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Abstract
We study zero divisors and minimal prime ideals in semirinystably those of
characteristic one. Thereafter we find a counterexamplédoniost obvious version
of primary decomposition, but are able to establish a weakesion. Lastly, we
study Evans’ condition in this context.

1. Introduction

Primary decomposition was first established in polynomiiafjs (overZ or over
a field) in Lasker’s classical paper ([13]); another proofswater given by Macaulay
([27]). In her famous paper of 1921 ([18]), Emmy Noether bkshed the result for
the class of rings that now bears her name. Therefore Laskebrem led to the dis-
covery of two of the main concepts of modern algelmaetherian ringsand Cohen—
Macaulay rings

The decomposition of an arbitrary ideal as an intersectioprionary ones isyvia
the proof of Krull's theorem, an essential tool in algebrgieometry (see e.g. [22],
pp. 47-48). The Riemann hypothesis is arguably the most ritapioopen problem in
mathematics; its natural analogue, Weil’'s conjecture Jjj2®&as finally established by
Deligne ([4]) using the whole strength of Grothendiecttigory of schemes

It has therefore long been expected (see e.g. [2] and [24&})ah “algebraic geom-
etry in characteristic one” might provide the natural fravoek for an approach of the
Riemann hypothesis. Many such theories have been propoumzdding Deitmar’s
theory of F;-schemeq[3]) and Zhu's characteristic one algebr#[24]). In [14], 85, |
have shown that part of Deitmar’s theory embeds in a furgitaviay into Zhu's; the
basic objects ard®;-algebras, i.echaracteristic one semiringshat is unitary semirings
A such that

1a+ 1p = 1a.

We have resolved to develop systematically and as far ashp@sbe study of these
objects.

As usual, we shall denote 1 the set{0, 1} equipped with the usual multiplication
and addition, with the slight change that-11 = 1.
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In three previous articles ([14], [15], [16]), we have showimt B;-algebras
(i.e. characteristic 1 semirings) behave, in many respéikes ordinary rings. In par-
ticular, one may define polynomial algebras oWr ([14], Theorem 4.5) and classify
the maximal congruences on them ([14], Theorem 4.8).

There is a natural definition of a prime ideal (see [15], D&bni 2.2) in such
a semiring; the sePrg(A) of saturated([15], Theorem 3.7) prime ideals oA can
be endowed with a natural Zariski-type topology, to whichsmof the usual topo-
logical properties of ring spectra carry over (see [16],g@sition 6.2). In [15], we
discussed the relationship between congruences and igdeBlsalgebras; the two con-
cepts are not equivalent, bekcellentcongruences correspond bijectively daturated
ideals. The sePrg(A) of saturated prime ideals of B;-algebraA is in bijection with
the setMax Spe€A) of maximal (nontrivial) congruences of; that bijection is even a
homeomorphism for the natural Zariski-type topologiess][ITheorem 3.1), and it is
functorial ([16], Theorem 4.2).

It is therefore natural to examine whether higher resultc@hmutative algebra
have valid analogs in the setting &h-algebras, or, more generally, in the setting of
semirings with 0 and 1. Without any extra hypothesis, thishis case for the funda-
mental properties of minimal (saturated) prime ideals .(8&%tually, modulo an hy-
pothesis of noetherian flavour, it appears that all minintahe ideals (more generally,
all associated prime ideals) are saturated (84).

The next natural question concerns a possible primary deosition. The basic
properties of primary ideals carry over (85), but Laskeretiler primary decomposition
need not hold, even though a weaker version can be establ{@. In other words,
a (weakly) noetherian semiring (even if it isBa-algebra) is not necessarily laskerian.

But it turns out (87) that if the semiring isither laskerianor weakly noetherian,
it has the Evans property (first introduced in [5]).

In 88 we specialize the previous results to the charadieristase.

2. Some definitions

Up to and including in 87, we shall denote 8y an arbitrary commutative semir-
ing with 0 and 1. The following concepts and results are asthjfitom [9].

