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Abstract
We extend the notion of intrinsic linking to directed graphs. We give methods

of constructing intrinsically linked directed graphs, as well as complicated directed
graphs that are not intrinsically linked. We prove that the double directed version of a
graphG is intrinsically linked if and only ifG is intrinsically linked. One Corollary
is that J6, the complete symmetric directed graph on 6 vertices (with 30 directed
edges), is intrinsically linked. We further extend this to show that it is possible to
find a subgraph ofJ6 by deleting 6 edges that is still intrinsically linked, but that no
subgraph ofJ6 obtained by deleting 7 edges is intrinsically linked. We also show
that J6 with an arbitrary edge deleted is intrinsically linked, butif the wrong two
edges are chosen,J6 with two edges deleted can be embedded linklessly.

1. Introduction

Research in spatial graphs has been rapidly on the rise over the last fifteen years.
It is interesting because of its elegance, depth, and accessibility. Since Conway and
Gordon published their seminal paper in 1983 [4] showing that the complete graph on
6 vertices is intrinsically linked (also shown independently by Sachs [10]) and the com-
plete graph on 7 vertices is intrinsically knotted, over 62 papers have been published
referencing it. The topology of graphs is, of course, interesting because it touches on
chemistry, networks, computers, etc. This paper takes the natural step of asking about
the topology of directed graphs, sometimes called digraphs. Applications of graph the-
ory are increasingly focused on directed graphs, from epidimiology to traffic patterns
(see, for example [6], [1]). Many of these applications depend, not just on the abstract
directed graph, but the topology and geometry of an actual realization of the graph.
Examples abound, such as very large scale integration (known as VLSI) for circuits.
As a result, understanding the topology of directed graphs is a worthy pursuit.

Recall that an undirected graph isintrinsically linked if every embedding of the
graph inR3 contains at least two non-splittably linked cycles. A graphH is a mi-
nor of a graphG if H can be obtained fromG by a sequence of vertex deletions,
edge deletions and edge contractions. The set of all minor-minimal intrinsically linked
graphs is given by the seven Petersen family graphs [4], [9],[10]. These graphs are
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obtained fromK6 by 4 � Y and Y � 4 exchanges. Similarly, we define a directed
graphG to be intrinsically linked if it contains a nontrivial link consisting of a pair of
consistently oriented directed cycles in every spatial embedding.

We prove that the double directed version of a graphG is intrinsically linked if
and only if G is intrinsically linked. One Corollary is thatJ6, the complete symmetric
directed graph on 6 vertices (with 30 directed edges), is intrinsically linked. We ex-
tend this to show that it is possible to find a subgraph ofJ6 by deleting 6 edges that
is still intrinsically linked, but that no subgraph ofJ6 obtained by deleting 7 edges
is intrinsically linked and thatJ6 with an arbitrary edge deleted is intrinsically linked,
but if the wrong two edges are chosen,J6 with two edges deleted can be embedded
linklessly. We further show that, unlike for undirected graphs, the edge contraction op-
eration does not necessarily preserve the property of having a linkless embedding. Fi-
nally, we show that, again unlike for directed graphs, the1 � Y operation does not
necessarily preserve intrinsic linking.

One can imagine numerous interesting applications of intrinsic linking in directed
graphs. One such application is to computer chips. Computerchips can be thought of
as containing embedded directed graphs where signals are sent along wires that serve
as edges. Diodes make the graph directed allowing the electricity to flow in only one
direction on a given wire and gates serve as vertices. Intrinsic linking in the directed
graph means that any way of building the chip will require thewires to cross at least
twice. This is important because building chips where the wires cross adds to the ex-
pense and complexity of the chip. Understanding exactly howmany links are intrinsic
in the directed graph could help determine the difficulty andcost of building a spe-
cific chip.

Another potential application is to the idea of maximum upward planar embed-
dable subgraphs of directed graphs (see for example [2]). People are interested in effi-
ciently finding the largest planar subgraph of a directed graph that can be embedded in
R

3 so that all the edges of the embedding point monotonically upward. To check if a
given graph or subgraph has an upward planar embedding, it does not suffice to check
if it has a cycle, however a directed cycle is an obstruction to such an embedding as
is intrinsic linking in the underlying graph. Thus intrinsic linking in the directed graph
would be a natural obstruction to study since it involves both the existence of directed
cycles within the directed graph and intrinsic linking in the underlying graph.

