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Abstract
We extend the notion of intrinsic linking to directed graphsfe give methods
of constructing intrinsically linked directed graphs, asliwas complicated directed
graphs that are not intrinsically linked. We prove that toelde directed version of a
graphG is intrinsically linked if and only ifG is intrinsically linked. One Corollary

is that Js, the complete symmetric directed graph on 6 vertices (whdBected
edges), is intrinsically linked. We further extend this twow that it is possible to

find a subgraph ofls by deleting 6 edges that is still intrinsically linked, biat no
subgraph ofJs obtained by deleting 7 edges is intrinsically linked. Weoathow
that Js with an arbitrary edge deleted is intrinsically linked, hifithe wrong two
edges are choserd with two edges deleted can be embedded linklessly.

1. Introduction

Research in spatial graphs has been rapidly on the rise beelast fifteen years.
It is interesting because of its elegance, depth, and abdégs Since Conway and
Gordon published their seminal paper in 1983 [4] showing tha complete graph on
6 vertices is intrinsically linked (also shown independleily Sachs [10]) and the com-
plete graph on 7 vertices is intrinsically knotted, over Gihers have been published
referencing it. The topology of graphs is, of course, irgéng because it touches on
chemistry, networks, computers, etc. This paper takes #heral step of asking about
the topology of directed graphs, sometimes called digrapipplications of graph the-
ory are increasingly focused on directed graphs, from apaogy to traffic patterns
(see, for example [6], [1]). Many of these applications deherot just on the abstract
directed graph, but the topology and geometry of an actuaizegion of the graph.
Examples abound, such as very large scale integration (remsvVLSI) for circuits.
As a result, understanding the topology of directed gragha worthy pursuit.

Recall that an undirected graph iistrinsically linked if every embedding of the
graph inR?3 contains at least two non-splittably linked cycles. A graghis a mi-
nor of a graphG if H can be obtained fronG by a sequence of vertex deletions,
edge deletions and edge contractions. The set of all mimoirrmal intrinsically linked
graphs is given by the seven Petersen family graphs [4],[l4]]. These graphs are
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obtained fromKg by A —Y andY — A exchanges. Similarly, we define a directed
graphG to beintrinsically linked if it contains a nontrivial link consisting of a pair of
consistently oriented directed cycles in every spatial esing.

We prove that the double directed version of a gr&phs intrinsically linked if
and only if G is intrinsically linked. One Corollary is thals, the complete symmetric
directed graph on 6 vertices (with 30 directed edges), idngitally linked. We ex-
tend this to show that it is possible to find a subgraphloby deleting 6 edges that
is still intrinsically linked, but that no subgraph ak obtained by deleting 7 edges
is intrinsically linked and thatls with an arbitrary edge deleted is intrinsically linked,
but if the wrong two edges are chosel, with two edges deleted can be embedded
linklessly. We further show that, unlike for undirected gjna, the edge contraction op-
eration does not necessarily preserve the property of gawiltinkless embedding. Fi-
nally, we show that, again unlike for directed graphs, the- Y operation does not
necessarily preserve intrinsic linking.

One can imagine numerous interesting applications ofrisiti linking in directed
graphs. One such application is to computer chips. Compualtirs can be thought of
as containing embedded directed graphs where signals atealemg wires that serve
as edges. Diodes make the graph directed allowing the igigctio flow in only one
direction on a given wire and gates serve as vertices. Bitritinking in the directed
graph means that any way of building the chip will require tiiees to cross at least
twice. This is important because building chips where theesvicross adds to the ex-
pense and complexity of the chip. Understanding exactly hwamy links are intrinsic
in the directed graph could help determine the difficulty audt of building a spe-
cific chip.

Another potential application is to the idea of maximum upalanar embed-
dable subgraphs of directed graphs (see for example [2p)plPere interested in effi-
ciently finding the largest planar subgraph of a directeglgrdoat can be embedded in
R3 so that all the edges of the embedding point monotonicallyand. To check if a
given graph or subgraph has an upward planar embeddinge# dot suffice to check
if it has a cycle, however a directed cycle is an obstructimrsich an embedding as
is intrinsic linking in the underlying graph. Thus intriasinking in the directed graph
would be a natural obstruction to study since it involveshbibie existence of directed
cycles within the directed graph and intrinsic linking iretbinderlying graph.