A k-ideal | of A is by definition ([9], p.220) an idedl of A such that, whenever
Xx+i=jwithiel andj €I, thenx € | (such ideals are callesubtractivein [12],
p.3). For each ideal of A, there is a smalledt-ideal C, containingl; it is given by

Ch={xeA|3i, j)el?|x+i=j})
in [1], it is denotedcl(l). The equivalence relatio®, on A given by
XRiy=@3G, ) el®)x+i=y+]

is compatible with the semiring operations, i.ec@ngruenceon A, and therefore the
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quotient setA/R, inherits a structure of semiring with 0 and 1. We shall deribtey
A/l; it is easily seen that

A/l = A/C,.

For | an ideal of A, we set
Vii={xeAl@n=1)x"el};

in the characteristic 1 setting, this was denotedrfl) in [16] (Definition 5.3). The
ideal | will be termedradical if | = +/I; one may see that k-ideal is radical if and
only if it is an intersection of primekf) ideals (in the characteristic 1 case, this was
proved in [16], Proposition 5.5).

Pr(A) will denote the set of prime ideals iA, and Pry(A) the set of primek-
ideals in A. Min Pr(A) and Min Pr¢(A) will denote the sets of minimal elements (for
inclusion) of Pr(A) and Pr¢(A), respectively. Classical arguments (see e.g. [10], Prop-
osition 11.6, p.69) establish thaP((A), 2) and Prx(A), 2) are inductive. Therefore
Zorn’s Lemma implies that each prime (resp. prily@eal) contains a minimal prime
ideal (resp. minimal primé-ideal).

By Max(A) we denote the set of maximal elements among prépeleals of A.

The following two results are sometimes useful.

Proposition 2.1.
Max(A) C Pr¢(A).

Proof. LetM € Max(A), and let us assume ¢ M, v ¢ M, anduv € M. Then
the maximality of M yields C sy au = Caria0 = A. Therefore one may findy(y') €
(M + Av)? such that 1y = y'. Let us writey = m' +bv andy = m+av ((m,m) €
M?, (a, b) € A?); then

uy = um + b(uv) € M,
and, similarly,
uy € M;
but
u+uy=u(l+y)=uy,
whenceu € Cy; = M, a contradiction: M is prime. Arguments such as the above

will often recur in this paper.
In the characteristic one case, we might also have used &me8r3 from [16]. []

Lemma 2.2. Let | and J denote ideals of ;Ahen

VCiny =+v/CinCy =+/C/nyC,.
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Proof. The inclusions

VCinsSV/CnCy;<c/C nyCy

are clearly valid. Let nowy/C, N 4/Cj; thenu™ € C, for somem > 1 andu" € C;
for somen > 1. Thus one may findi(i’) € 12 and (j, j’) € J% with u™ +i =i’ and
u"+ j =j. Thenu™j +ij =i'j el NnJandij € I NnJ, whenceu™j € Ciny;
similarly, u™j” € Cyn;. But

um+n+umj =umj/

whence
u™" e Ce,,, = Cing,
and
ue /Ciny.
Therefore
VCinVCy € VCiny,
and the result follows. O

For s € A we define theannihilator of s by
(0:s)={xe€ A|sx=0}.
It is clearly an ideal ofA; furthermore, from ¥, y') € (0:s)? andx + y =y’ follows
SX=sX+0=sx+sy=s(x+Yy)=sy =0,

thusx € (0:s): (0:5s) is ak-ideal.
For S a subset ofA, we define

0:9:=()0:9):

seS

as an intersection df-ideals of A, it is a k-ideal of A.
For x € A\ {0}, let

A= AJ(0: x),
and letrr,: A— A, denote the canonical projection.