The authors would like to thank Keir Lockridge and Danielle O’Donnol for help-
ful comments.

2. Preliminaries

We start by associating directed graphs and non-directed graphs with each other.
Recall that in a directed graph each edge has one vertex that is its initial point or
starting point and the other is said to be its terminal point or ending point. Instead
of viewing edges abstractly as pairs of vertices, we view them as ordered pairs. For
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graphs that are not directed, asimple graphis one which contains no loops (edges that
run from a vertex to itself) or multiple edges (two edges associated to the same pair
of vertices). Asimple directed graphis one that contains no loops (edges that have the
same initial and terminal vertex) or multiple edges (two edges associated to the same
ordered pair of vertices). Note in this case there may be two edges associated tovi

and v j , i ¤ j , one with vi as its initial point andv j as its terminal point and one in
the opposite direction. Thecomplete graph on n vertices, Kn has exactly one edge for
each distinct pair of vertices. Thecomplete symmetric directed graph on n vertices, Jn

has exactly one edge for each ordered pair of distinct vertices. NoteJn has twice as
many edges asKn.

To help clarify when we have put a direction on the edges of an undirected graph,
say G, we will refer to the directed graph asG. To differentiate when we are speci-
fying a graph and when an embedding of a graph we will refer to the abstract graph
as G, and the embedded version as0 (or 0 for the embedded directed graph etc.).

Given a graphG, we definethe double directed version of G, denotedD(G) by
taking the vertices ofG and for each edge ofG associated to verticesvi and v j we
include two edges, one withvi as its initial point andv j as its terminal point and one

in the opposite direction. The embedded version ofD(G) we will call 1(0).
We will follow the same convention on edges and cycles as we dowith graphs. If

ei is an edge ofG, and we put directions on the edges ofG, then ei will correspond
to ei � G. If we embedG or G the edgeei will then correspond to�i � 0 or �i �

0 respectively. If we doubleG to get directed graphD(G), then we assign the two
directed edgesei and e0i to ei (and, of course�i and�0i in 1(0)). Finally for cycles in

G we will reserve the notationC for a consistently oriented cycles where asC may
be used to designate any cycle even if it is not directed or if it is directed, but perhaps
not consistently oriented. IfC � G, and we embedG to get0, we will refer the cycle
that is the image ofC as 
 � 0 and again use the oriented cycle notation as before,
so 
 would represent a consistently oriented, embedded cycle.

Given a directed graphG, we can, of course, associate a non-directed graphG by
keeping the same set of vertices and for each edge ofG associated to the ordered pair
(vi ,v j ) we include an edge associated to the verticesvi andv j (essentially just ignoring
the direction). We callG the underlying graphof G. Note thatG, and G have the
same number of edges here. We define theunderlying simple graph ofG to be the
largest simple subgraph of the underlying graph ofG. As examples,J6 D D(K6) and
K6 is the underlying simple graph ofJ6. The underlying graph ofJ6, has two parallel
edges for each edge ofK6.

3. Results

Lemma 3.1. For all n, given any complete(non-directed) graph Kn we may as-
sign directions to the edges to yield a directed graphKn and in which Kn contains
no cycles.
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Fig. 1. HereK5 is constructed with directed edges and with no
cycles. The same construction will work forKn in general.

It is important to note thatKn ¤ J6. It has half as many edges, only one edge for
any distinct pair of vertices, instead of two. There are 2(n

2) ways to orient the edges of
Kn, so up to graph isomorphism there are many distinct versionsof Kn, while there is
a singleK6 and a singleJ6 up to isomorphism.