The authors would like to thank Keir Lockridge and Danielld@nnol for help-
ful comments.

2. Preliminaries

We start by associating directed graphs and non-directaghgrwith each other.
Recall that in a directed graph each edge has one vertex ghis initial point or
starting point and the other is said to be its terminal pointending point. Instead
of viewing edges abstractly as pairs of vertices, we viewnthes ordered pairs. For
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graphs that are not directed,sanple graphis one which contains no loops (edges that
run from a vertex to itself) or multiple edges (two edges aisded to the same pair
of vertices). Asimple directed graplis one that contains no loops (edges that have the
same initial and terminal vertex) or multiple edges (two exlgssociated to the same
ordered pair of vertices). Note in this case there may be tdge® associated tg
andvj, i # j, one withv; as its initial point andv; as its terminal point and one in
the opposite direction. Theomplete graph on n vertice&,, has exactly one edge for
each distinct pair of vertices. Thomplete symmetric directed graph on n vertjcgs
has exactly one edge for each ordered pair of distinct \estidNoteJ, has twice as
many edges a¥.

To help clarify when we have put a direction on the edges of ragfiracted graph,
say G, we will refer to the directed graph &. To differentiate when we are speci-
fying a graph and when an embedding of a graph we will refett dbstract graph
as G, and the embedded version Bs(or T for the embedded directed graph etc.).

Given a graphG, we definethe double directed version of ,GlenotedD(G) by
taking the vertices ofc and for each edge o associated to vertices andv; we
include two edges, one withy as its initial point andv; as its terminal point and one
in the opposite direction. The embedded versionrDgG) we will call A(T).

We will follow the same convention on edges and cycles as wavitto graphs. If
g is an edge ofG, and we put directions on the edges ®f theng will correspond
to § C G. If we embedG or G the edgee will then correspond tay; C T or &; C
T respectively. If we doubleés to get directed grapD(G), then we assign the two
directed edge® anda to g (and, of coursey; anda_{ in A(T")). Finally for cycles in
G we will reserve the notatiol€ for a consistently oriented cycles where @smay
be used to designate any cycle even if it is not directed arig directed, but perhaps
not consistently oriented. I€ C G, and we embeds to getT", we will refer the cycle
that is the image ofZ asy C I' and again use the oriented cycle notation as before,
so y would represent a consistently oriented, embedded cycle.

Given a directed grapls, we can, of course, associate a non-directed g@gby
keeping the same set of vertices and for each edg® absociated to the ordered pair
(vi,v;) we include an edge associated to the vertigeandv; (essentially just ignoring
the direction). We callG the underlying graphof G. Note thatG, and G have the
same number of edges here. We define uineerlying simple graph o6 to be the
largest simple subgraph of the underlying graphGof As examples,Js = D(Kg) and
Ke is the underlying simple graph af. The underlying graph ofs, has two parallel
edges for each edge df;.

3. Results

Lemma 3.1. For all n, given any completénon-directed graph K, we may as-
sign directions to the edges to yield a directed gragh and in whichK, contains
no cycles.
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Fig. 1. HereKs is constructed with directed edges and with no
cycles. The same construction will work fét, in general.

It is important to note thaK,, # Js. It has half as many edges, only one edge for
any distinct pair of vertices, instead of two. There afe® fvays to orient the edges of
Ky, so up to graph isomorphism there are many distinct versibris,, while there is
a singleKg and a singleJs up to isomorphism.

