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Abstract
We study zero divisors and minimal prime ideals in semirings, notably those of

characteristic one. Thereafter we find a counterexample to the most obvious version
of primary decomposition, but are able to establish a weakerversion. Lastly, we
study Evans’ condition in this context.

1. Introduction

Primary decomposition was first established in polynomial rings (overZ or over
a field) in Lasker’s classical paper ([13]); another proof was later given by Macaulay
([17]). In her famous paper of 1921 ([18]), Emmy Noether established the result for
the class of rings that now bears her name. Therefore Lasker’s theorem led to the dis-
covery of two of the main concepts of modern algebra:noetherian ringsand Cohen–
Macaulay rings.

The decomposition of an arbitrary ideal as an intersection of primary ones is,via
the proof of Krull’s theorem, an essential tool in algebraicgeometry (see e.g. [22],
pp. 47–48). The Riemann hypothesis is arguably the most important open problem in
mathematics; its natural analogue, Weil’s conjecture ([23]), was finally established by
Deligne ([4]) using the whole strength of Grothendieck’stheory of schemes.

It has therefore long been expected (see e.g. [2] and [21]) that an “algebraic geom-
etry in characteristic one” might provide the natural framework for an approach of the
Riemann hypothesis. Many such theories have been propounded, including Deitmar’s
theory of F1-schemes([3]) and Zhu’scharacteristic one algebra([24]). In [14], §5, I
have shown that part of Deitmar’s theory embeds in a functorial way into Zhu’s; the
basic objects areB1-algebras, i.e.characteristic one semirings, that is unitary semirings
A such that

1AC 1A D 1A.

We have resolved to develop systematically and as far as possible the study of these
objects.

As usual, we shall denote byB1 the set{0,1} equipped with the usual multiplication
and addition, with the slight change that 1C 1D 1.
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In three previous articles ([14], [15], [16]), we have shownthat B1-algebras
(i.e. characteristic 1 semirings) behave, in many respects, like ordinary rings. In par-
ticular, one may define polynomial algebras overB1 ([14], Theorem 4.5) and classify
the maximal congruences on them ([14], Theorem 4.8).

There is a natural definition of a prime ideal (see [15], Definition 2.2) in such
a semiring; the setPrs(A) of saturated ([15], Theorem 3.7) prime ideals ofA can
be endowed with a natural Zariski-type topology, to which most of the usual topo-
logical properties of ring spectra carry over (see [16], Proposition 6.2). In [15], we
discussed the relationship between congruences and idealsin B1-algebras; the two con-
cepts are not equivalent, butexcellentcongruences correspond bijectively tosaturated
ideals. The setPrs(A) of saturated prime ideals of aB1-algebraA is in bijection with
the setMax Spec(A) of maximal (nontrivial) congruences onA; that bijection is even a
homeomorphism for the natural Zariski-type topologies ([16], Theorem 3.1), and it is
functorial ([16], Theorem 4.2).

It is therefore natural to examine whether higher results ofcommutative algebra
have valid analogs in the setting ofB1-algebras, or, more generally, in the setting of
semirings with 0 and 1. Without any extra hypothesis, this isthe case for the funda-
mental properties of minimal (saturated) prime ideals (§3). Actually, modulo an hy-
pothesis of noetherian flavour, it appears that all minimal prime ideals (more generally,
all associated prime ideals) are saturated (§4).

The next natural question concerns a possible primary decomposition. The basic
properties of primary ideals carry over (§5), but Lasker–Noether primary decomposition
need not hold, even though a weaker version can be established (§6). In other words,
a (weakly) noetherian semiring (even if it is aB1-algebra) is not necessarily laskerian.

But it turns out (§7) that if the semiring iseither laskerianor weakly noetherian,
it has the Evans property (first introduced in [5]).

In §8 we specialize the previous results to the characteristic 1 case.

2. Some definitions

Up to and including in §7, we shall denote byA an arbitrary commutative semir-
ing with 0 and 1. The following concepts and results are adapted from [9].

