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Abstract

We consider spherically symmetric motions of a polytropas ginder the self-
gravitation governed by the Euler—Poisson equations. Tbatic exponent=£ the
ratio of the specific heats) is assumed to satisfy/6 < y < 2. Then there are equi-
libria touching the vacuum with finite radii, and the lineaedl equation around one
of the equilibria has time-periodic solutions. To justifyetlinearization, we should
construct true solutions for which this time-periodic dmn plus the equilibrium is
the first approximation. We solve this problem by the Nash-éddkeorem. The
result will realize the so-called physical vacuum bound#&uyt the present study re-
stricts y to the case in whichy/(y — 1) is an integer. Other cases are reserved to
the future as an open problem. The time-local existence afotimsolutions to the
Cauchy problems is also discussed.

1. Introduction

We consider spherically symmetric motions of a gaseougystegrned by the Euler—
Poisson equations:
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Here p is the densityu the velocity, P the pressurep the gravitational potential, and
0o is the gravitational constant. In this work we assume

(2 P=Ap",

where A and y are positive constants, and we assume { < 2.
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Introducing the mass

r
m:= 471/ o(t, rr’2dr’,
0

we can write the equations as

) 00 au 2
— +u— — + —pu =0,
3) at+ 8r+par+rp
8u+uau oP om
P\ ot ar ar Pz

On the other hand, equilibria for the equations (1) are gwmerby the ordinary

differential equation
1d/r?dP
———(——) = 47 gop.

In order to normalize this equation, we put

p = pfYD

and
drgo(y — 1)

r=p¥ 2K Y% with K := v

where p¢ is an arbitrary positive number, say, the central densitiyerilthe equation
for equilibria turns out to be

1d ,d0 ..
g2 4 pYly szoy
2des dg

which is called the ‘Lane—Emden equation’. The solutit{f) of the equation such that

do
=0

Olco=1, —| =
le=0 0% |, o

is called the ‘Lane—Emden function of polytropic index(t — 1)’ It is known that if
and only if 5 < y there is a finitet; such that(§) > 0 for 0<& < & andé(&;) =0,
and the radiusR and the total mass

R
M := 47r/ p(r)r?dr
0
of the equilibriump(r) are given by

R=plr 22K Y2, and M = 4npé3y4)/2K3/2(_§2g_z) _
§=&
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A numerical table of¢;, (—£2d6/dg)_¢, for variousy can be found in [2, p.96].
Anyway we have

Lemma 1. Assumeb/5 < y < 2. For any positive numbep. given there is an
equilibrium p = p(r) with positive numbers J@; such thatp(r) is positive and analytic
in0<r <R and

A(r) = pe(1+[r%) as r—0,
5(0) = pr(R—r)Y¢ DA+ [R—r1, (R—1)"/¢D]) as r— R—0.

NOTATIONALREMARK. Here and hereafterX]q denotes a power series of the
form ijq a, X1 with positive radius of convergence, and,[Y]q a convergent power

series of the form)_, .., a X/ Yk

For a proof of Lemma 1, see, e.g., [10], and [13, Chapter V]2dr, [Chapter 1X]
and Appendix A.

REMARK. In the expansion of(r) asr — R, the terms including R —r)7//—9
actually appear ify/(y —1) is not an integer. Let us prove it. Otherwise we would have

A(r) = pr(R—1)YO DL+ [R—r]y)
and the function

U(r):= r) " = p} "(R—r)L+[R—rly)
would be analytic at = R. Now U satisfies

dU  2duU

_ 4drgo(y —1)
_ < = Kyt 1), K.= 2V =7
drz  r dr Ay

SinceU is analytic, the left-hand side is analytic, and so, thetrlgdnd side
Kpy(R=n)Y(1+ [R—1]y)

would be analytic at = R. Then Y(y — 1) should be an integer. This contradicts to
thaty/(y —1) = 1/(y — 1)+ 1 is not an integer.
In fact we can find that, ify/(y — 1) ¢ N, then

(y — 12K C@ /-1
y(2y —1)

+IR=1, (R0 )

prt=u =C(R—r)(1+%(R—r) (R—r)r/t=1
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and

1dP Ay dU
pdr y—1dr
A 2
- C(1+§(R—r)

(y —1)KCE /-1
_y_—l —

(R— r)V/(V*l)
Y

+IR=1, (R0 ).

whereC = p! ™" and P(r) = Aa(r)".

In the following discussion we assume thab6< y < 2 and we fix an equilibrium
p(r) with the properties in the above lemma.

We are going to construct solutions around this fixed equilib.

Here let us glance at the history of researches of this pmoble

Of course there were a lot of works on the Cauchy problem toctimapressible
Euler equations. But there were gaps if we consider densstyilelitions which contain
vacuum regions.

As for local-in-time existence of smooth density with cormipsupport, [17] treated
the problem under the assumption that the initial densityas-negative and the initial
value of

o YA P12
y—1

is smooth, too. By the variableso(u) the equations are symmetrizable continuously
including the region of vacuum. Hence the theory of quasdr symmetric hyperbolic
systems can be applied. However, since

1 1/2 "
w X e ~ Const.R—r) as r - R-0

for equilibria, w is not smooth at the boundary= R with the vacuum. Hence the
class of solutions considered in [17] cannot cover equdib(See [18] for the discus-
sion on non-isentropic cases. The situation is similar.)

On the other hand, possibly discontinuous weak solutiotis @@mpactly supported
density can be constructed. The article [20] gave locdirAre existence of bounded
weak solutions under the assumption that the initial dgnsibounded and non-negative,
provided that the gas is confined to the domain outside a &alid The proof by the
compensated compactness method is due to [19], and [5]. @Eedhe class of weak
solutions can cover equilibria, but the concrete strustufesolutions were not so clear.

Therefore we wish to construct solutions whose regularaie weaker than solutions
with smoothw and stronger than possibly discontinuous weak solutionise fresent
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result is an answer to this wish. More concretely speaking stiiution p(t, r), u(t, r))
constructed in this article should be continuous ok ® < T, 0 <r < oo and there
should be found a continuous curve= Rge(t), 0 <t < T, such thaj R (t) — R| <« 1,
pt,r)>0for0<t<T,0=<r < Rg(t)andp(t,r)=0for0<t <T, Re(t) <r < 0.
The curver = Rg(t) is the free boundary at which the density touches the vacutm
will be shown that the solution satisfies

p(t, 1) = CO(Re(t) =)0+ O(Re(t) - 1))

asr — Rg(t) — 0. HereC(t) is positive and smooth in. This situation is “physical
vacuum boundary” so-called by [9] and [4]. This concept centfaced back to [15],
[16], [25]. Of course this singularity is just that of eqbilia.