Proof of Lemma 3.1. To form &, with no cycles, we start by choosing direc-
tions for all edges containing vertax and direct all of them away from;. Now we
know no cycle can contain; since every cycle must contain one edge entering a ver-
tex and one leaving it. Fov, direct all currently unlabelled edges containingaway
from v,. The only edge entering, comes fromvq, call it €. The edgee; cannot be
part of a cycle since no cycle containg. No edge other thal; entersv,, so v, can-
not be part of a cycle. Now fops, direct all currently unlabelled edges containing
away fromuvz. The only edges enterings come fromv; and v,, call theseg, andes.
Now as before these two edges cannot be part of a cycle andheo etige enterss,
S0 vz cannot be part of a cycle. Continue in this manner until atiesdare labelled
(any edge fromw; to v; with i < j will have v; as its initial point andv; as its ter-
minal point). We now see that the graph contains no cycles.intleide a picture of
Ks embedded in this manner, with no cycles, in Fig. 1. 0

Theorem 3.2. For all n, given any completénon-directed graph K, we may as-
sign directions to the edges to yield a directed graghwith K, not intrinsically linked.

Proof. Label as in Lemma 3.1. Obviously a graph with no cydasnot contain
a pair of linked cycles. ]

We may now generalize to all (non-directed) graphs.
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Corollary 3.3. Every graph G is the underlying graph of a directed gra@h
that is not intrinsically linked.

Proof. Since every simple graph is a subgraph of a completphgthe result is
immediate in that case. I6 is not simple, we direct all edges of a maximal simple
graph and then use the same direction for all parallel edgefore considering loops,
there can be no cycles. Embed the loops so they bound a disle icomplement of the
graph (this may all be done in a small neighborhood of the 'sdagsociated vertex).
Now the directed graph will have cycles consisting of thepgobut the cycles cannot
form a non-split link since they all bound disks that are aigotht on their interior.

O

Theorem 3.5 makes use of the following lemma introducediposly in [3] and
[5]. Recall that atheta curve(or theta graph) is a graph with two vertices of valence
three and three edges running between the two vertices. tHatea theta curve will
always contain three cycles resulting from the three waygidk two of its edges (the
cycles will not, of course, be disjoint from each other).

Lemma 3.4. Given disjoint embeddings of a cycleand a theta curve in S,
with 6 containing three cycleys, y», and ys, if ¥ has nonzero linking number with
for some i theny also has nonzero linking number with for some j#i.

Proof. First we show that the theta graph lies on an immergbérs, with the
cycles of the theta graph dividing it into three distinctkdis This can be proven in
essentially the same way that one can prove that every knotdsoa disk (although the
disk will, of course, not be embedded if the knot is not thengatk In that situation
one may take a homotopy of the knot through space to a cirale the flat disk it
bounds and then reverse the homotopy, extending it to theadlid knot as a pair. Here
instead we take a homotopy of the theta graph onto an embesjuleate so that the
graph is embedded on the sphere with the three cycles divitfia sphere into three
disks which are disjoint on their interiors. Now reverse tlmmotopy extending it to
the pair of the sphere and the graph. The sphere, of coursemay not be embedded
since the cycles may be knotted, but this is not a problem.

Now y must algebraically intersect the sphere zero times, shpwhat the sum
of the linking numbers ofy with y1, y» and y; with sign must add to zero. This
shows that if one of the terms in the sum is nonzero, at leastdirnthe terms must
be nonzero. O

Theorem 3.5. If G is intrinsically linked thenD(G) is intrinsically linked.

Proof. For any embedding dd(G) (called A(I") once embedded) the underlying
graph must contain a link since the underlying graph BG) contains (numerous)
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copies of G. Let the edges of one copy @& be labelled{ay, @z, ..., an}. Let the
complementary edges pointing in the opposite direction aieelled {a_’l, a_’z, A
forming another copy ofG, sharing only the vertices, where we always choose the
labels so that ifas runs fromu; to vj in A(T), thena runs fromv; to v in A(T).

The link from the first copy ofG in the embedding of the underlying graph consists of
a (non-directed) linked pair of cycles. If those cycles hawasistent directions when
viewed as part ofA(T) we are done. If not, without loss of generality lgtbe one

of the cycles and/; be the other. Choose the labels so thatdoes not have all of its
edges consistently directeg¢t (may fit this description, too, but may not).