A k-ideal I of A is by definition ([9], p. 220) an idealI of A such that, whenever
xC i D j with i 2 I and j 2 I , then x 2 I (such ideals are calledsubtractivein [12],
p. 3). For each idealI of A, there is a smallestk-ideal CI containing I ; it is given by

CI D {x 2 A j 9(i , j ) 2 I 2
j x C i D j }I

in [1], it is denotedcl(I ). The equivalence relationRI on A given by

xRI y � (9(i , j ) 2 I 2)x C i D yC j

is compatible with the semiring operations, i.e. acongruenceon A, and therefore the
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quotient setA=RI inherits a structure of semiring with 0 and 1. We shall denoteit by
A=I ; it is easily seen that

A=I D A=CI .

For I an ideal of A, we set

p

I WD {x 2 A j (9n � 1) xn
2 I }I

in the characteristic 1 setting, this was denoted byr (I ) in [16] (Definition 5.3). The
ideal I will be termedradical if I D

p

I ; one may see that ak-ideal is radical if and
only if it is an intersection of prime (k-) ideals (in the characteristic 1 case, this was
proved in [16], Proposition 5.5).

Pr(A) will denote the set of prime ideals inA, and Prk(A) the set of primek-
ideals in A. Min Pr(A) and Min Prk(A) will denote the sets of minimal elements (for
inclusion) of Pr(A) and Prk(A), respectively. Classical arguments (see e.g. [10], Prop-
osition II.6, p. 69) establish that (Pr(A), k) and (Prk(A), k) are inductive. Therefore
Zorn’s Lemma implies that each prime (resp. primek-ideal) contains a minimal prime
ideal (resp. minimal primek-ideal).

By Maxk(A) we denote the set of maximal elements among properk-ideals of A.
The following two results are sometimes useful.

Proposition 2.1.

Maxk(A) � Prk(A).

Proof. LetM 2Maxk(A), and let us assumeu �M, v �M, anduv 2M. Then
the maximality ofM yields CMCAu D CMCAv D A. Therefore one may find (y, y0) 2
(MC Av)2 such that 1C yD y0. Let us writeyDm0Cbv and y0 D mCav ((m,m0) 2
M2, (a, b) 2 A2); then

uyD um0 C b(uv) 2M,

and, similarly,

uy0 2MI

but

uC uyD u(1C y) D uy0,

whenceu 2 CM DM, a contradiction:M is prime. Arguments such as the above
will often recur in this paper.

In the characteristic one case, we might also have used Theorem 3.3 from [16].

Lemma 2.2. Let I and J denote ideals of A; then

p

CI\J D
p

CI \ CJ D
p

CI \
p

CJ .
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Proof. The inclusions

p

CI\J �
p

CI \ CJ �
p

CI \
p

CJ

are clearly valid. Let now
p

CI \
p

CJ ; then um
2 CI for somem � 1 and un

2 CJ

for somen � 1. Thus one may find (i , i 0) 2 I 2 and (j , j 0) 2 J2 with um
C i D i 0 and

un
C j D j 0. Then um j C i j D i 0 j 2 I \ J and i j 2 I \ J, whenceum j 2 CI\J ;

similarly, um j 0 2 CI\J . But

umCn
C um j D um j 0

whence

umCn
2 CCI\J D CI\J ,

and

u 2
p

CI\J .

Therefore
p

CI \
p

CJ �
p

CI\J ,

and the result follows.

For s 2 A we define theannihilator of s by

(0 W s) D {x 2 A j sxD 0}.

It is clearly an ideal ofA; furthermore, from (y, y0) 2 (0 W s)2 and x C y D y0 follows

sxD sxC 0D sxC syD s(x C y) D sy0 D 0,

thus x 2 (0 W s): (0 W s) is a k-ideal.
For S a subset ofA, we define

(0 W S) WD
\

s2S

(0 W s)I

as an intersection ofk-ideals of A, it is a k-ideal of A.
For x 2 A n {0}, let

QAx WD A=(0 W x),

and let�x W A� QAx denote the canonical projection.

DEFINITION 2.3. An idealP of A is termedassociatedto x 2 A n {0} if it can
be expressed asP D �

�1
x (Q) for some minimal prime idealQ of QAx; it is termed

associatedif it is associated to somex 2 A n {0}.
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Ass(A) will denote the set of associated ideals ofA; clearly,

Ass(A) � Pr(A).