Since the major difficulty comes from the free boundary taonghthe vacuum,
which moves along time. So, we take the Lagrangian mass ic@tedm as the in-
dependent variable instead of Then we can write the equations as

5
%P 4 4 p?(r2u)m = O,

ot

ou m

P Ar2Py, = ~Go,
3 [Mdm\Y?

r=[(— — .

(471 /o P )
Since
o an 1
ot~ am  A4mpr?’

the equations are reduced to the single second order eguatio

m
4) Fe + 4mr2Py = —Go5

ar\ 7
P= A(4m2—) .
am

Now we derive the equation for the perturbatigrdefined by

where

®) r(t, m) = r(m)(1 + y(t, r(m)).

Here m+— r(m) is the function of the Lagrangian mass variableassociated with the
fixed equilibrium. In other words, it is the inverse functioh

r
r'r—>m=4n/ p(r)r2dr.
0
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Keeping in mind

o o 14 +r‘8y
am  am y fmom)’

P = |5(1—G(y, rr—;%))
m

Here G(y, v) = 3yy + yv + [y, v]. is defined by

we have

A+yY)ZA+y+v)7” =1-G(y,v).

Then the equation is reduced to

_ 1 a (- _ay m
-1 2_(P(1-Gly, = — =0,
Wt Z0+Y) ar‘( ( (y rar‘)))Jrgor'Z(uy)z

where we have used

o .0 _ 1
am ~ Mor ~ 4mpror
We note that the equilibrium satisfies
19P PRI
Far TR T
Let us introduceH (y) = 4y + [y]2 by
H(y) = (1+y)* - :
) =@Q+y) T
Then the equation can be written as
%y 1 9 ay 1dP
6 — = —1+yP PG|y, r> — —H(y)=0.
© ot2 pl’(+y) Br( (y ar))+prdr W)

Here we have used the abbreviatiansp, P, d P/dr instead off, g, P, dP/dr.
We consider this nonlinear wave equation.

It is easy to verify by a scale transformation of variableat tve can assume that
A = 1/y so thatP = p”/y without loss of generality. Hence we assume so.

Here let us propose the main goal of this study roughly. Lefixisan arbitrar-
ily large positive numbefT. Then, under the condition that/(y — 1) is an integer,
we have
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Main Goal. For sufficiently smalle > 0 there is a solution y= y(t, r; &) of (6)
in C2([0, T] x [0, R]) such that

y(t, r;e) = eyi(t, r) + O(?).
The same estimates(€%) hold between the higher order derivatives of y and.
Herey;(t,r) is a time-periodic function specified in Section 2, whiclofghe form
ya(t, r) = sin(v/At + 6p) - (r),

where A is a positive humber§y a constant, andb(r) is an analytic function of G<
r<R.

Once the solutiory(t,r;e) is given, then the corresponding motion of gas particles
can be expressed by the Lagrangian coordinate as

r(t, m) =r(m)(1+ y(t, r(m);e))
= F(M)(L+ eya(t, F(M)) + O(?)).

The curver = Rg(t) of the free vacuum boundary is given by
Re(t) = r(t, M) = R + & sin(v/At + 6)®(R) + O(&?)).

The free boundary Rt) oscillates around R with time-perio?r/+/1 approximately
The solution p, u) of the original problem (1) (2) is given by

- _ay\\ _ay
p:p(r)((1+y)2(1+y+r§)) , u:rﬁ

implicitly by

=

=f(m), y=y(t, F(m):e),

= Y)Y = (e P o),

|
=<

wherem = m(t,r) for 0 <r < Rg(t). Herer = m = m(t, r) is given as the inverse
function of the function

M r =r(t, m =r(m)(1+ y, r(m); &)).
We note that

Re(t) —r(t, m) = R(1 + y(t, R €)) —F(m)(1 + y(t, r(m); &))
implies

%(R—r‘) < Re(t)—r =«(R-T)
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with 0 < x — 1 K 1, sincely| + |9, y| < eC. Therefore
y(t, F(m); &) = y(t, Rie) + O(Re(t) —r(t, m)),

and so on. Hence we get the “physical vacuum boundary”, thathe corresponding
density distributionp = p(t,r), wherer denotes the original Euler coordinate, satisfies

pt,r)>0for 0<r < Rg(t), p(t,r)=0 for Re(t) <r,
and, sincey(t, r) is smooth on < r < R, we have
p(t, 1) = CA(Re(t) =YY" DL+ O(Re(t) - 1))
asr — Rg(t) — 0. HereC(t) is positive and smooth i.

2. Analysis of the linearized equation

The linearized equation is

9%y

(7) 8t2+L‘y—0
19 ay 1dP
=—— —— .4
®) Ly rar( (3yy+yrar))+pr dr -4
N (W A T
= T ordor (”Par)+ 4 3)dy

and the associated eigenvalue problenCis= Ay.

This eigenvalue problem was first wrote down in [6, p. 10, [X2P18). But the
spectral property of the operator, whose coefficients amgu&ir, had been long be-
lieved as a Sturm-Liouville type without proof. A mathematly rigorous discussion
was first done by [1] (1995). The essential point is as follows

Let us use the Liouville transformation:

r
0
:/ o dr ni=riyPoe)ly.
o VvP

Through this transformation the equation
Ly=ry+ f

turns out to be the standard form

2

n
=A f,
dg2+q’7 n+
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where

_yP(2 7—3y+1+yrmr 1dp  (y+1)B—y)/1dp)?
—op \r2 2 4 m Jrpdr 16 pdr) )

f =r3(yPp)/*f.

The variable¢ runs on the interval (&, ), where

R
— | P
&y .—/0 J/Pdl’<<>o.

Since
g~ |2t as r o,
v P
we see
P, 2 2
~YeZ 2 as oo,
pec T2 &2
Since
1d 1 P _
;d_': N—m(R—r)il, y— ’\-',0]}_/ 1(R—I’) as  — R,
and
1 y—-1 2
R_r’\'Zpl E+—8) as &§—>&y,
we see

qw@(wl)(s—y)(gd_p)ZN1(1+y)(3—y) 1
p 16 pdr) — 4 (y—1F (& —£)7

as& — &,. It follows from 1< y < 2 that

1A+y)B—y) 3
4 (y-—1p7 4

Of courseq is bounded from below, but it is difficult to know whether itsnin
mum is positive or not. Anyway, the both boundary poiats: 0, £, are of limit point
type, provided that k y < 2. See, e.g., [22, p. 159, Theorem X.10]. The exceptional
casey = 2 will be discussed later. See the discussion after Lemmal@vbeHence
we have the following conclusion:

Proposition 1. The operator Ty, D(To) = C§(0, £4), Ton = —nee + Qn, in
L2(0,£,) has the Friedrichs extensiof, a self-adjoint operatgrwhose spectrum con-
sists of simple eigenvalues, < -+ < A, < Apg1 < --- — +o0o. In other words the
operator &g, D(So) = C¥(0, R), Goy = Ly in L%(0, R), r*p dr) has the Friedrichs
extensionS, a self-adjoint operator with eigenvaludg,);.
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The domainD(X) of the Friedrichs extensiofi is, by definition,

D(T) = {n € L¥0,£:) | 3¢n € C5°(0, 1), Qldm — ¢n] — O
asm, n — oo, ¢, — 1 in L0, £,)

and —ng: + qn € L%(0, £,) in distribution sensg

awl = [ (|5

andc is a constant- |minq|. But D(%) is characterized as follows:

D(T) = {n € C[0, £&.] | n(0) = n(§+) =0, — nee + an € L0, £4)).