DEeFINITION 2.3. An idealP of A is termedassociatedto x € A\ {0} if it can
be expressed a® = n;(Q) for some minimal prime ideal of A it is termed
associatedif it is associated to som& € A\ {0}.
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AsqA) will denote the set of associated ideals &f clearly,
AsqA) C Pr(A).

Obviously, each minimal prime ideal & is associatedx= 1 is suitable), whence
Min Pr(A) € AsqA).
The elements of the set

Dp:={ae A\ {0} | (@be A\ {0})ab= 0}

are calledzero-divisorsin A. Clearly, for A non-trivial, one has

Dau{0} = | J (0:9).

seA\{0}

DEFINITION 2.4. TheA is noetherianif every ascending chain of ideals &f is
ultimately stationary.

By standard arguments (see e.g. [11], Proposition 1.2, p.#his is equivalent to
the assertion that every ideal &f is finitely generated.

DEFINITION 2.5. A is weakly noetherianf every ascending chain d-ideals of
A is ultimately stationary.

It is obvious that, ifA is noetherian, then it is weakly noetherian. The converse is
false, even forB;-algebras; in fact,B,[x] is weakly noetherian (it follows from the
reasoning used in the proof of [14], Theorem 4.2 thatkit®leals are{0} and the
x"Bi[x](n € N)) but not noetherian (one may even find, B3[x], a strictly increasing
sequence oprime ideals: cf. [12], Chapter 3, p.65).

REMARK 2.6. It is clear thatA is weakly noetherian if and only if eadkvideal
I of A is finitely generatedas a k-ideal that is there is a finite familyag, ..., a,)
of elements ofA such thatl = C,,, _a,; for that, it is enough that eack-ideal be
finitely generatedas an ideal but the condition is not necessary. For example,Aet
be the characteristic one semiring given by

A={071,Y}U{Xn|n21}

such that

Xi+X =Y
wheneveri # j,

y+1=1
and

ab=0
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except whenevea =1 orb = 1.

Then A is weakly noetherian (it&-ideals are{0}, the {0, %}, A\ {1} and A) but
not noetherian (the ideah \ {0} is not of finite type).

DEFINITION 2.7. We call theB;-algebraA standardif DU {0} is a finite union
of saturated prime ideals oA

DEFINITION 2.8. ForJ an ideal of A andx € A, let
Cx(J):={ye A|xye J}.
Clearly, Cx(J) is an ideal ofA, and ak-ideal wheneved itself is one; furthermore,
Cx({0}) = (0: x).

For saturated], the ideals of the forntx(J) (x ¢ J) will be termed J-conductors

Lemma 2.9. Let J be a saturated ideal of ,A/ ¢ J, and assume that

P :=Cy(J)

is a maximal element of the set of J-conductors. TRea Pr(A).

Proof. One has ¥ P (asy ¢ J), whenceP # A. Let us assumelv € P and
u ¢ P; thenuy ¢ J andCy(J) € Cyy(J). It follows that

P = Cy(J) = Cuy(J);

but
v(uy) = (uv)y € J,
whence
veCyw(l)="P:
P is prime. ]

3. Minimal prime ideals

Theorem 3.1. Let P € Min Pr(A) U Min Pr(A); then each nonzero element Bf
is a zero-divisor in A.

Proof. Letx € P € MinPr(A), x # 0, and assume that is not a zero-divisor;
then, for eacha € A\ {0} andn € N, ax" # 0. In particular

VneN Vae A\P ax" #0.
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Let £ denote the set of ideals of A such that

(*) VvneN Vae A\P ax"¢I.

Then & # @ (as {0} € &), and £ is inductive for C, whence& contains a maximal
elementl. As 1=1.x0¢1, 1 # A

Let us suppose for a moment that € |, u ¢ | andv ¢ I; thenl + Au and
| + Av are ideals ofA strictly containingl, whencel + Au¢ £ and | + Av ¢ £.
Thus one may findg, b) € (A\ P)% (i, j) € 1% (c,d) € A2 and (n, n) € N? with
ax™ =i+ cuandbx" = j + dv.