Obviously, each minimal prime ideal ofA is associated (x D 1 is suitable), whence
Min Pr(A) � Ass(A).

The elements of the set

DA WD {a 2 A n {0} j (9b 2 A n {0})abD 0}

are calledzero-divisorsin A. Clearly, for A non-trivial, one has

DA [ {0} D
[

s2An{0}

(0 W s).

DEFINITION 2.4. The A is noetherianif every ascending chain of ideals ofA is
ultimately stationary.

By standard arguments (see e.g. [11], Proposition I.2, p. 47), this is equivalent to
the assertion that every ideal ofA is finitely generated.

DEFINITION 2.5. A is weakly noetherianif every ascending chain ofk-ideals of
A is ultimately stationary.

It is obvious that, ifA is noetherian, then it is weakly noetherian. The converse is
false, even forB1-algebras; in fact,B1[x] is weakly noetherian (it follows from the
reasoning used in the proof of [14], Theorem 4.2 that itsk-ideals are{0} and the
xn B1[x](n 2 N)) but not noetherian (one may even find, inB1[x], a strictly increasing
sequence ofprime ideals: cf. [12], Chapter 3, p. 65).

REMARK 2.6. It is clear thatA is weakly noetherian if and only if eachk-ideal
I of A is finitely generatedas a k-ideal, that is there is a finite family (a1, : : : , an)
of elements ofA such thatI D C

ha1,:::,ani; for that, it is enough that eachk-ideal be
finitely generatedas an ideal, but the condition is not necessary. For example, letA
be the characteristic one semiring given by

AD {0, 1, y} [ {xn j n � 1}

such that

xi C x j D y

wheneveri ¤ j ,

yC 1D 1

and

abD 0
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except whenevera D 1 or bD 1.
Then A is weakly noetherian (itsk-ideals are{0}, the {0, xi }, A n {1} and A) but

not noetherian (the idealA n {0} is not of finite type).

DEFINITION 2.7. We call theB1-algebraA standardif DA[{0} is a finite union
of saturated prime ideals ofA.

DEFINITION 2.8. For J an ideal of A and x 2 A, let

Cx(J) WD {y 2 A j xy 2 J}.

Clearly,Cx(J) is an ideal ofA, and ak-ideal wheneverJ itself is one; furthermore,

Cx({0}) D (0 W x).

For saturatedJ, the ideals of the formCx(J) (x � J) will be termed J-conductors.

Lemma 2.9. Let J be a saturated ideal of A, y � J, and assume that

P WD Cy(J)

is a maximal element of the set of J -conductors. ThenP 2 Pr(A).

Proof. One has 1� P (as y � J), whenceP ¤ A. Let us assumeuv 2 P and
u � P; then uy � J and Cy(J) � Cuy(J). It follows that

P D Cy(J) D Cuy(J)I

but

v(uy) D (uv)y 2 J,

whence

v 2 Cuy(J) D P W

P is prime.

3. Minimal prime ideals

Theorem 3.1. Let P 2 Min Pr(A)[Min Prk(A); then each nonzero element ofP

is a zero-divisor in A.

Proof. Let x 2 P 2 Min Pr(A), x ¤ 0, and assume thatx is not a zero-divisor;
then, for eacha 2 A n {0} and n 2 N, axn

¤ 0. In particular

8n 2 N 8a 2 A n P axn
¤ 0.
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Let E denote the set of idealsI of A such that

8n 2 N 8a 2 A n P axn
� I .(�)

Then E ¤ ; (as {0} 2 E), and E is inductive for�, whenceE contains a maximal
elementI . As 1D 1 . x0

� I , I ¤ A.
Let us suppose for a moment thatuv 2 I , u � I and v � I ; then I C Au and

I C Av are ideals ofA strictly containing I , whence I C Au � E and I C Av � E .
Thus one may find (a, b) 2 (A n P)2, (i , j ) 2 I 2, (c, d) 2 A2 and (m, n) 2 N2 with
axm
D i C cu and bxn

D j C dv.
Then ab 2 A n P (asP is prime) and

abxmCn
D (axm)(bxn)

D (i C cu)( j C dv)