Let us prove it, denoting by the right-hand side. Lef € D(¥). Then there are
#n € C3°(0, £4) such thatg, — 5 in L2 and Q[¢m — ¢n] — 0. Since

where

2
+(a+ c)|¢|2) d,

§ 1/2
|¢m(&) — #n(8)] = \/g(/(; ((ém — ¢n)€)2 dé) =< \/E(Q[d’m - d’n])l/z — 0,

we have¢, — n uniformly on [0,£,.]. Hencen € C[O, £&,] and n(0) = 0. Similarly
n(;) = 0. ThusD(T) C M. Letn € M. Put f := —ns: + qn € L2 Then —ng: +
(Q+ ¢y =g:=f +cne L2 Since 0 belongs to the resolvent set Df+ ¢, we
have v := (T + ¢)'g € D(T). Hencew :=n — v € C[0, £,] and w(0) = w(£,) =
0,—wgs + (g + c)w = 0, for D(T) C M. Usingq + ¢ > 0, we can deduce that =0
andn = v € D(X), that is, M C D(%). (In fact, if w did not vanish identically, there
would exista € (0, £,) such thatDw(a) = 0 andw(a) # 0. If w(a) > 0, then

§ £
Du(e) = [ DPu(e)de = [ @+ cuie)ds’
implies Dw(¢) > 0 for a < & < &, and it contradicts tav(¢,) = 0. If w(a) < 0, then
Du(e) =~ [ @+ cu(e)ds’
£

implies Dw(¢) > 0 for 0 < & < a and it contradicts tav(0) = 0.)
Although it is not easy to judge the signature of minwe have

Proposition 2 ([14], 1997) If and only if 4/3 < y < 2, the least eigenvalue;
is positive.

Proof. The functiony = 1 satisfies

1 dpP
= —(4- — = f .
Ly pl‘( 3)/)dr >0
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Let us consider the corresponding function
m =r(yPp)t*

through the Liouville transformation. It is easy to showttha and dn,/dé vanish at
£ =0,& andn € D(T). Let ¢1(¢) be the eigenfunction of-d?/d&? + q associated
with the least eigenvalug;. We can assume;(¢§) > 0 for 0 < £ < &, and ¢; and
d¢,/dé vanishes a€ = 0,&,. Then the integration by parts gives

& &
Al A ¢1n1 d& =/0 $1(—n1ee + dn1) d&.

Since
dpP

—mge +am = f =r(yP) o ¥4 —3y)

anddP/dr < 0, we have the assertion. O

REMARK. Assume that B4 < y < 2. Then the least eigenvalue, which is posi-
tive, is given by the variational formula

A= min w,
Iyli%

where X = L?((0, R), pr* dr) endowed with |v)x = fOR uvpr4dr. From this we can
deduce the following Ritter—Eddington’s law of the peridelsity relation:Let us con-
sider equilibria p(r) with p(0) = p. and the corresponding least eigenvalug or the
“period’ T := 27/+/A1; thenT1/pc is a constant depending only upog, A, y.

In fact we can consider the one parameter family of equdibri

pl0) = pu(0) = X1 /)

which has radiuR = kR o « and the central density. = «%©=2p. oc k=2, Here
p is a fixed equilibrium with radiugk and central densitg.. Then it is easy to see that
(LY | V)x = k& VI(Ly, | y)5, wherey,(F) = y(xF) and X = L*((0, R), 5F*dF),
and ||y||5 = K(Sy‘g)/(V—2)||yK||§.€. Hence we have.; o k%("=2) o p.. This completes the
proof. (Note that the mean density /(47 R®/3) o« «¥("~2) o¢ the central densitye.)
This fact was stated in [6, p.15], as a result that the pusatheory conforms with
observation of variable stars. As for the priority of A. Rit{1879), see [23].

Let us introduce the variablg defined by

tarf 0 k€ k [' 0
©) X = T ame 9-—7—5/0 Vypdn
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wherex = 7 /&,.. Thenx runs over the interval [0, 1] while runs over [O,R], and

dx

ar - K/ X(L—x) /LP = k/X(L = x)pr T2,
4

Since
d d
- = 1-x)ptr+e
dr VX1 =x)p dx
2 ldZ
arz = <XE= 00
1, _ -y +1 _,_ndp\ d
k31 -2 v+l 7 T = 1—x)ptr-22) —
+(2K( X)p + 2 Kyx(A=x)p dr /dx
we have
K2Ly
d?%y
=—X(1-x)—
X=X
1 y+11 _adp 41 ALY
—(Za-2 rr-- 1—x)oW=322C + 7= /(1 —x) o2 ) 2L
(2( X) + 2 « X(L=x)p dr+r/c ( e dx
1 p¥2dp
— —(4-3y)y.
K2 r dr( vy

Asr — 0 (x — 0) we have
K2
X = Zng“rz(l + [r?0),

2
r==p VRYX(1+ X,
dp
dr
41

=X = x)p¥ V2 = 2 4 [x]s.
Ik

=r[r?o,

Then it follows that
d? 5 d
w2y = xA=03 % - (5 + X ) G + Koy
On the other hand, as— R(x — 1), we have
1-x =% (R=1)(1+ [R—1, (R—r)/¢2]y),
1
R—1 = S0 (L= + [ - x, (1= %"/,

d
d_/ro = _y'o_l 1(R —)@M-DL 4+ [R—r, (R—r)/01]).
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Then it follows that
d?%y
_2 _
K £y = —X(l — X)W

+ (L +[1-x (1- X)V/(Vl)]l) d_y +[1—x, (L—x)"0Dyy.
y—1 dx

Changing the scale of, we can and shall assume that= 1 without loss of
generality.
Summing up, we have:

Proposition 3. We can write
d?y 5 N \dy dy
(10) Ly =—-x(1- X)W - (5(1— X) — EX)& + Ll(x)& + Lo(X)y,
where

(M as x— 40,
Li(x) = {[1ix, (1-x)N?]; as x—1-0,

(Xl as x— +0,
LO(X) - {[1 —X, (l_ X)N/2]0 as x—1-0.