Thenabe A\ P (asP is prime) and

abx™" = (ax™)(bx")
= (i +cu)(j + dv)
=i(j +dv) + (cu)j + (cd)(uv) € I,

a contradiction. Thereforé is prime. But, by definition,
vaec A\P a=ax’¢]l,
whenceA\ P € A\ I, or | € P. The minimality of P now implies that
I =P,

whence 1 x! = x € P = |, contradicting the definition of (we have essentially fol-
lowed [7], Corollary 1.2, and [11], p. 34, Lemma 3.1).

In caseP € Min Pri(A), the same argument applies modulo a slight complica-
tion: by defining€ to be the set ok-ideals | of A satisfying &), we find a max-
imal elementl of £, and havel # A. Assuminguv € I, u¢ | andv ¢ |, we see
that thatC, ay ¢ £ and C, . a, ¢ £. Therefore we may finda( a’) € (A\ P)? and
(m, n) € N? such thatax™ € Cj,ay and ax" € C,a,. Thereforeax™ +y =y’ for
some §,Y) € (I + Au)?, anda’x" 4z = Z for some ¢,7) € (I + Av)?. Sety =i +cu
(ifel)andz=1i"+dv (i’ € 1); then

yv =iv + c(uv) € I,
and similarlyy'v € I. As

ax™ + yv = (ax™ + y)v
= y/v
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and | is ak-ideal, it appears thax™v € |. Then
ax™z = ax™(i’ + dv)
= ax™i’ + d(ax™v)
el,
for the same reasomx™z € | as
aax™™" 4+ axMz = ax™(@x" + 2)

=ax"Z,

it follows as above thagax™™" € |. But aa € A\ P, contradicting the definition
of I. O

4. The weakly noetherian case

Theorem 4.1. In case A is weakly noetheriagach associated prime ideal of A
is of the form(0: u) for some ue A\ {0}; in particular, it is a k-ideal.

Proof. LetP denote a prime ideal oA associated tox € A\ {0}; then
P =m Q)
for someQ e Min Pr(Ay). We define
W(P):={ze A|(0:2zx) € P}.

W(P) is non-empty, as &€ W(P). Fory € W(P), let

Ip(y):= () (0:sxy.

seA\P
As

V(s 8) € (A\ P)%,
(0:sxy) U(0:s'xy) C (0:ssxy)

andss € A\ P, Ip(y) is the union of a filtering family ok-ideals, whence it is itself
a k-ideal.

By definition, whenevery € W(P), (0: xy) € P, therefore froms € A\ P and
Z € (0: sxy) follows

(s9(xy) = (sxYz =0,
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thussze (0: xy) € P, sze P andz € P. We have shown that

Ip(y) S P.

Let now J := Ip(yo) denote a maximal element of

{Ip(y) |y € W(P)}

(the existence of such an element follows from the weak muithity hypothesis). As
seen above,) C P, whenceJ # A. Let us suppos@b e J anda ¢ J; then, for each
se A\ P, a¢ (0:sxy), whence

s(Xypa) = (sxy)a # 0.

Therefore (Q xypa) € P, i.e. yoa € W(P). Clearly I»(yo) € Ir(yoa), whencelp(yo) =
I»(yoa) according to the definition ofp.

As ab € J = Ip(Yo), there existss € A\ P such that $xy)ab = 0; but then
s(Xypa)b = 0, whenceb € (0: sx(yoa)) < lp(Yoa) = Ip(Yo) = J. We have shown that
abe Jimpliesae J orbe J: Jis prime.

As J € P and

(0:x) € (0:xyp) < In(yo) = J,

mx(J) is a prime ideal ofA, and mx(J) € 7x(P) = Q, it now follows from the mini-
mality of Q that 7,(J) = Q.