D i ( j C dv)C (cu) j C (cd)(uv) 2 I ,

a contradiction. ThereforeI is prime. But, by definition,

8a 2 A n P a D ax0
� I ,

whenceA n P � A n I , or I � P. The minimality ofP now implies that

I D P,

whence 1 .x1
D x 2 P D I , contradicting the definition ofI (we have essentially fol-

lowed [7], Corollary 1.2, and [11], p. 34, Lemma 3.1).
In caseP 2 Min Prk(A), the same argument applies modulo a slight complica-

tion: by definingE to be the set ofk-ideals I of A satisfying (�), we find a max-
imal elementI of E , and haveI ¤ A. Assuminguv 2 I , u � I and v � I , we see
that thatCICAu � E and CICAv � E . Therefore we may find (a, a0) 2 (A n P)2 and
(m, n) 2 N2 such thataxm

2 CICAu and a0xn
2 CICAv. Thereforeaxm

C y D y0 for
some (y, y0) 2 (I C Au)2, anda0xn

CzD z0 for some (z, z0) 2 (I C Av)2. Set yD i Ccu
(i 2 I ) and zD i 0 C dv (i 0 2 I ); then

yv D i v C c(uv) 2 I ,

and similarly y0v 2 I . As

axm
v C yv D (axm

C y)v

D y0v
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and I is a k-ideal, it appears thataxm
v 2 I . Then

axmzD axm(i 0 C dv)

D axmi 0 C d(axm
v)

2 I ,

for the same reason,axmz0 2 I as

aa0xmCn
C axmzD axm(a0xn

C z)

D axmz0,

it follows as above thataa0xmCn
2 I . But aa0 2 A n P, contradicting the definition

of I .

4. The weakly noetherian case

Theorem 4.1. In case A is weakly noetherian, each associated prime ideal of A
is of the form(0 W u) for some u2 A n {0}; in particular, it is a k-ideal.

Proof. LetP denote a prime ideal ofA associated tox 2 A n {0}; then

P D ��1
x (Q)

for someQ 2 Min Pr( QAx). We define

W(P) WD {z 2 A j (0 W zx) � P}.

W(P) is non-empty, as 12W(P). For y 2W(P), let

IP (y) WD
[

s2AnP

(0 W sxy).

As

8(s, s0) 2 (A n P)2,

(0 W sxy) [ (0 W s0xy) � (0 W ss0xy)

and ss0 2 AnP, IP (y) is the union of a filtering family ofk-ideals, whence it is itself
a k-ideal.

By definition, whenevery 2 W(P), (0 W xy) � P, therefore froms 2 A n P and
z 2 (0 W sxy) follows

(sz)(xy) D (sxy)zD 0,
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thus sz2 (0 W xy) � P, sz2 P and z 2 P. We have shown that

IP (y) � P.

Let now J WD IP (y0) denote a maximal element of

{IP (y) j y 2W(P)}

(the existence of such an element follows from the weak noetherianity hypothesis). As
seen above,J � P, whenceJ ¤ A. Let us supposeab2 J and a � J; then, for each
s 2 A n P, a � (0 W sxy0), whence

s(xy0a) D (sxy0)a ¤ 0.

Therefore (0W xy0a)� P, i.e. y0a 2W(P). Clearly IP (y0)� IP (y0a), whenceIP (y0)D
IP (y0a) according to the definition ofy0.

As ab 2 J D IP (y0), there existss 2 A n P such that (sxy0)ab D 0; but then
s(xy0a)bD 0, whenceb 2 (0 W sx(y0a)) � IP (y0a) D IP (y0) D J. We have shown that
ab 2 J implies a 2 J or b 2 J: J is prime.

As J � P and

(0 W x) � (0 W xy0) � IP (y0) D J,

�x(J) is a prime ideal of QAx and �x(J) � �x(P) D Q, it now follows from the mini-
mality of Q that �x(J) D Q.

Let now u 2 P; then �x(u) 2 �x(P) D Q D �x(J), therefore�x(u) D �x( j ) for
some j 2 J. Then there are (y, y0) 2 (0 W x)2 such thatuC yD j C y0, henceuC y 2 J,
and u 2 CJ D J (as J is a k-ideal). It follows thatP � J, whenceP D J D IP (y0);
in particular,P is a k-ideal.