Here N is the parameter defined by

2y 2
11 N=—"_ =14 ——.
(11) y_léy +t N3z

Now let us fix a positive eigenvalue = 1, and an associated eigenfunctidr{r)
of £. Then
ya(t, 1) = sin(v/At + 6p)@(r)

is a time-periodic solution of the linearized problem.
Moreover we can claim

Proposition 4. We have

®(r) =Co(1+[r’1) as r—0,
=Co(l+[x]1)) as x—0
and
d(r)=Ci1+[R—-1, (R=r)/¥ ) as r—R,
=Ci(1+[1—-x, (1-x)V?],) as x— 1.
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Here G and G are non-zero constants. Other independent solutiongyf= Ay do
not belong to B(r*pdr) at r ~ R.

To prove this, we use the following lemma:

Lemma 2. Let us consider the equation

d?%y

dy
a — a
Z2 T b(z, Z )OIZ c(z, 2%y,

where

b(z, ) =a+[z, %1, c(z, ) = [z, 2o,

and let the positive number a satisfy>a2. Then
1) there is a solution y of the form
y1=1+[z 2],
and
2) there is a solution y of the form
Yo = 2 (1 + [z, 2]0)
provided a¢ N, or
Y2 =2 (1+[z Z"1) + hyilog z

provided a€ N. Here h is a constant which can vanish in some cases.

For a proof, see [3, Chapter 4].

We apply this lemma foa =y /(y—1)=N/2 (> 2) andz=1—x. EvenifN =4
(y =2), yo» ~ zV/2*+1 does not belong td-?(r*p dr) = L?(x¥?(1 — x)N/>1 dx), and
the boundary point = R is of the limit point type.

3. Statement of the main result

We rewrite the equation (6) by using the linearized oper&tatefined by (8) as

92y dy dy

12 — 1 — ) =
(12) 8t2+( +G|(y,rar))£y+Gu(r,y,rar) 0,

where

Gily,v) = (1 + y)2(1 ; %%GZ(Y- v)) 1,

1dP

P
Gu(r,y,v) = mGno(ya v) + p—raGm(y, v),
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Gio(y, v) = (1 + y)*(33,G2 — dyG2)v
= =2y(L+ )Ly + o),

2
Gus(y, v) = a+y)

3,G2- ((—4+3y)y + yv)
+ H —4y(1+ y)?> — (1 + y)?Go.
Here

Ga(y, v) := G(Y, v) — Byy + yv) = [y, v]2,

d oG
BUGZ = a—Gz = — -y = [y, U]l.
v ov

We have fixed a solutiory; of the linearized equation; + Ly = 0, and we seek
a solutiony of (6) or (12) of the form

Yy =¢y1 +¢ew,

wheree is a small positive parameter. Then the equation whickhould satisfy turns
out to be

92w ow ow
—+|14ecalt,r,w,r—,¢) |Lw+eblt,r,w,r—, ¢
(13) ot2 ar ar

= ec(t,r, €),

where
at,r,w, Q,¢) = 871G|(8y1 + ew, ev1 + €Q),
bt,r, w, 2, &) =—(F + F) + (R + Fi)lw=0=0
c(t,r, &) = (F + Fi)lw=a=o

Here v; stands forrdy;/or and

Fi:=—¢71G (ey1 + cw, svy + Q) Ly,
Fi:= —8_ZG|| (r, &Y1 + ew, vy + SQ).

It follows from Proposition 4 thas,b,c are smooth functions df, x, (1—x)N/2, w
andodw/dx. Here and hereaftex denotes the variable defined £8), which is equiva-
lently used instead of.r

Then the main result of this study can be stated as follows:

Theorem 1. Assume tha6/5 <y <2 (& 4 < N < 12) and thaty/(y — 1)
(= N/2) is an integer that is y is either 2, 3/2, 4/3 or 5/4. Then for any given
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T > 0 there is a sufficiently small positive = £o(T) such that for |¢| < &g, there is
a solutionw € C*([0, T] x [0, R]) of (13) such that

() ()

or a solution ye C*([0, T] x [0, R]) of (6) or (12) of the form

S Cngy
Le([0, T]x[O,R])

sup
j+k=n

y(t,r) = eyat, r) + O(e?),
or a motion which can be expressed by the Lagrangian cootéfas
r(t, m) = F(M)(L + ey (t, F(M)) + O(c%))
for0<t=<T,0=<m=<M.

Our task is to find the inverse imagB~(sc) of the nonlinear mappingg de-
fined by

2

(14) Pw) = L

12 + 1+ ca)lw + eb.

Note P(0) = 0. It requires a property of the Fréchet derivativeof
(15) D‘B(w)h = hy + (1 + eal)ﬁh + eagoh + eapirhy,

where

ow
at,r)=alt,r, w, ra—r, e,

da ab
at,r =—~Lw+ —,
ow ow
0a ob
a(t,r) = —L —.
o1(t, 1) = Yo + 50

Here  is the dummy ofr dw/dr. We shall use the following observation:

Proposition 5. We have

%Y 4y dY  2e(y—1)(9dY
=Y n 24201 y—2 L —
1= ( ARG AR (s )arz rar T 1+y \or ) )
where
oy oY

Y: , :Y' = — = &f —.
itw, y=e v or Sar
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Proof. Since

da _ 3G _ (1+Y)232

o9 _ Go,
90 dv y vR
db  9G 190Gy
@ a0 T
we have
yP(d%y 4dy P 1dP
a1 = —(3,6)— =L + 22 ) + —8,Gu0 + ———[U],
€ag1 (8,G1) P (8r2 rar + o2 o + or dr[ ]
where
[U] = —(3,Gi)((By —4)y + yv) + 3,Ciz.
Since
1+ y)2 14 y)?
9,G| = ( yy) 392Gy, 8,Gjy = ) 32Go((—4+ 3y)y + yv),

we have ] = 0. Using
3Gy = —y(y + DA+ YY) ¥A+y+v) 73
3Gio = —2y(L+ y) 7L+ y+v) 7221+ y) + (—y + L)y,

we get the result. ]

Hereafter we use the variable defined by (9) instead aof = .
We note that

P _
—yp = pf(” D12 —x)@+[1-x (1—x)V3y).
Hence the functior,; defined by

rdx 2

B = — X =
2 A= dr 2T xaon”

is smooth int, x, (1—x)N/2, w, dw/dx, 3°w/dx? including x = 0, 1. Therefore

a1

Proposition 6. The derivative B3 can be written as

9%h oh
(16) DB (w)h = A + (1 + ea1)Lh + edpx(1— X)& + egagoh,

where a, &1, ay are smooth functions ofx, (1— x)V/2, w, dw/dx and 3%w/dx>.
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4. Proof of the main result

Hereafter we assume that/2 is an integer so that (2x)N/2 is analytic atx = 1.
We are going to apply the Nash—Moser theorem formulated by d&miktbn ([7,
p.171, 11.1.1.1]) as [21], that is:

Theorem (Nash—Moser(—Hamilton) theorem)Let &, and ¢ be tame spaced)
an open subset ofy and B: U — & a smooth tame map. Suppose that the equa-
tion for the derivative B3(w)h = g has a unique solution b V(w)g in & for all
win U and all g in &, and VB: U x &€ — & is a smooth tame map. ThéR is
locally invertible.