Proof of Lemma 3.1. To form aKn with no cycles, we start by choosing direc-
tions for all edges containing vertexv1 and direct all of them away fromv1. Now we
know no cycle can containv1 since every cycle must contain one edge entering a ver-
tex and one leaving it. Forv2 direct all currently unlabelled edges containingv2 away
from v2. The only edge enteringv2 comes fromv1, call it e1. The edgee1 cannot be
part of a cycle since no cycle containsv1. No edge other thane1 entersv2, so v2 can-
not be part of a cycle. Now forv3, direct all currently unlabelled edges containingv3

away fromv3. The only edges enteringv3 come fromv1 and v2, call thesee2 and e3.
Now as before these two edges cannot be part of a cycle and no other edge entersv3,
so v3 cannot be part of a cycle. Continue in this manner until all edges are labelled
(any edge fromvi to v j with i < j will have vi as its initial point andv j as its ter-
minal point). We now see that the graph contains no cycles. Weinclude a picture of
K5 embedded in this manner, with no cycles, in Fig. 1.

Theorem 3.2. For all n, given any complete(non-directed) graph Kn we may as-
sign directions to the edges to yield a directed graphKn with Kn not intrinsically linked.

Proof. Label as in Lemma 3.1. Obviously a graph with no cyclescannot contain
a pair of linked cycles.

We may now generalize to all (non-directed) graphs.
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Corollary 3.3. Every graph G is the underlying graph of a directed graphG
that is not intrinsically linked.

Proof. Since every simple graph is a subgraph of a complete graph the result is
immediate in that case. IfG is not simple, we direct all edges of a maximal simple
graph and then use the same direction for all parallel edges.Before considering loops,
there can be no cycles. Embed the loops so they bound a disk in the complement of the
graph (this may all be done in a small neighborhood of the edge’s associated vertex).
Now the directed graph will have cycles consisting of the loops, but the cycles cannot
form a non-split link since they all bound disks that are are disjoint on their interior.

Theorem 3.5 makes use of the following lemma introduced previously in [3] and
[5]. Recall that atheta curve(or theta graph) is a graph with two vertices of valence
three and three edges running between the two vertices. Notethat a theta curve will
always contain three cycles resulting from the three ways topick two of its edges (the
cycles will not, of course, be disjoint from each other).

Lemma 3.4. Given disjoint embeddings of a cycle
 and a theta curve� in S3,
with � containing three cycles
1, 
2, and 
3, if 
 has nonzero linking number with
i

for some i, then 
 also has nonzero linking number with
 j for some j¤ i .

Proof. First we show that the theta graph lies on an immersed sphere, with the
cycles of the theta graph dividing it into three distinct disks. This can be proven in
essentially the same way that one can prove that every knot bounds a disk (although the
disk will, of course, not be embedded if the knot is not the unknot). In that situation
one may take a homotopy of the knot through space to a circle, take the flat disk it
bounds and then reverse the homotopy, extending it to the disk and knot as a pair. Here
instead we take a homotopy of the theta graph onto an embeddedsphere so that the
graph is embedded on the sphere with the three cycles dividing the sphere into three
disks which are disjoint on their interiors. Now reverse thehomotopy extending it to
the pair of the sphere and the graph. The sphere, of course, now may not be embedded
since the cycles may be knotted, but this is not a problem.

Now 
 must algebraically intersect the sphere zero times, showing that the sum
of the linking numbers of
 with 
1, 
2 and 
3 with sign must add to zero. This
shows that if one of the terms in the sum is nonzero, at least two of the terms must
be nonzero.

Theorem 3.5. If G is intrinsically linked thenD(G) is intrinsically linked.

Proof. For any embedding ofD(G) (called1(0) once embedded) the underlying
graph must contain a link since the underlying graph forD(G) contains (numerous)
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copies ofG. Let the edges of one copy ofG be labelled{�1, �2, : : : , �n}. Let the
complementary edges pointing in the opposite direction be labelled{�01, �02, : : : , �0n},
forming another copy ofG, sharing only the vertices, where we always choose the
labels so that if�s runs from vi to v j in 1(0), then �0s runs from v j to vi in 1(0).
The link from the first copy ofG in the embedding of the underlying graph consists of
a (non-directed) linked pair of cycles. If those cycles haveconsistent directions when
viewed as part of1(0) we are done. If not, without loss of generality let
 be one
of the cycles and
1 be the other. Choose the labels so that
1 does not have all of its
edges consistently directed (
 may fit this description, too, but may not).

