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Abstract
We obtain a simple presentation of the hyperelliptic mapping class groupMh(N)

of a nonorientable surfaceN. As an application we compute the first homology
group ofMh(N) with coefficients inH1(NI Z).

1. Introduction

Let Nn
g,s be a smooth, nonorientable, compact surface of genusg with s boundary

components andn punctures. Ifs and/or n is zero, then we omit it from the nota-
tion. If we do not want to emphasise the numbersg, s, n, we simply write N for a
surface Nn

g,s. Recall thatNg is a connected sum ofg projective planes, andNn
g,s is

obtained fromNg by removings open disks and specifying the set6 D {z1, : : : , zn}

of n distinguished points in the interior ofNg.
Let Diff( N) be the group of all diffeomorphismshW N! N such thath is the iden-

tity on each boundary component andh(6) D 6. By M(N) we denote the quotient
group of Diff(N) by the subgroup consisting of maps isotopic to the identity, where we
assume that isotopies fix6 and are the identity on each boundary component.M(N)
is called themapping class groupof N.

The mapping class groupM(Sn
g,s) of an orientable surface is defined analogously,

but we consider only orientation preserving maps. If we include orientation reversing
maps, we obtain the so-calledextended mapping class groupM�(Sn

g,s).

Suppose that the closed orientable surfaceSg is embedded inR3 as shown in Fig. 1,
in such a way that it is invariant under reflections acrossxy-, yz-, xz-planes. Let%W Sg!

Sg be thehyperelliptic involution, i.e. the half turn about they-axis. Thehyperelliptic
mapping class groupMh(Sg) is defined to be the centraliser of% in M(Sg). In a sim-
ilar way we define theextended hyperelliptic mapping class groupMh�(Sg) to be the
centraliser of% in M�(Sg).
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Fig. 1. SurfaceSg embedded inR3.

1.1. Background. The hyperelliptic mapping class group turns out to be a very
interesting and important subgroup of the mapping class group. Its algebraic properties
have been studied extensively—see [4, 9] and references there. AlthoughMh(Sg) is
an infinite index subgroup ofM(Sg) for g > 3, it plays surprisingly important role in
studying its algebraic properties. For example Wajnryb’s simple presentation [18] of
the mapping class groupM(Sg) differs from the presentation of the groupMh(Sg) by
adding one generator and a few relations. Another importantphenomenon is the fact,
that every finite cyclic subgroup of maximal order inM(Sg) is conjugate to a subgroup
of Mh(Sg) [14].

Homological computations play a prominent role in the theory of mapping class
groups. Let us mention that in the case of the hyperelliptic mapping class group,
Bödigheimer, Cohen and Peim [5] computedH�(Mh(Sg)IK) with coefficients in any
field K. Kawazumi showed in [9] that if ch(K) ¤ 2 then H�(Mh(Sg)I H1(SgIK)) D 0.
For the integral coefficients, Tanaka [17] showed thatH1(Mh(Sg)I H1(SgI Z)) � Z2.
Let us also mention that Morita [11] showed that in the case of the full mapping class
group, H1(M(Sg)I H1(Sg, Z)) � Z2g�2.

1.2. Main results. The purpose of this paper is to extend the notion of the
hyperelliptic mapping class group to the nonorientable case. We define this group
Mh(N) in Section 2 and observe that it contains a natural subgroupMhC(N) of in-
dex 2 (Remark 2.3).

Then we obtain simple presentations of these groups (Theorems 4.1 and 4.4). By
analogy with the orientable case, these presentations may be thought of as the first
approximation of a presentation of the full mapping class group M(N). In fact, for
g D 3 the hyperelliptic mapping class groupMh(N) coincide with the full mapping
class groupM(N) (see Corollary 4.3). Ifg � 4, then Paris and Szepietowski [12] ob-
tained a simple presentation ofM(N), which can be rewritten (Proposition 3.3 and
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Theorem 3.5 of [16]) so that it has the hyperelliptic involution % as one of the gener-
ators, and the hyperelliptic relations (Theorem 4.1) appear among defining relations.

As an application of obtained presentations we compute the first homology groups
of Mh(N) andMhC(N) with coefficients inH1(NI Z) (Theorems 5.3 and 5.4).

2. Definitions of Mh(Ng) and MhC(Ng)

Let Sg�1 be a closed oriented surface of genusg�1> 2 embedded inR3 as shown
in Fig. 1, in such a way that it is invariant under reflections acrossxy-, yz-, xz-planes,
and let j W Sg�1! Sg�1 be the symmetry defined byj (x, y, z) D (�x,�y,�z). Denote
by CM�(Sg�1)( j ) the centraliser ofj in M�(Sg�1). The orbit spaceSg�1=h j i is a non-
orientable surfaceNg of genusg and it is known (Theorem 1 of [3]) that there is an
epimorphism

� j W CM�(Sg�1)( j )!M(Ng)

with kernel ker� j D h j i. In particular

M(Ng) � CM�(Sg�1)( j )=h j i.