Without loss of generality, leii; Uz U- - - Uy be all the edges of;. We are try-
ing to find a consistently oriented directed cycle linkedhwjt. We arbitrarily choose
a favorite direction fory, (although for efficiency one would probably choose the dir-
ection that at least half the edgesjaf already pointed). We leave those edges already
going in our selected direction fixed and focus on the edgésggihe other direction.
We will swap out the edges, trying to get a linked cycle in tlreaion we have cho-
sen. Leta; be an inconsistent edge relative to our desired directioow M, Ua_{ is a
theta curve and by Lemma 3.4 eithﬁrUa_{ ora_lLJa_zU---UﬁUa_i/um---Ua_j
is linked with y. We knowa; U a_{ is consistently oriented. If it is linked withy let
y” =& Uda]. If not then we knowery Uaz U---U@i—1Ud] U@i1 U- - -U@j, which we
will call y», is the linked cycle. It follows thay, has one more consistently oriented
edge thany, did. If all the edges are now consistent jet= 3", if not, pick one of
the now smaller collection of edges pointing the wrong way, & and take the theta
curve where we ade;, to @U@ U---UG—1Ua Udi;1U--- U], The process must
terminate, since each time we either have a linked, comsigteriented, two cycle or
we produce a cycle; 1 from ¥, wherey,; is the same length ag, has one more
consistently oriented edge than did, and is still linked withy. Repeat until we have
a consistently oriented cycle that is linked withand call that new cycle”.

Now if y is consistently oriented, we are done. If not, we repeat netint y”
play the role of the fixed cycle and arbitrarily picking a fat® direction fory. We
then follow the same type of process as before, taking an agdg¥ y that is incon-
sistently oriented and add i@ to y to get a theta curve. The same algorithm now
applied toy shows we have a consistently oriented cycle that is linkeith wi’. ]

Theorem 3.6. If G is not intrinsically linked(knotted then D(G) is not intrin-
sically linked (knotted.

Proof. LetI" be a linkless (knotless) embedding Gf Take edges parallel to the
edges ofl" and orient one in each direction so that the edge fignto v; and the
edge fromv; to v bound a disk disjoint from the rest of the graph on its interio
The result is a linkless (knotless) embedding(G). O

We now sharpen our result.
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Theorem 3.7. Let G be Js minus a consistently oriented cycle of length at least
3, then G is intrinsically linked. The same is true @ is Js minus two disjoint con-
sistently oriented triangles or a consistently orien#dycle and a disjoint edge.

Note that when we use the term cycle here, the first and lag¢xeare the same
and otherwise no vertex is repeated more than once.

Proof. If we are deleting a single cycle from Js, then without loss of general-
ity let the deleted cycle consist of edges Iabel@:@, ..., €,. Take a subgraph o,
including edge%, &;,...,6, whose underlying graph is g (We can do this since we
never deleted both of the edges between a given pair of gejti®©Once embedded, this
graph must have a (non-directed) linked pair of cycles. Hieofay, oz, ..., o, are in
the cycles then proceed as in the proof of Theorem 3.5. If sofrttem are, use the
included edges to dictate the preferred direction of thdesycNote that the preferred
direction of a given cycle will be well defined. This is truecbese if one of the tri-
angles includes only one of the edges, then we use the dinecfithat single edge. If
one included two of them, they are adjacent edges in bothritiegte and then-cycle
and thus must be consistently oriented in both, so all of thgee ofay, oy, ..., o that
might be included in a given triangle will be consistentlyeoted in the triangle. We
only consider swapping out inconsistent edges, so any egddleat might be swapped
out is not an element ofaq, a3, ..., @y} and thus we know that both; anda_{ are
in our remaining graph even after tlmecycle was deleted. The only way that one of
the triangles could include 3 edges would benif= 3 and the triangle was exactly
{aq, az, az}, but this triangle is already consistently orientednlf 3, we cannot use

3 of the edges in the same triangle since no subseét afs, .. ., o, forms a triangle.
The argument in the cases of two disjoint consistently ¢ei@ririangles or a con-
sistently oriented 4 cycle and a disjoint edge is similar. ]

Corollary 3.8. The graphsls—€, Js—& —€;, and Js—& —& —& are intrinsically
linked if &, &, and g do not share a vertex.

