i1 < � � � < ikC1 � n).

REMARK . A ring presentation of the cohomology ring of the Springer varietySN

is given in [7] for an arbitrary nilpotent operatorN. Specifically, it is the quotient of
a polynomial ring by an ideal called Tanisaki’s ideal. When�N D (n� k, k), Tanisaki’s
ideal is generated by the following three types of elements:

e1(x1, : : : , xn),

e2(xi1, : : : , xin�1) (1� i1 < � � � < in�1 � n),

ekC1(xi1, : : : , xikC1) (1� i1 < � � � < ikC1 � n),

where ei is the i th elementary symmetric polynomial. Note that the first and third
elements above are the same as those in Corollary 3.4. In fact, one can easily check
that Tanisaki’s ideal above agrees with the idealJ in Corollary 3.4 although the gen-
erators are slightly different.
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4. Proof of the main theorem

This section is devoted to the proof of Theorem 3.3. More precisely, we will prove
that the epimorphism' in (3.8) is an isomorphism. For this, we first find generators
of Q[x1, : : : , xn, t ]=I as aQ[t ]-module.

Recall that afilling of � by the alphabet{1, : : : , n} is an injective placing of the
integers{1, : : : , n} into the boxes of�.

DEFINITION. Let � be a Young diagram withn boxes. A filling of� is a permis-
sible filling if for every horizontal adjacencya b we havea < b. Also, a permissible

filling is a standard tableauif for every vertical adjacency
a
b

we havea < b.

Let T be a permissible filling of (n� l , l ) with 0� l � k. Let j1, j2, : : : , jl be the
numbers in the bottom row ofT . We definexT WD x j1x j2 � � � x jl and xT0 WD 1 whereT0

is the standard tableau on (n).

Proposition 4.1. The set{xT j T standard tableau on(n � l , l ) with 0 � l � k}

generatesQ[x1, : : : , xn, t ]=I as aQ[t ]-module.

Proof. It is sufficient to prove thatxb1xb2 � � � xbl (1� b1 � b2 � � � � � bl � n) can
be written inQ[x1, : : : , xn, t ]=I as aQ[t ]-linear combination of thexT where T is a
standard tableau. We prove this by induction onl . The base casel D 0 is clear. Now
we assume thatl � 1 and the claim holds forl � 1. The relations (3.10) imply that

(4.1) x2
i D (n� kC i C 1)t xi C t

X

1�p�i�1

xp �
X

1�p�i

(n� kC p)t2 (1� i � n)

by an inductive argument oni , so we may assumeb1 < b2 < � � � < bl .
To prove the claim forl , we consider two cases: 1� l � k and l � kC 1.
CASE (i) Suppose 1� l � k. We write xb1xb2 � � � xbl D xU where

U D
a1 � � � al alC1 � � � an�l

b1 � � � bl

is a permissible filling of (n � l , l ). Let j be the minimal positive integer in the set
{r j ar > br , 1� r � l }, i.e.,

ai < bi (1� i < j ),(4.2)

a j > b j .(4.3)
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We consider the following equation which follows from the relation (3.9):

(4.4)

(�xa1 � xa2 � � � � � xa j�1)
j
� xb jC1 � � � xbl

D

�

xb1C xb2C � � �C xbl C xa j C xa jC1C � � �C xan�l �

n(nC1)

2
t

� j

� xb jC1 � � � xbl .

Claim 1. The left hand side in(4.4) is aQ[t ]-linear combination of the xT where
the T are standard tableaux.

Proof. We expand the left hand side in (4.4). Then any monomial which appears
in the expansion is of the form

x�1
a1
� � � x

� j�1
a j�1 xb jC1 � � � xbl

where
P j�1

iD1 �i D j and �i � 0. Note that�i > 1 for somei since
P j�1

iD1 �i D j and
�i � 0. Therefore, using the relations (4.1), the monomial aboveturns into a sum of
elements of the form

f (t) � xc1 � � � xch

whereh < l , 1� c1 < � � � < ch � n, and f (t) 2 Q[t ], and by the induction assumption
the term above can be written as aQ[t ]-linear combination of thexT where T is a
standard tableau. This proves Claim 1.

Claim 2. The right hand side in(4.4) can be written as aQ[t ]-linear combin-
ation of xU and monomials xT and xU 0 where the coefficient of xU is equal to1, T is
a standard tableau on shape(n� l , l ) and U0 is a permissible filling of(n� l , l ) such
that each of the leftmost j columns are strictly increasing(i.e. ar < br , 1� r � j ).