As A is weakly noetherian, there is a finite family (p1, : : : , pn) of elements ofP
such that

P D C
hp1,:::, pni.

Each p j belongs toP D J D IP (y0), whence there is ansj 2 A n P such that
p j 2 (0 W sj xy0). Let s0 WD s1 � � � sn and

u WD s0xy0 D s1 � � � snxy0I

then eachp j belongs to (0W u), whence

P D C
hp1,:::, pni

� C(0Wu)

D (0 W u)
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(as (0W u) is a k-ideal).
On the other hand,s0 2 A n P, therefore

(0 W u) D (0 W s0xy0)

� IP (y0)

D P,

whenceP D (0 W u).

Corollary 4.2. If A is weakly notherian, then Min Pr(A) D Min Prk(A).

Proof. Let P 2 Min Pr(A). As seen in §2,P is associated, whence, by The-
orem 4.1,P is a k-ideal, henceP 2 Min Prs(A).

Conversely, letP 2 Min Prk(A); then P is prime, hence contains some minimal
prime idealP0 (cf. §2). NowP0 is a k-ideal whence (asP0 � P)

P D P0 2 Min Pr(A).

5. Definition and first properties of primary ideals

The usual theory generalizes without major problem to semirings with 0 and 1.

DEFINITION 5.1. An idealQ of A is termedprimary if Q ¤ A and

8(x, y) 2 A2 [xy 2 Q H) x 2 Q or (9n � 1) yn
2 Q].

Obviously, a prime ideal is primary.

Proposition 5.2. If Q is primary, then
p

Q is prime.

Proof. LetP D
p

Q. As Q ¤ A, 1 � Q, thus 1� P. Let us assume thatuv 2
P; then, for somen � 1, (uv)n

2 Q, i.e. un
v

n
2 Q, whence (asQ is primary) either

un
2 Q or there existsm � 1 with vnm

D (vn)m
2 Q. Therefore eitheru or v belongs

to
p

Q D P: P is prime.

REMARK 5.3. As seen in [16], Lemma 5.4(ii) in the context ofB1-algebras, if
Q is a k-ideal then so isP D

p

Q; with some modifications, our proof goes through
in the general case.

DEFINITION 5.4. The primary idealQ will be termedP-primary if P D
p

Q.

Lemma 5.5. Let Q1, . . ., Qn be P-primary ideals for the same prime idealP;
thenQ WD Q1 \ � � � \Qn is alsoP-primary.
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Proof. Let us assumexy 2 Q and x � Q. As x � Q, there is ak 2 {1, : : : , n}

such thatx � Qk; as xy 2 Q � Qk, we havexy 2 Qk, whence (asQk is primary)
there existsn � 1 such thatyn

2 Qk. Then y 2
p

Qk D P. As all Qi ’s areP-primary,
one has, for eachi , y 2

p

Qi , whence there existsmi � 1 such thatymi
2 Qi . Let

m0 WD max1�i�n(mi ); then

ym0

2 Q1 \ � � � \Qn D Q W

Q is primary.
Incidentally, we have established thatP �

p

Q; but
p

Q �
p

Q1 D P, whence
P D

p

Q: Q is P-primary.

6. Weak primary decomposition

DEFINITION 6.1. The B1-algebraA is termedlaskerian if any k-ideal of A can
be expressed as a finite intersection of primaryk-ideals.

It is natural to conjecture that each weakly noetherianB1-algebra is laskerian, but
this is false, as shown by the following example.

EXAMPLE 6.2. Let AD {0, z, x, y, u, 1}; it is easily seen that there is a unique
structure ofB1-algebra onA such thatzC x D x, zC y D y, x C y D u, uC 1D 1,
x2
D x, y2

D y, z2
D 0, u2

D u, xyD xzD yzD uzD 0, xuD x and yuD y.
Each primaryk-ideal of A contains 0D xy, therefore it contains eitherx or a

power of y, whence it containsx or y, thus it containsz. Thus any intersection of
primary k-ideals containsz, and {0} is not an intersection of primaryk-ideals: A is
not laskerian.