For the definitions of ‘tame spaces’ and ‘tame maps’, see [7]2@]. We shall
use the discussions of [21] without repeating the details.
We consider the spaces of functionstoénd x:

¢ = C*>([0, T] x [0, 1)),
0
Go:z{wEsz—wzomt:O}.
ot
Let U be the set of all functionsv in &y such thatjw| + [dw/dx| < 1. Then, for

we U, y=c¢ey: +¢ecw and its derivative reg are small, provided thaf| < &;. Then
we can consider the mapping

PLE wr—>8t2w—|—(1+8a)[,w+sb

mapsU into &, since the coefficienta, b are smooth functions df, x, w, dw/9x and
the coefficientsLq, L; of £ are analytic on (< x < 1.

The inverse imag&~1(ec) is a desired smooth solution of (13).

We should introduce gradings of norms énso that€, &, become tame spaces
in the Hamilton’s sense. To do so, we use a cut off funciore C*°([0, 1]) such
thatw(X) =1 for 0<x <1/3, 0< w(X) <1 for 1/3 < x < 2/3 andw(x) = 0 for
2/3 < x < 1. For a functiony of 0 < x <1, we shall denote

(17) YOX) = 0()y(x),  yH(x) = (1 - o(x)y(x).

We consider the tame spaces

&) = {y e C*([0, T]Ix[0,1]) | y =0 for

ol U

fxsl},

=

€y = {VGC‘”([O, TIx[0,1]) | y=0for0<x < 6}'
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endowed with the equivalent gradings of nornﬁSIK}m)n, (Il ||fi)]n)n, w=0,1, by the
same manner as in [21], that is, denoting

d2 5d d?2 N d
Ao =X—+-——, Apy=z2—+——, (z=1-X),
[0 dx? + 2dx t dz + 2dz ( )
we put
g = sup | (=2 g
Ylljgn = SUP I =5 ) (=20 Y|
j+k=n Lo
@ T 92 j ‘ 2 1/2
Iy, = Z([ (—W) (—Apa)y dt) ,
j+k=n \/O [1]
where

1 172
¥l = ( [ yzx?’/zdx) |
0

1 1/2
Iyl = (/o yz(l—x)N/z‘ldx) .

On the other hand, og we introduce the gradings of norm- ), and (|-||?), by

82 j
IylI$ == sup (——2) (—Ap)yH|
j+ksnu=0,1]| \ 0t Lo
T 92 j 2 12
(2. ) (- ky/lul
Iy := ( > /o ( 8t2)( Ay dt) .
j+k=<n,u=0,1 [

Then it is easy to see that is a tame space as a tame direct summand of the
cartesian produc€p x &1, which is a tame space. (See [7, p.136, 1.3.3 and 1.3.4])
In fact we consider the linear mappings ¢ — €[ x &3j: h — (h%,hil) and M: ¢[g x
€q: (ho, h1) = hg + hy. It is clear thatL is tame andML = Ide. To verify that M
is tame, we use the following.

Proposition 7. If the support of ¥x) is included in[1/6, 5/6], then

IAD Yl <C D7 AR Yl

0<k=m

A proof can be found in Appendix B. Now ifi, € €[, thenh = M(ho, h;) =
ho + hy, and

h = (hy + h)@ = whg + wh;.
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Then by [21, Proposition 4] we have

|ABRY s = C S Ak hollis + | AR @hy) |-

k=m
Proposition 7 can be applied, since supip{] C [1/6, 2/3], so that

the second terns C Y || Afy(why)]|L~

k<m

<C ) jlafhalli~.

k<m

Therefore we have

AR e < C Y (A holls + Ay hall)-

k<m

The same argument gives the estimatellﬂfﬂ]hll]lle. This implies the tameness of
M. Therefore¢ is tame with respect to the grading-(|©),.
By the discussion of [21] it is clear that the mappifigis tame. In fact we have

IB@)IEY < Cllw|{F).
Therefore we can concentrate ourselves to the analysiseofithar equation
(18) DP(w)h =g

when w is chosen fromU and g is given in €. By Proposition 3 and 6 we can write

(29) DB (w)h 8°h boAh 4+ byx(1 X)8h + bgh
wh=— — —X)— ,
gtz 2 ! X
where
(20) A—x(l—x)a—2+ §(1—x)—ﬂx 9
B ax2 2 27 ) ax
and
] N
b, =1+4¢a;, by =(1+¢ea) + €aq,

xX(1—x)
bo = (1 + eay)Lo + ca

are smooth functions df, x, w, Dw, D?w, whereD = 3/9x.
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In order to establish the existence and uniqueness of thei@olof (18), we intro-
duce the following spaces of functions of<Ox < 1:

1 1/2
X=x%= {y Iyllx := ([ yox¥/2(1 - x)N/21dx) < oo},
0

. d
xti= {ye X |Dy:= \/x(l—x)d—i(l € 36}
X%:={ye x| -AyeXx}.

Then we have

Proposition 8. Let a be a function in d0, 1]. If y € ¥2 and v € X, then
(-aAy | v)z = (@Dy | Dv)x + ((Da)Dy | v)x,

where D = X(1—x) d/dx. Here of course
1
(ulv)x = / uvx¥?(1 - x)N? 1dx.
0

Proof. If v € X2, then

v(X) = v(}) + ' DU—(X/) dx
2 172 VX' (1 —=X)
implies
lu(x)| < Cx 341 — x)~N/4+1/2,
and if y € X2, then

dy dy
5/2 N/2 __ y9/2 N/2
X741 —x) dx = X741 —x) dx

x=1/2
X
_ / Ay(x/)X/S/Z(l _ X/)N/2—l dx’
1/2

implies

X5/2(1 — X)N/Zd_y‘ < X8/ — x)V/A,
dx
(Note that the finite constant

x5/2(1 — X)N/Zd_y

1/2
+ f Ay(x/)x/3/2(1 _ X/)N/Zfl dx
x=1/2 0

should vanish in order tdy € X, and so on.) Therefore the boundary terms in the
integration by parts vanish as— 0, 1 and we get the desired equality. O
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Using Proposition 8, we can prove the following energy eatérin the same man-
ner as [21, Lemma 3]:

Proposition 9. Let ge C([0,T], X). If h € M1 ,C? ([0, T], X) satisfies(18),
then we havefor 0 <t < T,

fahl + Il = C(Jblol + kool + [ o)l )
Here
IhiZs = IhlI% + D%,
and the constant C depends only upon N, ||9:bz|| e, [|Dbz| L, [|D1]lL, [[bollLe,
provided that|1 —by| < 1/2.
We are considering the initial boundary value problem (IBP)
2

ach
W+Ah=g(t,x), h(t, -)E%l,

h
h= on =0 at t=0.
at
Here
- « d
A= —bpA+b;D+by, D=x(1- x)&.
Note that ‘h(t, -) € X" is a Dirichlet boundary condition in some sense. In factahc

be shown thaC(0, 1) is dense inx’.
Anyway, applying Kato’s theory developed in [11], we have

Proposition 10. If g € C([0, T], 1) U C([0, T], X), then there exists a unique
solution h of(IBP) in (,_o1,C2 ([0, T], X¥).