Let now u € P; then my(u) € nx(P) = Q = mx(J), thereforemy(u) = mx(j) for
somej € J. Then there arey(y’) € (0: x)? such thatu+y = j +Y/, henceu+y e J,
andu e C; = J (as J is ak-ideal). It follows thatP C J, whenceP = J = Ip(yo);
in particular,P is a k-ideal.

As A is weakly noetherian, there is a finite familpi( . . ., p,) of elements ofP
such that

Each p; belongs to? = J = Ip(Yo), whence there is as; € A\ P such that
p; € (0:sjxy). Letsg:=s,--+s, and

U= $XYo = S1 - - - $iXYo;
then eachp; belongs to (Q u), whence

P = Cpy,cpn)
C Cow)
=(0:u)
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(as (0: u) is ak-ideal).
On the other handy € A\ P, therefore

(0:u) = (0: sox¥o)
< Ip(Yo)
=P,
whenceP = (0: u). ]

Corollary 4.2. If A is weakly notherianthen Min Pi(A) = Min Pr(A).

Proof. LetP € MinPr(A). As seen in 82,P is associated, whence, by The-
orem 4.1,P is ak-ideal, henceP € Min Prg(A).

Conversely, letP € Min Pr¢(A); then P is prime, hence contains some minimal
prime idealP, (cf. 82). Now Py is a k-ideal whence (ag, < P)

P = Py € Min Pr(A). O

5. Definition and first properties of primary ideals

The usual theory generalizes without major problem to segsrwith 0 and 1.

DEFINITION 5.1. An idealQ of A is termedprimary if Q # A and

V(x,y)e A2 [xyeQ = xeQor@n=>1)y"e Q]

Obviously, a prime ideal is primary.

Proposition 5.2. If Q is primary, then +/Q is prime.

Proof. LetP = Q. As Q # A, 1¢ Q, thus 1¢ P. Let us assume thatv €
P; then, for somen > 1, (Uv)" € Q, i.e. u"" € Q, whence (asQ is primary) either
u" e Q or there existam > 1 with v"™ = (v™)™ € Q. Therefore eitheu or v belongs
to /O =P: P is prime. O

REMARK 5.3. As seen in [16], Lemma 5.4(ii) in the context Bf-algebras, if
Q is ak-ideal then so isP = /Q; with some modifications, our proof goes through
in the general case.

DEFINITION 5.4. The primary ideal will be termedP-primary if P = Q.

Lemma 5.5. Let Qy, ..., Oy be P-primary ideals for the same prime ided;
thenQ := Qi1 N---N Q, is also P-primary.
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Proof. Let us assumgy e Q andx ¢ Q. As x ¢ Q, there is ak € {1,...,n}
such thatx ¢ Qy; asxy € Q C Qy, we havexy € Qk, whence (asQy is primary)
there existen > 1 such thaty" € Qx. Theny € /Ox = P. As all Q;’s are P-primary,
one has, for each, y € +/Q;, whence there existay > 1 such thaty™ € Q;. Let
m' := max<j<n(M;); then

y e QiN---NQ,=Q:

Q is primary.
Incidentally, we have established th& C /Q; but /O € /91 = P, whence
P =.Q: Qis P-primary. O

6. Weak primary decomposition

DEFINITION 6.1. TheB;-algebraA is termedlaskerianif any k-ideal of A can
be expressed as a finite intersection of primkigleals.

It is natural to conjecture that each weakly noetherfiaralgebra is laskerian, but
this is false, as shown by the following example.

ExAMPLE 6.2. LetA=1{0,z Xx,V,u, 1}; it is easily seen that there is a unique
structure ofBj-algebra onA such thatz+x =X, z4+y=y,X+y=u, u+1=1,
X=X Y=y,22=0,0’=U, Xy=xz=yz=uz=0,xu=x andyu=y.

Each primaryk-ideal of A contains 0= xy, therefore it contains eithex or a
power of y, whence it containx or y, thus it containsz. Thus any intersection of
primary k-ideals containsg, and {0} is not an intersection of primark-ideals: A is
not laskerian.