Proof. We expand the right hand side in (4.4). A monomial which appears in this
expansion is of the form

x�1
bp1
� � � x�m

bpm
x�1

aq1
� � � x�h

aqh
xb jC1 � � � xbl

where
Pm

iD1 �i C
Ph

iD1 �i � j , �i � 1, �i � 1 and 1� p1 < � � � < pm � l , j � q1 <

� � � < qh � n � l . It is enough to consider the case
Pm

iD1 �i C
Ph

iD1 �i D j since if
Pm

iD1 �i C
Ph

iD1 �i < j then it follows from the induction assumption that the above
form can be written as aQ[t ]-linear combination of thexT where T is a standard
tableau. If pm � j C 1 or some�i or �i is more than 1, then it follows from the
relations (4.1) and the induction assumption that the monomial above can be written
as a linear combination ofxT ’s over Q[t ] where T is a standard tableau. Ifpm � j
and all�i and�i are equal to 1, thenhD j �m and the monomial above is of the form

xbp1
� � � xbpm

xaq1
� � � xaqj�m

xb jC1 � � � xbl
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where 1� p1 < � � � < pm � j � q1 < � � � < q j�m � n� l . This monomial is associated
to a permissible fillingU 0 given by

U 0

D

c1 � � � cl clC1 � � � cn�l

d1 � � � dl

where

di D

�

bpi if 1 � i � m,
min{{aq1, : : : , aq j�m, b jC1, : : : , bl } � {dmC1, : : : , di�1}} if m< i � l ,

and

ci D min{{a1, : : : , an�l , b1, : : : , b j } � {aq1, : : : , aq j�m, bp1, : : : , bpm, c1, : : : , ci�1}}

for 1� i � n� l . Note thatxU 0

D xU if and only if mD j , sincemD j , di D bi for
1� i � l . We consider the casem< j . Since j � q1 and a j > b j by (4.3), we have

ci D min{{a1, : : : , a j�1, b1, : : : , b j } � {bp1, : : : , bpm, c1, : : : , ci�1}}

for 1 � i � j . If 1 � i � m, we haveci � ai < bi � bpi D di . If m < i � j , we
haveci � max{a j�1, b j } < min{a j , b jC1} � di by (4.2), (4.3), andj � q1. Thus,U 0 is
a permissible filling of (n � l , l ) such that each of the leftmostj columns are strictly
increasing (i.e.ar < br , 1� r � j ). This proves Claim 2.

Claims 1 and 2 show thatxU can be written as aQ[t ]-linear combination ofxU 0

and xT , whereU 0 and T are as above. Applying the above discussion forxU 0 in place
of xU , we see thatxU 0 can be written as aQ[t ]-linear combination ofxU 00 andxT where
U 00 is a permissible filling of (n� l , l ) such that each of the leftmostj C1 columns are
strictly increasing (i.e.ar < br , 1� r � j C 1) andT is a standard tableau. Repeating
this procedure, we can finally expressxU as aQ[t ]-linear combination of thexT where
T is a standard tableau.

CASE (ii) If l � k C 1, it follows from the relations (3.11) and the induction
assumption thatxb1xb2 � � � xbl can be expressed as aQ[t ]-linear combination of thexT

where T is a standard tableau.
This completes the induction step and proves the proposition.

Recall that for a boxb in the i th row and j th column of a Young diagram�,
h(i , j ) denote the number of boxes in the hook formed by the boxes below b in the
j th column, the boxes to the right ofb in the i th row, andb itself.

EXAMPLE . For the Young diagram and the box in the (2, 1) location,
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the hook is and h(2, 1)D 6.

Lemma 4.2. Let � be a Young diagram. Let f� denote the number of standard
tableaux on�. Then

�

n

k

�

D

X

0�l�k

f (n�l ,l ).

Proof. We prove the lemma by induction onk. As the casek D 0 is clear, we
assume thatk � 1 and that the lemma holds fork � 1. We use the following hook
length formula:

f � D
n!

5(i , j )2�h(i , j )
.

Using the induction assumption and the hook length formula,we have

X

0�l�k

f (n�l ,l )
D

X

0�l�k�1

f (n�l ,l )
C f (n�k,k)

D

�

n

k � 1

�

C

n! (n� 2kC 1)

(n� kC 1)! k!

D

�

n

k

�

.

This completes the induction step and proves the lemma.

It follows from Proposition 4.1 and Lemma 4.2 that

rank
Q[t ] Q[x1, : : : , xn, t ]=I �

X

0�l�k

f (n�l ,l )
D

�

n

k

�

.

On the other hand, since the odd degree cohomology groups ofSN vanish, we have
an isomorphismH�

S(SN IQ) � Q[t ]
 H�(SN IQ) asQ[t ]-modules, and the cellular de-
composition ofSN given by Spaltenstein [4] (cf. also Hotta–Springer [3]) implies that

dim H�(SN IQ) D

�

n

�N

�

WD

�

n

�1! �2! � � � �r !

�

where�N D (�1, �2, : : : , �r ). These show

rank
Q[t ] H�

S(S(n�k,k)IQ) D dim
Q

H�(S(n�k,k)IQ) D

�

n

k

�

.
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Therefore, we have

rank
Q[t ] Q[x1, : : : , xn, t ]=I � rank

Q[t ] H�

S(S(n�k,k)IQ).

This means that the epimorphism' in (3.8) is actually an isomorphism, proving The-
orem 3.3.
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