Observe that the hyperelliptic involution% is an element ofCM�(Sg�1)( j ). Hence the
following definition makes sense.

DEFINITION. Define thehyperelliptic mapping class groupMh(N) of a closed
nonorientable surfaceN to be the centraliser of� j (%) in the mapping class groupM(N).
We say that� j (%) is thehyperelliptic involutionof N and by abuse of notation we write
% for � j (%).

In order to have a little more straightforward description of % observe, that the
orbit spaceSg�1=h j i gives the model ofNg, where Ng is a connected sum of an ori-
entable surfaceSr and a projective plane (forg odd) or a Klein bottle (forg even)—
see Fig. 2. To be more precise,Ng is the left half of Sg�1 embedded inR3 as in
Fig. 1 with boundary points identified by the map (x, y, z) 7! (�x, �y, �z). Note that
g D 2r C 1 for g odd andg D 2r C 2 for g even. In such a model,% W Ng ! Ng is
the map induced by the half turn about they-axis.

Observe that the set of fixed points of%W Ng! Ng consists ofg points{p1, p2, : : : ,
pg} and the circlep. ThereforeMh(N) consists of isotopy classes of maps which
must fix the set{p1, p2, : : : , pg} and map the circlep to itself. Moreover, the orbit
spaceNg=h%i is the sphereSg

0,1 with one boundary component corresponding top and

g distinguished points corresponding to{p1, p2, : : : , pg}. Since elements ofMh(Ng)
may not fix p point–wise, it is more convenient to treatp as the distinguished puncture

pgC1, hence we will identifyNg=h%i with the sphereSg,1
0 with gC 1 punctures. The

notation Sg,1
0 is meant to indicate that maps ofSg,1

0 (and their isotopies) could permute
the puncturesp1, : : : , pg, but must fix pgC1.
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Fig. 2. Nonorientable surfaceNg.

The main goal of this section is to prove the following theorem.

Theorem 2.1. If g > 3 then the projection Ng! Ng=h%i induces an epimorphism

�

%

WM
h(Ng)!M

�(Sg,1
0 )

with ker�
%

D h%i.

Proof. Consider the following diagram

CM�(Sg�1)(h j , %i) C
M�(S2g

0 )( j )

Mh(Ng) M�(Sg,1
0 ).

 

!

�

%

 

!

� j  

!

� j

 

!

�

%

 

!i j

The left vertical map is the restriction of the projection

� j W CM�(Sg�1)( j )!M(Ng)

to the subgroup consisting of elements which centralise%. The nice thing about� j is
that it has a section

i j WM(Ng)! CM�(Sg�1)( j ).

In fact, for any h 2M(Ng) we can definei j (h) to be an orientation preserving lift
of h.

The upper horizontal map is the restriction of the homomorphism

�

%

WM
h�(Sg�1)!M

�(S2g
0 )
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induced by the orbit projectionSg�1 ! Sg�1=h%i. The fact that this map is a homo-
morphism was first observed by Birman and Hilden [4]. The kernel of this map is
equal toh%i.

The right vertical map is again the homomorphism induced by the orbit projec-

tion S2g
0 ! S2g

0 =h j i. However now j W S2g
0 ! S2g

0 is a reflection with a circle of fixed
points. The existence of� j in such a case follows from the work of Zieschang (Prop-
osition 10.3 of [19]).

Hence there is the homomorphism

�

%

WM
h(Ng)!M

�(Sg,1
0 )

defined as the composition

�

%

D � j Æ �% Æ i j .

Moreover,

ker�
%

D ker(� j Æ �% Æ i j ) D (� j Æ �% Æ i j )
�1(id)

D i �1
j (��1

%

(��1
j (id))) D i �1

j (��1
%

(h j i)) D i �1
j (h j , %i) D h%i.

REMARK 2.2. Theorem 2.1 is not true ifN D N2. This corresponds to the fact
that the Birman–Hilden theorem does not hold for the closed torus SD S1.

REMARK 2.3. Theorem 2.1 shows that the groupMh(Ng) contains a very nat-
ural subgroup of index 2, namely

M
hC(Ng) D ��1

%

(M(Sg,1
0 )).

Geometrically, the subgroupMhC(Ng) consists of these elements, which preserve the
orientation of the circlep (the circle fixed by%). As we will see later (see Remark 4.6),
it seems that the groupMhC(N) corresponds toMh(S), whereasMh(N) corresponds
to Mh�(S).