Proof. We write (IBP) as

(i) (2 9)E)=(5)

Applying the semi-group theory in the spage= X' x X to the family of generators

D(A(t)) = X2 x x1,

mm=(§ j)
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we get the result. The proof is same as in the Appendix C of. [Ritjte that

(Ay | v)x = (b2Dy | Dv)x + (b1 + Db)D + bo)y | v)x
for y € X% andv € X! thanks to Proposition 8. O

We are going to prove the smoothness of the solution and tdgyetme estimates.
In order to do it, we use the cut off functiam to separate the singularities at= 0
and x = 1, since, although the singularities are of the same typec#iculus structure
of A™, me N, is little bit complicated.

The equationd®h/at? + Ah = g is split into the following simultaneous system
of equations:

02 v
(_ * A[ol)h[ol = ¢ — (@D + co)ht",

at2
(21) 2
(W + Am)h[” =g + (&D + co)hl,
where

€ = (2b2 —b1)Dw, Co = bx(Aw),
A = —b2A + (by 4 ¢1)D + bg + co,
.A[l] = —b,A + (bl — Cl)[v) + bg — ¢co.

We can rewrite them as:

d
Ay = ~brope Aoy + Bop X+ byop,

d
Apy = —bpp g + b[1]12d—z + by, (z=1-x),

where
bojz = b2(1 - x), by = box,
N 5
b[O]l = EbZ + (bl + C]_)(l — X), b[1]1 = Ebz — (bl — C]_)X,
brojo = bo + Co,  brajo = bo — Co.

We may assume thaby,;p — 1] <« on x € I,;, u =0, 1, with a constant such that
2/3<k <1, eg.,k=5/6. Herelg = [0, 2/3], Iy =[1/3, 1].

We note that the regularity of the solutidnestablished by Proposition 10 can be
reduced to that ohl, hitl, In fact, if we knowh[® e C>([0, T] x [0, 2/3]), then
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h(t, x) = hl(t, x)/w(x) is smooth on O< x < 2/3, and the smoothness bfY! implies
that of h(t, x) = h /(1 — w(x)) on 1/3 < x < 1.

But the regularity of the solution of the simultaneous syst@1) can be proved
by Kato’s theory developed in [12], as in Appendix C of [21]amely, we consider
in the space

H= oy X Hy xR
= 36[1010 x Xjo) X 36[11]0 x Xpp xR
the family of generators
DEI(t)) = & = G x Gy xR
= X{oj0) X Xjoo X Xfuyo) X Xfajo X R,
2A(t) = Aoy (t) ® Apzy(t) ® 0+ B(),

0 0 0 0 0
0 0 —(D+c) 0 —go
B(t) = 0 0 0 0 o |1,
aD+c 0 0 0 —gi
0 0 0 0 0
where
0o -1
A (t) = .
) (A[u] 0 )
Here we set

2/3 172
%[01={y||y||xw] :=(0 YO0 S/de) <oo},

. d
Doy = ﬁd_i/ € x[O]},

3€[1010 ={ye x[lo] | Ylx=2/3 = 0},
Xy =y € Xy | Ay € X},
X{oxo) = o) N Xjopo:

172
:{[1] = {y ”y”%[l] = (/ Y(X) a- X)N/2 ldX) < oo},

,—d
D[ly - —yG}:[l}

Xioy = {y € X[

Xpy = {y € Xy
Xfigo = {Y € Xy | Ylx=1/3 = 0},
Xy =1y € Xy | Ay € X,
Xfi0) = Xfy N Xfipo-
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REMARK. 1) It may be difficult to verify that, given a solutiorhd, h;) of the
system (21) such thdt, ﬂkzoylvzc“([o, T], 36}‘”]), the functionh which should be
defined by

ho(X) 0<x<1/3),
h(t, x) = {ho(x) L hix) (1/3 < x < 2/3),
ha(x) (2/3<x<1)

belongs toC([0, T], X2). Therefore we first established the existence of the switii
by Proposition 10. Then, by the uniqueness, we can claimrhiat= h,,, the solutions

of (21).
1 172
Iylo) = ( /0 y(x)2x3/2dx)

2) We used
in the definition of the gradings o). But |ylx, = IlYllg for y = h%, since
supphl®] c [0, 2/3]. So, we can considen(t, - )" € X7, for the solutionh es-
tablished in Proposition 10.

Then B(t) € C([0, T], B(fg)) is a smooth bounded perturbation from the stable fam-
ily (2op(t) ® 2Ajy(t) ® O). Hence él(t))t is stable.

In order to consider ‘smoothness’, ‘ellipticity’ and contibdity conditions, we
introduce the scales of Hilbert spaces

S a1 j j+1 j
9 = Xigi) * Xjo) X Xay) * Xy ¥ R,

~ 2 j+1 j j+1 j
&) =& NH; = Xy X Xppyo) X Xjaio) X Xfyye) X Rs
as in Appendix C of [21], where

XN =1y € X[ | DALY € X}
XN = (y € X[ AfY € X,

i o) 1
X0 = X N X

The definition of|| - ”x[j] follows that of || - [|; in [21], that is:

1/2
1Yllxy, = (Z«ymf) ,

I<j

<y> 1l = {”Aﬁ]y”x[u] as I = Zm’
% ||D[M]Am]y”3€[“] as | = 2m+ 1.
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In order check the ‘smoothness’, we note tliat= cp = 0 for 0 < x < 1/3 or
2/3 < x < 1. This implies that
1(e1D + co)yM . = Cli(eaD + co)yM g = CllyH e,

1(e1D + o)yl g, = Cli(eaD + co)y ¥y = Clly Ml pen.
(See [21, Proposition 6].) Here we have used the following
Proposition 11. If the support of ye C*(0, 1) is included in[1/3, 2/3], then

Iy, < ClYly

L
[1=n]

whereu =0, 1L

A proof can be found in Appendix B.