Without loss of generality, let�1[�2[� � �[� j be all the edges of
1. We are try-
ing to find a consistently oriented directed cycle linked with 
 . We arbitrarily choose
a favorite direction for
1 (although for efficiency one would probably choose the dir-
ection that at least half the edges of
1 already pointed). We leave those edges already
going in our selected direction fixed and focus on the edges going the other direction.
We will swap out the edges, trying to get a linked cycle in the direction we have cho-
sen. Let�i be an inconsistent edge relative to our desired direction. Now 
1 [ �

0

i is a

theta curve and by Lemma 3.4 either�i [�
0

i or �1[�2[ � � � [�i�1[�
0

i [�iC1 � � � [� j

is linked with 
 . We know �i [ �
0

i is consistently oriented. If it is linked with
 let




00

D �i [�
0

i . If not then we know�1[�2[ � � �[�i�1[�
0

i [�iC1[ � � �[� j , which we
will call 
2, is the linked cycle. It follows that
2 has one more consistently oriented
edge than
1 did. If all the edges are now consistent let
2 D 


00, if not, pick one of
the now smaller collection of edges pointing the wrong way, say �k and take the theta
curve where we add�0k to �1[�2[ � � � [�i�1[�

0

i [�iC1[ � � � [� j . The process must
terminate, since each time we either have a linked, consistently oriented, two cycle or
we produce a cycle
iC1 from 
i , where
iC1 is the same length as
i , has one more
consistently oriented edge than
i did, and is still linked with
 . Repeat until we have
a consistently oriented cycle that is linked with
 and call that new cycle
 00.

Now if 
 is consistently oriented, we are done. If not, we repeat now letting 
 00

play the role of the fixed cycle and arbitrarily picking a favorite direction for 
 . We
then follow the same type of process as before, taking an edge�s of 
 that is incon-
sistently oriented and add in�0s to 
 to get a theta curve. The same algorithm now
applied to
 shows we have a consistently oriented cycle that is linked with 
 00.

Theorem 3.6. If G is not intrinsically linked(knotted) then D(G) is not intrin-
sically linked (knotted).

Proof. Let0 be a linkless (knotless) embedding ofG. Take edges parallel to the
edges of0 and orient one in each direction so that the edge fromvi to v j and the
edge fromv j to vi bound a disk disjoint from the rest of the graph on its interior.

The result is a linkless (knotless) embedding ofD(G).

We now sharpen our result.
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Theorem 3.7. Let G be J6 minus a consistently oriented cycle of length at least
3, then G is intrinsically linked. The same is true ifG is J6 minus two disjoint con-
sistently oriented triangles or a consistently oriented4 cycle and a disjoint edge.

Note that when we use the term cycle here, the first and last vertex are the same
and otherwise no vertex is repeated more than once.

Proof. If we are deleting a singlen cycle from J6, then without loss of general-
ity let the deleted cycle consist of edges labellede01, e02, : : : , e0n. Take a subgraph ofG,
including edgese1,e2, : : : ,en whose underlying graph is aK6 (We can do this since we
never deleted both of the edges between a given pair of vertices). Once embedded, this
graph must have a (non-directed) linked pair of cycles. If none of �1,�2, : : : ,�n are in
the cycles then proceed as in the proof of Theorem 3.5. If someof them are, use the
included edges to dictate the preferred direction of the cycles. Note that the preferred
direction of a given cycle will be well defined. This is true because if one of the tri-
angles includes only one of the edges, then we use the direction of that single edge. If
one included two of them, they are adjacent edges in both the triangle and then-cycle
and thus must be consistently oriented in both, so all of the edges of�1,�2, : : : ,�n that
might be included in a given triangle will be consistently oriented in the triangle. We
only consider swapping out inconsistent edges, so any edge�i that might be swapped
out is not an element of{�1, �2, : : : , �n} and thus we know that both�i and �0i are
in our remaining graph even after then-cycle was deleted. The only way that one of
the triangles could include 3 edges would be ifn D 3 and the triangle was exactly
{�1, �2, �3}, but this triangle is already consistently oriented. Ifn > 3, we cannot use
3 of the edges in the same triangle since no subset of�1, �2, : : : , �n forms a triangle.