REMARK 6.3. This would seem to contradict Theorem 4 from [1], which asserts
that in an arbitrary noetherian semiring primary decomposition holds fork-ideals. But
the proof given in [1] is incorrect: Lemma 6 (the proof of which is declared “trivial”!)
need not hold except if “irreducible” is interpreted as meaning irreducible as a k-ideal,
but then the proof or Proposition 1 will not hold. Indeed we are referred to [20], Prop-
osition 4.34; but in that argument appear some ideals (e.g.I CRan, cf. p. 78) that need
not bek-ideals, even whenI itself is.

REMARK 6.4. In the recent preprint [6], Flores and Weibel establishprimary de-
composition in noetherian monoids (cf. [6], Theorem 1.3). From this one may deduce
the validity of primary decomposition fork-ideals in B1-algebras of the shapeB1[M],
for M a noetherian monoid. Indeed, primek-ideals in B1[M] correspond bijectively to
prime ideals (including;) of M ([15], Theorem 4.2), and the same holds with “pri-
mary” in place of “prime”, as is easily seen. But the semiringconstructed above is
not isomorphic to one of that type.
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Nevertheless a weaker property holds true.

Theorem 6.5. Let I denote a radical k-ideal in A; then I can be written as a
finite intersection of prime k-ideals.

Proof. Let us proceed by contradiction, and letJ denote a maximal element of
the set of radicalk-ideals that cannot be written as a finite intersection of prime k-
ideals; in particular,J ¤ A and J is not prime. Therefore one may findu � J and
v � J with uv 2 J. Let K D

p

CJCAu and L D
p

CJCAv; then K and L are k-ideals
of A strictly containingJ, whence each is a finite intersection of prime saturated ideals.
Clearly, J � K \L. Let now xm

2 K \L; then xm
CyD y0 for some (y,y0) 2 (JCAu)2

and xn
CzD z0 for some (z,z0) 2 (JCAv)2; writing yD jCau ( j 2 J) andzD j 0Cbv

( j 0 2 J) we get

vxm
C vy D v(xm

C y) D vy0I

but vy D v( j C au) D v j C a(uv) 2 J, and similarlyvy0 2 J, whencevxm
2 CJ D J.

But then

xmCnzD xmCn( j 0 C bv) D xmCn j 0 C bxn(xm
v) 2 J,

and

xmC2n
C xmCnzD xm(xn

C z) D xmCnz0.

It follows that xmC2n
2 CJ D J, whencex 2

p

J D J. We have shown thatJ D K \ L,
henceJ is a finite intersection of primek-ideals, a contradiction.

Corollary 6.6. If A is weakly noetherian and I is a k-ideal of A, there are prime
k-idealsP1, . . ., Pn of A such that

p

I D P1 \ � � � \ Pn.

Proof. As seen above,
p

I is a k-ideal; obviously it is radical, and we may then
apply Theorem 6.5.

Proposition 6.7. If A is weakly noetherian, then Min Pr(A) is finite.

Proof. Let us apply Corollary 6.6 toI D {0}; we obtain the existence of a finite
family P1, . . . , Pn of prime k-ideals of A such that

Nil(A) D
p

{0} D P1 \ � � � \ Pn.

Let us suppose that noP j (1� j � n) be contained inP; then one may find, for
each j 2 {1, : : : , n}, x j 2 P j , x j � P. It ensues that

x1 � � � xn 2 P1 \ � � � \ Pn D Nil(A) � P
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and eachx j � P, contradicting the definition ofP. Therefore, for somej , P j � P,
whence (by the minimality ofP) P j D P. We have shown that

Min Pr(A) � {P1, : : : , Pn}I

in particular,Min Pr(A) is finite.

REMARK 6.8. Incidentally, we have reestablished Corollary 4.2, asall P j ’s are
k-ideals.

7. The Evans condition

For A a B1-algebra andI an ideal of A, let

DA(I ) WD {x 2 A j (9y � I ) xy 2 I }

D

[

y�I

Cy(I ).

Obviously, if A is nontrivial,

DA({0}) D DA [ {0}.