Proof. Each of these have a subgraph thatljsminus a consistently oriented
Hamiltonian cycle. A graph with an intrinsically linked sgdaph must be intrinsic-
ally linked. ]

Theorem 3.9. The graphJ_G—E—e_j is not intrinsically linked ifgf and & share
exactly one vertex and are not consistently oriented wittheathey but is intrinsically
linked if they are consistently oriented. FurtheTg—E—e_j is not intrinsically linked
if § and & share both verticegbut with opposite orientations

Proof. Fig. 2 shows a linkless embeddingsEf—E—e_j whereg andg; share
a vertex and are not consistently oriented. Fig. 3 shows lkdelis embedding ofs —
& — & whereg andg; share both vertices, but with opposite orientatiogs={ gj).
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""' Iw-"
Fig. 2. We see a linkless embedding & minus two edges be-
tween the same pair of vertices.

<

Fig. 3. We see a linkless embedding & minus two inconsis-
tently oriented edges that share exactly one vertex.
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Corollary 3.8 implies that in all other casds—& — €& is intrinsically linked. [J
Corollary 3.10. The graphJs with seven edges deleted is never intrinsically linked.

Proof. Seven edges will have seven terminal points. Sincdave only six ver-
tices one vertex must be the terminal point of at least twohefédges removed. This
means the two edges share a vertex and are not consisteighear with each other.

O

4. Examining traditional moves that preserve intrinsic linking in non-directed
graphs in the setting of directed graphs

We recall that for non-directed graphs the— Y move preserves intrinsic linking
[7]. It is natural to ask if the same is true for directed gmapht is clear that if you
replace a triangle with & and an added vertex it will not preserve intrinsic linking if
you arbitrarily assign directions to the edges in ¥eThis would fail, for example, if
one picked a graph embedded with a unique link in it made upvofdirected trian-
gles. Now replace one of those triangles withfavhere all the edges of thg€ have
the added vertex as a terminal point. There is no link in theglement of theY, but
since no edge has its initial point at the added vertex thezena cycles and thus no
links that run through th&'. One might wonder if one could choose the directions for
the' Y more wisely and preserve intrinsic linking. We answer timathie negative in the
following theorem

Theorem 4.1. The A — Y move where we replace a directed triangle with by a
directed Y, does not preserve intrinsic linking no matter how the thréges are oriented.

Proof. We prove this by generating a specific counterexamplere the initial
graph is intrinsically linked, but after a single —Y move, no matter how th& is
oriented, the resulting graph is not. We start with an emheddf a graphl’ shown
in Fig. 4. Note that this is aJs with two disjoint, consistently oriented triangles re-
moved so by Theorem 3.7 the graph is intrinsically linked. &d®pt the convention
in the figure that edges with no orientation drawn on themesgmt two edges em-
bedded next to each other, but pointing in opposite dirastiarhe unique link in this
embedding is the cycle corresponding to vertiegsvs and vs linked with the cycle
for verticesvs, vs, and vs. We apply theA —Y move to the cyclevs, vg, v4 to get
the graph in Fig. 5. Note that no matter how we orient the edggs7), (v4, v7) and
(ve, v7) at least two of the edges will have to have eithgras their initial point or
their terminal point and thus there will be at least one péiedges in theY that fail
to be consistently oriented with each other. In Fig. 5 we hevesen to havevg, v7)
and (g, v7) inconsistently oriented, but we can do this without losgyefierality in the
case where th&' contains exactly one pair of edges that are not consisteninted



826 J.S. BIsy, H.N. HowarRDS AND N.R. RICH

Fig. 4. An intrinsically linked directed graphi embedded so that
it contains a unique link. Edges with no orientation drawn on
them represent two edges embedded next to each other, It poi
ing in opposite directions.

s

Fig. 5. A directed graph formed frorl" via a A — Y move in

a linkless embedding. Edges with no orientation drawn omthe
represent two edges embedded next to each other, but gpintin
opposite directions.
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due to symmetries of the graph. We could, of course, revdmsedirections of all of
the edges in theY, but the argument in that case is completely analogous. \&& al
could orient it so that two or even all three pairs of edgesrateconsistently oriented
instead of just one pair, but that only makes the argumerierga® we may focus on
the single case shown in the figure.