Then, using this observation, we can reduce the ‘elligtictf ﬁl(t) to that of
Apg @), =0, 1.

The compatibility conditions are guaranteed as follows.

We are considering the Cauchy problem

du .
—_— Qlt u= O., Ult=0 = )
T ) lt=0 = ¢o
where
O -1 o0 0 0
Ag 0 —C 0 —g@
A(t) = 0 0 0 -1 0 ,
C 0 A[l] 0 —g[”
0 0 0 0 0
C:= C]_[s + Co,
0
0
=10
0
1

As in [11, Section 2], we consider

=1,

j+1 : j d)'™s
St == (k) (a) A0S,

k=0
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A

Do = S’_') = x%O]O X %[0] X %[11]0 X }:[1] X ]R,
Djs1={¢€Dj|Sp ey 0=ksj}.
We should show thapg € D, for any n. But g, gi¥! can be considered as func-

tions in C>=([0, T] x [0, 1]) such that, for all positive integdr, 3!g®(0, x) = 0 for
2/3<x <1 andd g0, x) =0 for 0<x < 1/3. We denote

¢k = Sk¢0 = ¢E(1]0
Hlin

Then it is easy to verify by induction that, for> 1, the extensionb = ({50, Py
Hiyor Bigpr ) of ¢y defined by

Fop(¥) = {%]O(X) (((2)/2 ii i/i;
- [0 27322
Puo(x) = {gmo(x) 8/2 2 x ;/i;
0= {34 0 (Vasx=n)

belongs toC>([0, 1]; R®). In other words, the components ¢f satisfy the boundary
conditions atx = 1/3 andx = 2/3 and ¢ = S¢p remains in@ﬁkH. It implies that
¢o € D, for all n.

Summing up, we can claim th&af® e C>([0, T] x [0, 2/3]) andhfl € C>([0, T] x
[1/3, 1]) provided thatg € C*([0, T] x [0, 1]).

Finally, we must deduce the tame estimatewfd) — h. We are going to show that

T T T
1S, < c@+ 1gls, + [wl{T).

/2
Iyl ::< 2 / o Yy dt) ,

j+k=n,u=0,1

Here

M= max _||a; DF,y"™ |~ :
1Yln ]+k§n,u:0,l”t LYY Lo, T1x10,1)
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Let us follow the discussion of [21, Section 5.4]. To do so, stwuld reconsider
the discussion about the single equation, say, we considetution H of the boundary
value problem

3%H -
W + A(D)H =G(t, x), H|x=1=0

on 0<t < T. Hereb stands for the vectorbg, by, bp). The energy estimate claimed
in Proposition 9 should read

t
leHI + 1H L = C(||3tH le=oll + I Hle=oll2 +/ IG)II dt’)-
0

Even if we consider theHd = h which satisfy the initial conditiorh|i—g = 9h|i=o =
0, the higher derivative$"*h may not vanish at = 0. Therefore the estimate of
8" *h|l; in the proof of [21, Proposition 10] should be replaced by

Jr+thly < c(nat“*zhh_on 137 hleolls

t t
+ / Jan+ig) dt + f I, Alh| dt’).
0 0
We claim the estimate
(22) 197 2hle—oll + 10" *hli—olls < C(L + Wa(g) + [BI1%,),

provided thatWy(g), [b\” < Mo. Here

Wa(@) := Y [13{glollx

j+k=n
and

0 .= max |3 D*yls—ollL~(0.11-
1Yln J.+k5n|| i D*Ylt—ollL=(0,1))

To prove (22) it is sufficient to verify the following estingaby induction om: for all
k e N,

187 2hi=olk < C(IBI 1 Wo(@) + [BI) s Wn—2(g) + Wa(9))-

Since the proof of the above inequality by induction mrusing the estimate

IA®)YIlk < C(IYllk+2 + [blisalyl)

applied to the relation

n
?h = — Z (T) A@{"b)o{ h + Mg

=0
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is straightforward, we omit it.

Moreover we note that the inequality in the statement of [2&mma 4] can be
replaced by the stronger one:

t
! ’ oi(T
I, < C(1+ /0 1917, dt’ + Wa(g) + lall" + |b|§+>3),

for 0<t <T, where

. 172
Iylls? = ( > / ||3tJY||Edt> )
j+k=n 0

() -— max||a DXy|| .
1Ylh ijksn” i DYl L~ (0,71x[0,1))

This can be verified easily by following the discussion in,[Bection 5.4]. Let us
omit the detail.

Let us go back to the simultaneous system of equations. Applthe above dis-
cussion on a single equation, we have

t
! T o (T
N2 < c(1 + /O N 2 At + Wa(@) + llgll; + |b|;+>3),
t
! T o (T
IR 2 < 0(1 + /o N G2 At + Wa(@) + llgll), + |b|;33),
for0<t <T, since

1(c1D + co)ht™ 1k < CQ + [0V ugst + [BILS)

for w =0, 1. Here| - |« Stands for| - ||xi<“]. Applying the Gronwall lemma to the
guantity

U@ = 10 G + 1010,
we get
U(t) < C(L+ Wh(g) (41
= + n(d +||g||n+1+| |n+3'
This completes the proof, sind&(g) < C||g||f]T+)1 by Sobolev’s imbedding.

5. Cauchy problems

We have discussed about the justification of linearized @piprations by time-
periodic solutions. In this section we want to give a briefntien on the Cauchy
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problems associated with the equation (6) or (12). We cendite problem (CP):

9%y ay dy
2 + (1+ Gl(ya rg))ﬁy—i— G (r, Y, rﬁ) =0,

i Ya(r),

Ylt=o0 = Yo(r), 5t e

where the initial datajyg, ¥; are given functions. We claim

Theorem 2. Assume tha6/5 <y <2 (& 4 < N < 12) and thaty/(y — 1)
(= N/2) is an integer that is y is either 2, 3/2, 4/3 or 5/4. Then for any given
T > 0 there exist a sufficiently small positive numideand a sufficiently large integer
t such that ifyy, Y1 € C>([0, R]) satisfy

dy’ dy’
max — , — <34,
152(2‘+1){H(dr) Vo L*(0,R) H(dr) & Lx(o,R)}

then there exists a unique solutiorit yr) of (CP)in C*([0, T] x [0, R]).