DEFINITION 7.1 (see [5], and also [11], Chapter 3, pp. 121–122).A has the Evans
property if, for eachk-ideal I of A, DA(I ) is a finite union of primek-ideals of A.

REMARK 7.2 (to be compared with Theorem 3.1). IfA has the Evans property,
then A is standard (takeI D {0}).

Theorem 7.3. If A is laskerian, then it has the Evans property.

Proof. We follow closely the proof of [5], Proposition 7. LetI denote ak-ideal
of A; then one may write

I D Q1 \ � � � \Qn (n 2 N)

where eachQi is saturated and primary. Let us choose such a decompositionwith n
minimal, and, for eachj , set P j D

p

Q j ; according to Proposition 5.2,P j is prime
(and ak-ideal).

Let y 2 DA(I ); there isx � I such thatyx 2 I . As x � I D Q1 \ � � � \Qn, there
exists j 2 {1, : : : , n} such thatx � Q j .

As xy D yx 2 I � Q j , xy 2 Q j ; therefore, asQ j is primary, there is am � 1
such thatym

2 Q j , whencey 2
p

Q j D P j . We have shown that

DA(I ) � P1 [ � � � [ Pn.
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Conversely, lety 2 P1 [ � � � [ Pn; then y 2 P j for some j . Let

K j D

n
\

iD1Ii¤ j

Qi I

according to our choice ofn, K j ¤ I ; as I D K j \ Q j , one hasK j � Q j , whence
there existsb 2 K j , b � Q j . As y 2 P j , ym

2 Q j for somem � 1, thereforeymb 2
K j \Q j D I .

But y0bD b � I (asb � Q j ); therefore there is a (unique)k 2 N such thatykb � I
and ykC1b 2 I . Let z WD ykb; then z � I and yzD ykC1b 2 I , hencey 2 DA(I ). Thus

DA(I ) D P1 [ � � � [ Pn,

as desired.

Theorem 7.4. If A is weakly noetherian, then it has the Evans property.

Proof. We shall adapt the reasoning used in the proof of Lemma7 from [19].
Let I denote a saturated ideal ofA; according to the weak noetherianity hypoth-

esis, eachI -conductor is contained in a maximal one.
Let E denote the set ofy 2 A n I such thatCy(I ) is maximal, and let

RD C
hEi.

Using once more the weak noetherianity hypothesis, one findsa finite family
(y1, : : : , yn) 2 En such that

RD C
hy1,:::,yni.

By definition of E and Lemma 2.9, eachPj WD Cy j (I ) is prime. Let

u 2 P1 \ � � � \ PnI

then, by definition,uyj 2 I for each j , whence

hy1, : : : , yni � Cu(I )

and

RD C
hy1,:::,yni � Cu(I )

(as Cu(I ) is saturated).
Let now x 2 E and P D Cx(I ); then x 2 R, whencex 2 Cu(I ) and ux 2 I . It

follows that u 2 Cx(I ) D P. Therefore

P1 \ � � � \ Pn � P,

thus

P1 � � � Pn � PI
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as in the proof of Proposition 6.7, it follows that, for somej , P j � P, whence (by
maximality) P j D P. Therefore the set of maximalI -conductors is contained in
{P1, : : : , Pn}; in particular, it is finite.

Thus, the maximal elements ofE are finite in number; but they are prime ideals
(Lemma 2.9), andDA(I ) is their union.

8. The characteristic one case

Let us now consider aB1-algebraA, and let I denote an ideal ofA; if x 2 A and
(i , j ) 2 I 2 are suchxC i D j , then i C j D i C (i C x) D (i C i )C x D i C x D j and
x C j D x C (i C j ) D (x C i )C j D j C j D j , whence

CI � {x 2 A j (9 j 2 I ) x C j D j }I

the opposite inclusion being trivial, one has

CI D {x 2 A j (9 j 2 I ) x C j D j } D I

(see [15], Theorem 3.7, for the definition ofI ). Then I is a k-ideal if and only if
I D CI , that is I D I , in other words if and only ifI is saturatedin the sense of [15],
p.1786. All of the above results therefore apply toB1-algebras modulo the replacement
of “k-ideal” by “saturated ideal” and of

p

I by r (I ).
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