Now note that any link in the new graph must use edge;) because otherwise
the only crossings left are from the edges betweemnd vg and betweervz and vy.
Since {, v7) is consistently oriented withv{, v4), but not g, v7), we know that any
link must also involve 7, v4). A quick inspection shows there are no links left in the
graph. (Once we delete the unused edggi), we can think of the graph as isotopic
to T with edges ¢, vs) and @, vs) deleted and a single vertex of degree two inserted
in the middle of the edgevg, vs).) As T had only one link and that link contained
both edges,, vg) and @4, vg), clearly the new graph contains no links. ]

Recall that avertex expansionf a vertexv in a graphG is achieved by replacing
v with two vertices,v’ and v”, adding the edgeu(, v”), and connecting a subset of
the edges that were incident toto v’, and connecting the remaining edges that were
incident tov to v”. The reverse of this operation edge contraction We say thatv
is expanded to a double eddgeboth the edges(, v”) and @”, v') are added. The
reverse operation is double edge contraction

We have the following result.

Theorem 4.2. Vertex expansion does not preserve the property of beimgnsid-
ally linked. Equivalentlyedge contraction does not preserve the property of having a
linkless embedding.

Proof. See Fig. 6. The directed graph on the left of the figsrénirinsically
linked, by Theorem 3.7. The directed graph embedding shawthe right is linkless.
U

Note that if the added edge in Fig. 6 had the opposite dinectiois embedding
would have a link. We have shown that vertex expansion failgreserve intrinsic
linking if the direction of the edge is chosen arbitrarily.id unclear if vertex expansion
preserves intrinsic linking if we are allowed to pick theatition of the edge wisely.

Theorem 4.3. Let G have a linkless embeddingnd let G’ be obtained fronG
by a double edge contraction. Th&l has a linkless embedding.

Proof. Assume the hypotheses. etbe a linkless embedding d&. Let @ and
o’ denote the double edge that is contracted to obtain embgddirof G’. By con-
tractinga down to a vertexyp, the result is an embedding &, T', plus an extra loop
from edgea’ based at vertex that is not linked with any oriented cycle I (else
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Expand

Q__—

Contract

Z
v D
o
Fig. 6. The vertexv is expanded to the edge. Edges with no
orientation drawn on them represent two edges embeddedmext
each other, but pointing in opposite directions.

the cycle &, o’) would have been linked in the embeddifiy. SinceT was linkless,
the only possible linked cycle pairs I must contain a cycle that passes through the
vertex v.

Suppose such a pair of oriented, linked cyclgsand y’ exist. Without loss of
generality, lety be the cycle that contains. Theny pulls back to a (perhaps not
consistently oriented) cycle containiagin T'. (In theory,7 could pull back to a cycle
that passes through just one vertexaf but does not includeér. In this case, the
oriented non-split link pulls back to an oriented non-spitik in T, which is a contra-
diction.) By abuse of notation, we denote this cyclelirasy. We know thaty’ C T
corresponds to an oriented cygke C T that is linked withy. SinceT is linkless, y is
indeed not consistently oriented. In particular the oaéioh ato does not agree with
the orientation of the other edges of By Lemma 3.4, however, either the cycle of
length two &, o’) or the cycle formed by replacing in y with o is linked with 7,
and both of these linked cycles are consistently orientef.ifThis is a contradiction,
thus T’ is linkless showingG’ indeed has a linkless embedding. 0

We may state this equivalently as:

Theorem 4.4. If G is intrinsically linked andG’ is obtained fromG by a vertex
expanded to a double edginen G’ is also intrinsically linked.

Corollary 4.5. SupposeG is intrinsically linked. If we takd™, an embedding of
G, and expand a vertex to a single new edgeme may pick a direction on e such
that the expandeddirected graphI’* contains a directed link.