The argument in the cases of two disjoint consistently oriented triangles or a con-
sistently oriented 4 cycle and a disjoint edge is similar.

Corollary 3.8. The graphsJ6�ei , J6�ei �ej , and J6�ei �ej �ek are intrinsically
linked if ei , ej , and ek do not share a vertex.

Proof. Each of these have a subgraph that isJ6 minus a consistently oriented
Hamiltonian cycle. A graph with an intrinsically linked subgraph must be intrinsic-
ally linked.

Theorem 3.9. The graphJ6�ei �ej is not intrinsically linked ifei and ej share
exactly one vertex and are not consistently oriented with each other, but is intrinsically
linked if they are consistently oriented. Further, J6 � ei � ej is not intrinsically linked
if ei and ej share both vertices(but with opposite orientations).

Proof. Fig. 2 shows a linkless embeddings ofJ6 � ei � ej whereei and ej share
a vertex and are not consistently oriented. Fig. 3 shows a linkless embedding ofJ6 �

ei � ej whereei and ej share both vertices, but with opposite orientations (ei D e0j ).
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Fig. 2. We see a linkless embedding ofJ6 minus two edges be-
tween the same pair of vertices.

Fig. 3. We see a linkless embedding ofJ6 minus two inconsis-
tently oriented edges that share exactly one vertex.
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Corollary 3.8 implies that in all other casesJ6� ei � ej is intrinsically linked.

Corollary 3.10. The graphJ6 with seven edges deleted is never intrinsically linked.

Proof. Seven edges will have seven terminal points. Since wehave only six ver-
tices one vertex must be the terminal point of at least two of the edges removed. This
means the two edges share a vertex and are not consistently oriented with each other.

4. Examining traditional moves that preserve intrinsic linking in non-directed
graphs in the setting of directed graphs

We recall that for non-directed graphs the1 � Y move preserves intrinsic linking
[7]. It is natural to ask if the same is true for directed graphs. It is clear that if you
replace a triangle with aY and an added vertex it will not preserve intrinsic linking if
you arbitrarily assign directions to the edges in theY. This would fail, for example, if
one picked a graph embedded with a unique link in it made up of two directed trian-
gles. Now replace one of those triangles with aY where all the edges of theY have
the added vertex as a terminal point. There is no link in the complement of theY, but
since no edge has its initial point at the added vertex there are no cycles and thus no
links that run through theY. One might wonder if one could choose the directions for
the Y more wisely and preserve intrinsic linking. We answer that in the negative in the
following theorem

Theorem 4.1. The1 � Y move, where we replace a directed triangle with by a
directed Y, does not preserve intrinsic linking no matter how the three edges are oriented.

Proof. We prove this by generating a specific counterexample, where the initial
graph is intrinsically linked, but after a single1 � Y move, no matter how theY is
oriented, the resulting graph is not. We start with an embedding of a graph0 shown
in Fig. 4. Note that this is aJ6 with two disjoint, consistently oriented triangles re-
moved so by Theorem 3.7 the graph is intrinsically linked. Weadopt the convention
in the figure that edges with no orientation drawn on them represent two edges em-
bedded next to each other, but pointing in opposite directions. The unique link in this
embedding is the cycle corresponding to verticesv1, v3 and v5 linked with the cycle
for verticesv2, v6, and v4. We apply the1 � Y move to the cyclev2, v6, v4 to get
the graph in Fig. 5. Note that no matter how we orient the edges(v2, v7), (v4, v7) and
(v6, v7) at least two of the edges will have to have eitherv7 as their initial point or
their terminal point and thus there will be at least one pair of edges in theY that fail
to be consistently oriented with each other. In Fig. 5 we havechosen to have (v2, v7)
and (v6,v7) inconsistently oriented, but we can do this without loss ofgenerality in the
case where theY contains exactly one pair of edges that are not consistentlyoriented
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Fig. 4. An intrinsically linked directed graph0 embedded so that
it contains a unique link. Edges with no orientation drawn on
them represent two edges embedded next to each other, but point-
ing in opposite directions.