REMARK 6.3. This would seem to contradict Theorem 4 from [1], whiskeats
that in an arbitrary noetherian semiring primary decomjmsiholds fork-ideals. But
the proof given in [1] is incorrect: Lemma 6 (the proof of whits declared “trivial™)
need not hold except if “irreducible” is interpreted as miegrirreducible as a k-ideal
but then the proof or Proposition 1 will not hold. Indeed we agferred to [20], Prop-
osition 4.34; but in that argument appear some ideals (etgRd", cf. p. 78) that need
not bek-ideals, even when itself is.

REMARK 6.4. In the recent preprint [6], Flores and Weibel estabfisimary de-
composition in noetherian monoids (cf. [6], Theorem 1.3)ork this one may deduce
the validity of primary decomposition fdt-ideals in B;-algebras of the shapB;[M],
for M a noetherian monoid. Indeed, prirkddeals in B;[M] correspond bijectively to
prime ideals (includingd) of M ([15], Theorem 4.2), and the same holds with “pri-
mary” in place of “prime”, as is easily seen. But the semiritmnstructed above is
not isomorphic to one of that type.
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Nevertheless a weaker property holds true.

Theorem 6.5. Let | denote a radical k-ideal in Athen | can be written as a
finite intersection of prime k-ideals.

Proof. Let us proceed by contradiction, and tdenote a maximal element of
the set of radicak-ideals that cannot be written as a finite intersection ofmprk-
ideals; in particular,d # A and J is not prime. Therefore one may find ¢ J and
vé¢ Jwithuv el Let K =,/Cyjia, andL = /Cya,; thenK andL arek-ideals
of A strictly containingJ, whence each is a finite intersection of prime saturatedsdea
Clearly, J € KNL. Let nowx™ e KNL; thenx™+y =y’ for some §,Yy’) € (J + Au)?
andx"+z = Z for some ¢,7) € (J+ Av)?; writing y = j +au (j € J) andz= j’' +bv
(j’ € J) we get

XM + vy = v(X" +y) = vy’;

but vy = v(j + au) = vj + a(uv) € J, and similarlyvy’ € J, whencevx™ € C; = J.
But then

Xm+nz — Xm+n(j/ + bU) — Xm+nj/ + bXn(XmU) c J,
and

Xm+2n + xM+hy — Xm(xn + Z) = xM+ny

It follows that x™2" € C; = J, whencex € +/J = J. We have shown thal = K NL,
henced is a finite intersection of primé&-ideals, a contradiction. ]

Corollary 6.6. If A is weakly noetherian and | is a k-ideal of, fkere are prime
k-ideals Py, ..., P, of A such that

VI =Pin---NPy.

Proof. As seen above/| is ak-ideal; obviously it is radical, and we may then
apply Theorem 6.5. O

Proposition 6.7. If A is weakly noetherianthen Min Pi(A) is finite.

Proof. Let us apply Corollary 6.6 tb = {0}; we obtain the existence of a finite
family P, ..., P, of prime k-ideals of A such that

Nil(A) = {0} = PyN - N Py

Let us suppose that n®; (1 < j <n) be contained irP; then one may find, for
eachj € {1,...,n}, x; € P}, x; ¢ P. It ensues that

Xy ++Xn € PLN---NP, =Nil(A) € P
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and eachx; ¢ P, contradicting the definition o. Therefore, for somg, P; € P,
whence (by the minimality of?) P; = P. We have shown that

Min Pr(A) C {P1, ..., Pn};
in particular,Min Pr(A) is finite. O

REMARK 6.8. Incidentally, we have reestablished Corollary 4.2.atsP;’s are
k-ideals.

7. The Evans condition

For A a Bj-algebra and an ideal of A, let
Da(l):={xe A[@y¢l) xyel}

={Je,m).

Yl

Obviously, if A is nontrivial,
Da({0}) = Da U {0}.