3. Presentations for groupsM(Sg,1
0 ) and M�(Sg,1

0 )

Let w1,w2, : : : ,wg be simple arcs connecting puncturesp1, : : : , pgC1 on a sphere

SgC1
0 as shown in Fig. 3. Recall that to each such arcwi we can associate the elem-

entary braid�i which interchanges puncturespi and piC1—see Fig. 3. The following
theorem is due to Magnus [10]. It is also proved in Chapter 4 of [2].



500 M. STUKOW

Fig. 3. SphereSpC1
0 and elementary braid�i .

Theorem 3.1. If g > 1, then M(SgC1
0 ) has the presentation with generators

�1, : : : , �g and defining relations:

�k� j D � j�k for jk � j j > 1,

� j� jC1� j D � jC1� j� jC1 for j D 1, : : : , g� 1,

�1 � � � �g�1�
2
g�g�1 � � � �1 D 1,

(�1�2 � � � �g)gC1
D 1.

In order to avoid unnecessary complications, from now on assume thatg > 3. Re-

call that we denote byM(Sg,1
0 ) the subgroup ofM(SgC1

0 ) consisting of maps which
fix pgC1.

Theorem 3.2. If g > 3, then M(Sg,1
0 ) has the presentation with generators

�1, : : : , �g�1 and defining relations:
(A1) �k� j D � j�k for jk � j j > 1 and k, j < g,
(A2) � j� jC1� j D � jC1� j� jC1 for j D 1, 2, : : : , g� 2,
(A3) (�1 � � � �g�1)g

D 1.

Proof. By Lemma 2.2 of [1],

M(Sg,1
0 ) � Bg=h1

2
i,

where Bg DM(Sg
0,1) is the braid group ong strands, and

1

2
D (�1 � � � �g�1)g
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is the generator of the center ofBg. Since Bg has the presentation with generators
�1, : : : , �g�1 and defining relations (A1), (A2), this completes the proof.

REMARK 3.3. Theorem 3.2 can be also algebraically deduced from Theorem 3.1.

SinceM(Sg,1
0 ) is a subgroup of indexgC 1 in M(SgC1

0 ), for the Schreier transversal
we can take

(1, �g, �g�g�1, : : : , �g�g�1 � � � �1).

If we now apply Reidemeister–Schreier process, as generators for M(Sg,1
0 ) we get

�1, : : : , �g�1 and additionally�1, : : : , �g where

�k D

�

�g � � � �kC1�
2
k �

�1
kC1 � � � �

�1
g for k D 1, : : : , g� 1,

�

2
g for k D g.

As defining relations we get

�k� j D � j�k for jk � j j > 1 and k, j < g,

�k� j D � j�k for j ¤ k, kC 1,

� j� jC1� j D � jC1� j� jC1 for j D 1, 2, : : : , g� 2,

�k�kC1�
�1
k D �

�1
kC1�k�kC1 for k D 1, 2, : : : , g� 1,

�k�k�
�1
k D �kC1 for k D 1, 2, : : : , g� 1,

�1�2 � � � �g D 1,

�g�1 � � � �2�1�1�1�2 � � � �g�1 D 1,

(�g�1�g�2 � � � �1�1)g
D 1.

If we now remove generators�1, : : : , �g from the above presentation, we obtain the
presentation given by Theorem 3.2. The computations are lengthy, but completely
straightforward.

Recall that byM�(Sg,1
0 ) we denote the extended mapping class group of the sphere

Sg,1
0 , that is the extension of degree 2 ofM(Sg,1

0 ). Suppose that the sphereSg,1
0 is the

metric sphere inR3 with origin (0,0,0) and that puncturesp1, : : : , pg are contained in the

xy-plane. Let� W Sg,1
0 ! Sg,1

0 be the map induced by the reflection across thexy-plane.
We have the short exact sequence.

1!M(Sg,1
0 )!M

�(Sg,1
0 )! h� i ! 1.

Moreover, ��i�
�1
D �

�1
i for i D 1, : : : , g � 1. Therefore Theorem 3.2 implies the

following.
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Theorem 3.4. If g > 3, then M�(Sg,1
0 ) has the presentation with generators

�1, : : : , �g�1, � and defining relations:
(B1) �k� j D � j�k for jk � j j > 1 and k, j < g,
(B2) � j� jC1� j D � jC1� j� jC1 for j D 1, 2, : : : , g� 2,
(B3) (�1 � � � �g�1)g

D 1,
(B4) � 2

D 1,
(B5) ��i� D �

�1
i for i D 1, 2, : : : , g� 1.