Proof. By Theorem 4.4, we know that expandiGgto get G’ with double edge
expansion is intrinsically linked. Therefore if we pick asynbedding ofG’ with new
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edgesa anda’ parallel to each other such thatJo’ bounds a disk in the complement
of the graph, but with opposite directions to g&t we knowT’ contains a link. Since
we pickeda ando’ so thatw U’ bounds a disk in the complement of the graph, they
cannot form one of the components of the non-split link. Tthis link uses at most
one of the two edges. Without loss of generality, let the edsed bex. Then letT+
be T” with o’ deleted. This graph is constructed to be isotopic to thegrap were
interested in, and it contains a link. ]

Note that the direction we picked in this proof was dependenthe embedding,
so this is slightly weaker than proving that vertex expamsioth careful direction se-
lection preserves intrinsic linking. Perhaps for a difféarembedding the preferred dir-
ection to get a link would be the opposite.

5. Open questions

We close with a few open questions. Since intrinsic linkingdirected graphs is a
new direction for this field, the options for open questions ach and plentiful. Just
as with the study on non-directed graphs, there should tengixins of this work that
are accessible to undergraduate research and yet theraralsteep difficult questions
to answer.

QUESTION 5.1. Does vertex expansion (to a single directed edge) wese-
trinsic linking if we may carefully choose the direction dfet expanded edge? In other
words, if G is intrinsically linked andG’ is obtained fromG by a vertex expanded
to a single directed edge’, and G” is identical toG’, except we replace with €7,
wheree” has the same endpoints &s but with opposite orientation, mug’ or G”
be intrinsically linked?

If we take an embedding o based on an embedding &fs which contains a
unique non-split link and then for each in the embedding oKg take aj anda_i’ in
our embedding ofJs parallel to each other, we get an embeddingJgfwith exactly
four non-split links in it. Each of the linked triangles beoes two triangles with op-
posite orientations. The two pairs of triangles are linked, there are four ways to
pick from the two pairs to get a link. These links, of coursee aot disjoint from
each other, since they share vertices and even entire cangorbut they are distinct.
There are currently no known embeddings Jafwith fewer links than this. This leads
to more open questions.

QUESTION 5.2. How many distinct links musD(G) have if G is intrinsic-
ally linked?

Parallel to work on non-directed graphs we ask the followimgortant questions.
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QUESTION 5.3. What is the complete list of minor minimal intrinsigalinked
directed graphs?

Note that by [8], such a list must be finite. Unfortunatelyclswa list will not
completely characterize intrinsically linked directedagins, as edge contraction does
not necessarily preserve having a linkless embedding.

QUESTION 5.4. Is there a set of moves, like the— A and A — Y moves for
non-directed graphs, that will generate the complete fighimor minimal intrinsically
linked directed graphs?

Variations of many of the results that have been obtainedchéor-directed graphs
could be attempted for directed graphs.

QUESTION 5.5.  For whatn doesJ, always contain a non-split 3 component link?

Note that in the case of non-directed grapKs, was the smallest possible graph
because each component needed to be at least a triangley Byit link components
may be bigons, so this bound does not hold. Evgran be embedded with a 3 com-
ponent split link, but it is, of course, easy to find embedding Js that do not contain
a non-split 3-component link.

It is also natural to ask how intrinsic knotting fits into themim of directed graphs

QUESTION 5.6. Is J; intrinsically knotted?

QUESTION 5.7. What is the complete minor minimal set of intrinsicakiyotted
directed graphs?

QUESTION 5.8. If G is intrinsically knotted, isD(G) intrinsically knotted?

Again many of the results that have been obtained for intrikeotting in non-
directed graphs could be attempted for directed graphs.

Additionally, one might consider intrinsic knotting anchiting in graphs where
some edges are directed and some are not. In that case a oytdeuse both directed
edges and non-directed edges, in which case any directess éd@ given cycle would
need to be consistently oriented, while non oriented edgetdde used in any cycle.
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