A proof of this theorem can be done as follows.
Let us take the function

yi(t, 1) = Yo(r) + tyn(r),
which satisfy the initial conditions. Then we should find dusion w introduced by
y=v+uw,
which should obey the initial conditions

ow
Wl—o = ﬁ =
t=0

The equation whichw should satisfies is same as (13), in which the time-periodic
function

ey = sin(vt + 6)d(r)

is replaced by

yi = Yo(r) + tya(r),
and F, + F;; should be replaced by

1+ Gi(y; +w, vi +Q))LY] + Gu(r, y; +w, vy + Q).
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Of course we takee = 1. Then the mapping3(w) and the derivativeDB(w)h are
defined in the same forms as (14) and as (15). Proposition &shallid, since the
concrete structure of the function or y; is not used in the proof; It is sufficient that
ey1 or y; is a small smooth function. Hence Proposition 6 holds valitien ey, is
replaced byy;.

Then the proof of Theorem 1 given in Section 4 can be repeatad ¥or word
in the present situation. Note that

{ve ) oo

and that||c|®) < C(llyoll &) + v1lI$), provided that 0<t < T. In fact, if we
follow the discussion of [7, 1ll.1.], we can show that it iscaigh to taker such that
2t > 3/2 + max{5, N}/4. (But thist may not be the best possible.) Anyway this

completes the proof of Theorem 2.

REMARK. The corresponding initial data in the Eulerian variables given by

pliolr) = 502+ val?( 1+ o) + 7 d""’(”)) ,
Uli=o(r) = Fy1(F)

implicitly by 7 = f(m(r)). Herem— r(m) is the inverse function of

:
Fi>m=m() = 4r / p(r)r?dr
0
andr — m(r) is the inverse function o r = r(m)(1 + ¥o(F(m)).

6. Concluding remark

In order that the equilibrium satisfy tha? ! is analytic at the free boundary=
R and that the eigenfunctiog; is analytic inr atr = R, we have assumed thd
is an even integer. Buy = 5/3(N = 5) for mono-atomic gas, angt = 7/5(N = 7)
for the air. Therefore it is desired that the result will beesxded to the case whex
is an odd integer at least. Moreover for the case whNeis not an integer, we might
try quite other approach. It seems that these are integestiren problems in view of
physical applications.

Appendix A.
Let us consider a solutiop = p(r), ro <r < R, of the Lane—Emden equation

1d(r2dP
r2dr(p dr) 77 Gl g
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Let [ro, R) be a right maximal interval of existence @f > 0, and we assume that
R < 400, dp/dr|,=, < 0. Then there is a positive constaitsuch that

R—r R—r v/(y=1)
=C(R—-rn)Y¢1(1 ,C'
p=C(R-r) tR R .

with
C/ — K R)//()/—l)cz—y K — 47-[90(]/ - 1)
1 Ay .
Proof. The variable
U:=prt
satisfies
d2u 2duU
— + - — 4+ KU™=0,
dr? + r dr +
wherem = 1/(y —1). Then
r du
= —— = KrZUm—l
v U dr v

satisfies the plane autonomous system

dv 2
[—=—-v+ v+ w,
dr

rz—lf = w2 - (m-—1)pv).

The interval fo, R) is right maximal. We assumed thafrg) > 0. We claim that
there isry € [ro, R) such thatv(r;) > 1. Otherwise O< v < 1 and|(r /w) dw/dr| <
m+1 forrg <r < R. Then it should beR = +o0, a contradiction to the assumption.
Hence we can assume thafro) > 1. Thenr dv/dr > v(v — 1) impliesv > 1 + §,
dv/dr > 0 andr dw/dr < 2w. So, it should be that(r) - +oco asr — R, since
R < co. We seew < B.

Now we introduce the variables
1 w

X1:1=—, Xoi=—,
v v2

r A /
foe exp(—/ o(r’)dr )
ro r/

Then &y, x2) — (0, 0),t — 0 asr — R and a(t), Xo(t)), 0 <t <1, satisfies

dX]_
t— =(1-x X2)X1,
at ( 1+ X2)X1
dX2

IE = (m+ 1—4x; + 2x2)Xa.
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As well-known, this Briot—Bouquet system can be reduced to

le
t— = 7,
at 2
d22
t— = 1
i (m+ 1)z,

by a transformation of the form

X1 = Zl(l + Pl(zl, Zz)),

Xo = 22(1 + P2(Z;|_, Zg)).
Here

Pi(z1, 22) = [21, Z2]1
for j =1, 2. Therefore there are positive consta@ts C, such that

X1 = Cit(1 + Py(Cyt, Cot™ 1),
Xo = C2tm+l(1 + PZ(C]_t, C2tm+l)).

Sincedr/r = —x; dt/t, we see

o R_R—r 14 R—r
9T TR R |,

= Cit(1 +[Cat, Cat™]y),

R—r R—r _(R—r\™!
=S (= [he(5F) L)
« — R-T 14 R—r (R-r m+1
1= R R 1 R 1 ’

whereC’ = C2/Cf‘+1. IntegratingdU/U = —dr/rx;, we have

R— R— R— m+1
U=c, r 14 r’C, r _
R R R .

It is easy to se€C’ = KR?CJ*1, and we get the required result.

from which

and

Appendix B.

Let us prove Proposition 7, that is,

IAR Yl < C Y IAL YL,

k<m

577
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provided that supp{ C [1/6, 5/6].
Note that

Apy = a Ay + BDy,

where Dy = z d/dz= —(1—x) d/dx and

X = 1 X N+5
YT PT T x\1=x2 T2

are smooth function on (0, 1). Therefor our task is to esemat

(@ Apy + B0 Y| L

On the other hand, it is easy to verify that there ajﬁ) € C*(0, 1) such that

(@Apy + BDm)™ = > (i D Ay + vse Aly)

k<m

with ™ = 0. Note that
<k - k < 2 kil
IDm A Yliie = DA lle = SIAQT Y.

(See [21, Proposition 3]). This completes the proof.
Let us prove Proposition 11, that is,

IVl = CliYl,

[0] [

provided that suppf c [1/3, 2/3].
It is clear that

”yHX[O] = C”y”%[u’

since x¥/2 < 3V/271(1 — x)V/2 1 for 1/3 < x < 2/3. Let us estimate AR y||x, and
I Do Affy Yll 2y Where Doy = /Xd/dx. As in the above discussion we note that

Ap) = apy + BDy,

where I5[1] =zd/dz=—-(1—x)d/dx and
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are smooth function on (0, 1). Therefor our task is to esémat

1A Ylxg < CIAR Yy = Cl(elp + BDm)™Yllxy
and

| B0 A Yl = Cll By Ay Yl = Cll By (@A + BDu)™Yllxiy-
On the other hand, it is easy to verify that there aj’k@,y!&mt € C*(0,1) such that

(@h +BD)" =Y (AP DAk + P ak),
k<m
Dlas +BD)™ = Y (1 DA  + yg* )

k<m

with ™ = 0. Here A, D stand for Ay, Dp. Hence we have

Im
I AR YIxa = ClYlap.
||D[°]AP3]V||3€[01 = C||y||3g[21r?+1.

This completes the proof.
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