Fig. 5. A directed graph formed from0 via a 1 � Y move in
a linkless embedding. Edges with no orientation drawn on them
represent two edges embedded next to each other, but pointing in
opposite directions.
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due to symmetries of the graph. We could, of course, reverse the directions of all of
the edges in theY, but the argument in that case is completely analogous. We also
could orient it so that two or even all three pairs of edges arenot consistently oriented
instead of just one pair, but that only makes the argument easier, so we may focus on
the single case shown in the figure.

Now note that any link in the new graph must use edge (v2, v7) because otherwise
the only crossings left are from the edges betweenv1 and v6 and betweenv3 and v4.
Since (v2, v7) is consistently oriented with (v7, v4), but not (v6, v7), we know that any
link must also involve (v7, v4). A quick inspection shows there are no links left in the
graph. (Once we delete the unused edge (v6, v7), we can think of the graph as isotopic
to 0 with edges (v2, v6) and (v4, v6) deleted and a single vertex of degree two inserted
in the middle of the edge (v2, v4).) As 0 had only one link and that link contained
both edges (v2, v6) and (v4, v6), clearly the new graph contains no links.

Recall that avertex expansionof a vertexv in a graphG is achieved by replacing
v with two vertices,v0 and v00, adding the edge (v0, v00), and connecting a subset of
the edges that were incident tov to v0, and connecting the remaining edges that were
incident to v to v00. The reverse of this operation isedge contraction. We say thatv
is expanded to a double edgeif both the edges (v0, v00) and (v00, v0) are added. The
reverse operation is adouble edge contraction.

We have the following result.

Theorem 4.2. Vertex expansion does not preserve the property of being intrinsic-
ally linked. Equivalently, edge contraction does not preserve the property of having a
linkless embedding.

Proof. See Fig. 6. The directed graph on the left of the figure is intrinsically
linked, by Theorem 3.7. The directed graph embedding shown on the right is linkless.

Note that if the added edge in Fig. 6 had the opposite direction, this embedding
would have a link. We have shown that vertex expansion fails to preserve intrinsic
linking if the direction of the edge is chosen arbitrarily. It is unclear if vertex expansion
preserves intrinsic linking if we are allowed to pick the direction of the edge wisely.

Theorem 4.3. Let G have a linkless embedding, and let G0 be obtained fromG
by a double edge contraction. ThenG0 has a linkless embedding.

Proof. Assume the hypotheses. Let0 be a linkless embedding ofG. Let � and
�

0 denote the double edge that is contracted to obtain embedding 00 of G0. By con-
tracting� down to a vertex,v, the result is an embedding ofG0, 00, plus an extra loop
from edge�0 based at vertexv that is not linked with any oriented cycle in00 (else
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Fig. 6. The vertexv is expanded to the edge�. Edges with no
orientation drawn on them represent two edges embedded nextto
each other, but pointing in opposite directions.

the cycle (�, �0) would have been linked in the embedding0). Since0 was linkless,
the only possible linked cycle pairs in00 must contain a cycle that passes through the
vertex v.

Suppose such a pair of oriented, linked cycles,
 and 
 0 exist. Without loss of
generality, let
 be the cycle that containsv. Then 
 pulls back to a (perhaps not
consistently oriented) cycle containing� in 0. (In theory,
 could pull back to a cycle
that passes through just one vertex of�, but does not include�. In this case, the
oriented non-split link pulls back to an oriented non-splitlink in 0, which is a contra-
diction.) By abuse of notation, we denote this cycle in0 as 
 . We know that
 0 � 00

corresponds to an oriented cycle
 0 � 0 that is linked with
 . Since0 is linkless,
 is
indeed not consistently oriented. In particular the orientation at� does not agree with
the orientation of the other edges of
 . By Lemma 3.4, however, either the cycle of
length two (�, �0) or the cycle formed by replacing� in 
 with �

0 is linked with 
 0,
and both of these linked cycles are consistently oriented in0. This is a contradiction,
thus00 is linkless showingG0 indeed has a linkless embedding.

We may state this equivalently as:

Theorem 4.4. If G is intrinsically linked andG0 is obtained fromG by a vertex
expanded to a double edge, then G0 is also intrinsically linked.