DEFINITION 7.1 (see [5], and also [11], Chapter 3, pp. 121-122A has the Evans
propertyif, for eachk-ideal | of A, Da(l) is a finite union of primek-ideals of A.

REMARK 7.2 (to be compared with Theorem 3.1). Af has the Evans property,
then A is standard (takd = {0}).

Theorem 7.3. If A is laskerian then it has the Evans property.

Proof. We follow closely the proof of [5], Proposition 7. Létdenote ak-ideal
of A; then one may write

l=0Q0:1N---NQy (NEN)

where eachQ; is saturated and primary. Let us choose such a decomposiiibnn
minimal, and, for eachj, set?; = ,/Q;; according to Proposition 5.2P; is prime
(and ak-ideal).

Let y € Da(l); there isx ¢ | such thatyxel. Asx ¢ = Q1 N---N Qy, there
exists j € {1,...,n} such thatx ¢ Q;.

As xy =yxe | C Qj, xy € Qj; therefore, asQ; is primary, there is an > 1
such thaty™ € Q;, whencey € ,/Qj = P;. We have shown that

DA(l)QIP]_U---U’Pn.
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Conversely, lety e Py U --- U Py; theny € P; for somej. Let

Kj = ﬂ Qi;

i=Li]

according to our choice of, K; # I; as| = K; N Q;, one hasK; £ Q;, whence
there existsb € Kj, b ¢ Q;. Asy e P;, y" € Q; for somem > 1, thereforey™b e
KJ' n Qj =1.

Buty’o=b ¢ | (asb ¢ Q)); therefore there is a (uniqu&)e N such thaty*b ¢ |
andy**b e |. Let z:= y*b; thenz ¢ | andyz = y**'b e |, hencey € Da(l). Thus

Da(l) =P1U---U Py,
as desired. O

Theorem 7.4. If A is weakly noetherignthen it has the Evans property.

Proof. We shall adapt the reasoning used in the proof of Leminfram [19].

Let | denote a saturated ideal @f according to the weak noetherianity hypoth-
esis, each -conductor is contained in a maximal one.

Let £ denote the set of € A\ | such thatCy(l) is maximal, and let

R=C).

Using once more the weak noetherianity hypothesis, one fandiite family
(Y1, - - -+ Yn) € E" such that

R=Cy, .y
By definition of £ and Lemma 2.9, eacR; := Cy,(l) is prime. Let
uePiN---NPy;

then, by definitionuy; € | for eachj, whence

(YL RN Yn) - CU(I)
and

(asCy(l) is saturated).
Let now x € £ and P = Cx(l); thenx € R, whencex € Cy(l) andux € I. It
follows thatu € Cx(1) = P. Therefore

PiN---NP, CP,
thus
Pr---PnCP;
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as in the proof of Proposition 6.7, it follows that, for someP; € P, whence (by
maximality) P; = P. Therefore the set of maximal-conductors is contained in
{P1, ..., Pn}; in particular, it is finite.

Thus, the maximal elements &f are finite in number; but they are prime ideals
(Lemma 2.9), andDa(l) is their union. O

8. The characteristic one case

Let us now consider &8;-algebraA, and letl denote an ideal of; if x € A and
(i,j)e1? are suchx +i = j, theni+j=i+(@{+x)=(@ +i)+x=i+x= ] and
X+j=x+(@{+j)=x+i)+j=]j+]=]j, whence

Cic{xeA|@jel)x+j=ij}kh
the opposite inclusion being trivial, one has
Ci={xeA|@je)x+j=j}=1

(see [15], Theorem 3.7, for the definition 6. Then | is a k-ideal if and only if

| =C,, thatis| =T, in other words if and only ifi is saturatedin the sense of [15],
p.1786. All of the above results therefore applyBg-algebras modulo the replacement
of “k-ideal” by “saturated ideal” and of/1 by r(l).
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