Corollary 4.5. SupposeG is intrinsically linked. If we take0, an embedding of
G, and expand a vertex to a single new edge e, we may pick a direction on e such
that the expanded, directed graph0C contains a directed link.

Proof. By Theorem 4.4, we know that expandingG to get G0 with double edge
expansion is intrinsically linked. Therefore if we pick anyembedding ofG0 with new
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edges� and�0 parallel to each other such that�[�0 bounds a disk in the complement
of the graph, but with opposite directions to get00, we know00 contains a link. Since
we picked� and�0 so that�[�0 bounds a disk in the complement of the graph, they
cannot form one of the components of the non-split link. Thusthis link uses at most
one of the two edges. Without loss of generality, let the edgeused be�. Then let0C

be 00 with �

0 deleted. This graph is constructed to be isotopic to the graph we were
interested in, and it contains a link.

Note that the direction we picked in this proof was dependenton the embedding,
so this is slightly weaker than proving that vertex expansion with careful direction se-
lection preserves intrinsic linking. Perhaps for a different embedding the preferred dir-
ection to get a link would be the opposite.

5. Open questions

We close with a few open questions. Since intrinsic linking in directed graphs is a
new direction for this field, the options for open questions are rich and plentiful. Just
as with the study on non-directed graphs, there should be extensions of this work that
are accessible to undergraduate research and yet there alsoare deep difficult questions
to answer.

QUESTION 5.1. Does vertex expansion (to a single directed edge) preserve in-
trinsic linking if we may carefully choose the direction of the expanded edge? In other
words, if G is intrinsically linked andG0 is obtained fromG by a vertex expanded
to a single directed edgee0, and G00 is identical toG0, except we replacee0 with e00,
where e00 has the same endpoints ase0, but with opposite orientation, mustG0 or G00

be intrinsically linked?

If we take an embedding ofJ6 based on an embedding ofK6 which contains a
unique non-split link and then for each�i in the embedding ofK6 take �i and �0i in

our embedding ofJ6 parallel to each other, we get an embedding ofJ6 with exactly
four non-split links in it. Each of the linked triangles becomes two triangles with op-
posite orientations. The two pairs of triangles are linked,so there are four ways to
pick from the two pairs to get a link. These links, of course, are not disjoint from
each other, since they share vertices and even entire components, but they are distinct.
There are currently no known embeddings ofJ6 with fewer links than this. This leads
to more open questions.

QUESTION 5.2. How many distinct links mustD(G) have if G is intrinsic-
ally linked?

Parallel to work on non-directed graphs we ask the followingimportant questions.
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QUESTION 5.3. What is the complete list of minor minimal intrinsically linked
directed graphs?

Note that by [8], such a list must be finite. Unfortunately, such a list will not
completely characterize intrinsically linked directed graphs, as edge contraction does
not necessarily preserve having a linkless embedding.

QUESTION 5.4. Is there a set of moves, like theY � 1 and1 � Y moves for
non-directed graphs, that will generate the complete list of minor minimal intrinsically
linked directed graphs?

Variations of many of the results that have been obtained fornon-directed graphs
could be attempted for directed graphs.

QUESTION 5.5. For whatn doesJn always contain a non-split 3 component link?

Note that in the case of non-directed graphs,K9 was the smallest possible graph
because each component needed to be at least a triangle, but in Jn, link components
may be bigons, so this bound does not hold. EvenJ6 can be embedded with a 3 com-
ponent split link, but it is, of course, easy to find embeddings of J6 that do not contain
a non-split 3-component link.

It is also natural to ask how intrinsic knotting fits into the realm of directed graphs

QUESTION 5.6. Is J7 intrinsically knotted?

QUESTION 5.7. What is the complete minor minimal set of intrinsicallyknotted
directed graphs?

QUESTION 5.8. If G is intrinsically knotted, isD(G) intrinsically knotted?

Again many of the results that have been obtained for intrinsic knotting in non-
directed graphs could be attempted for directed graphs.

Additionally, one might consider intrinsic knotting and linking in graphs where
some edges are directed and some are not. In that case a cycle could use both directed
edges and non-directed edges, in which case any directed edges in a given cycle would
need to be consistently oriented, while non oriented edges could be used in any cycle.
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