4. Presentations for groupsMh(Ng) and MhC(Ng)

By Theorem 2.1 there is a short exact sequence.

1! h%i !M
h(Ng)

�

%

�!M
�(Sg,1

0 )! 1.

Moreover, it is known that as lifts of braids�1, : : : ,�g�1 2M
�(Sg,1

0 ) we can take Dehn
twists ta1, : : : , tag�1 2Mh(Ng) about circlesa1, : : : , ag�1—cf. Fig. 2 (small arrows in
this picture indicate directions of twists). As a lift of� we take the symmetrys across
the xy-plane (the second lift of� is the symmetry%s, that is the symmetry across the
yz-plane).

To obtain a presentation for the groupMh(Ng) we need to lift relations (B1)–(B5)
of Theorem 3.4. Each relation of the form

w(�1, : : : , �g�1, � ) D 1

lifts either tow(ta1, : : : , tag�1, s) D 1 or tow(ta1, : : : , tag�1, s) D %. In order to determine
which of these two cases does occur it is enough to check whether the homeomorphism
w(ta1, : : : , tag�1, s) changes the orientation of the circlea1 or not. This can be easily
done and as a result we obtain the following theorem.

Theorem 4.1. If g > 3, then Mh(Ng) has the presentation with generators
ta1, : : : , tag�1, s, % and defining relations:
(C1) tak ta j D ta j tak for jk � j j > 1 and k, j < g,
(C2) ta j ta jC1ta j D ta jC1ta j ta jC1 for j D 1, 2, : : : , g� 2,

(C3) (ta1 � � � tag�1)
g
D

�

1 for g even,
% for g odd,

(C4) s2
D 1,

(C5) sta j sD t�1
a j

for j D 1, 2, : : : , g� 1,

(C6) %2
D 1,

(C7) %ta j % D ta j for j D 1, 2, : : : , g� 1,
(C8) %s% D s.
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Corollary 4.2. If g > 3, then

H1(Mh(Ng)) D

�

Z2� Z2 for g odd,
Z2� Z2� Z2 for g even.

Proof. Relation (C2) implies that the abelianization of thegroup Mh(Ng) is an
abelian group generated byta1, s, %. Defining relations take form

t (g�1)g
a1

D

�

1 for g even,
% for g odd,

s2
D 1, t2

a1
D 1, %

2
D 1.

Hence H1(Mh(Ng)) D hta1, si ' Z2 � Z2 for g odd andH1(Mh(Ng)) D hta1, s, %i '
Z2� Z2� Z2 for g even.

The main theorem of [7] implies that the groupM(N3) is generated bya1, a2 and
a crosscap slide which commutes with%. HenceMh(N3) DM(N3) and Theorem 4.1
implies the following.

Corollary 4.3 (Birman–Chillingworth [3]). The groupM(N3) has the presenta-
tion with generators ta1, ta2, s and defining relations:
(D1) ta1ta2ta1 D ta2ta1ta2,
(D2) (ta1ta2ta1)

4
D 1,

(D3) s2
D 1,

(D4) sta j sD t�1
a j

for j D 1, 2.

Proof. By Theorem 4.1, the groupM(N3) is generated byta1, ta2, %, s with
defining relations:
(C2) ta1ta2ta1 D ta2ta1ta2,
(C3) (ta1ta2)

3
D %,

(C4) s2
D 1,

(C5) sta j sD t�1
a j

for j D 1, 2,

(C6) %2
D 1,

(C7) %ta j % D ta j for j D 1, 2,
(C8) %s% D s.
Using (C2), we can rewrite (C3) in the form

% D ta1ta2ta1(ta2ta1ta2) D ta1ta2ta1(ta1ta2ta1) D (ta1ta2ta1)
2.

Hence we can remove% from the generating set and then (C6) will transform into
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(D2). It remains to check that relations (C7) and (C8) are superfluous. Let start
with (C7).

ta1%t�1
a1
D ta1(ta1ta2ta1)(ta1ta2ta1)t

�1
a1

D ta1(ta2ta1ta2)(ta1ta2ta1)t
�1
a1
D (ta1ta2ta1)(ta1ta2ta1) D %,

ta2%t�1
a2
D ta2(ta1ta2ta1)(ta1ta2ta1)t

�1
a2

D ta2(ta1ta2ta1)(ta2ta1ta2)t
�1
a2
D (ta1ta2ta1)(ta1ta2ta1) D %.

Now we check (C8).

s%sD s(ta1ta2ta1)
2sD (t�1

a1
t�1
a2

t�1
a1

)2
D (ta1ta2ta1)

�2
D (ta1ta2ta1)

2
D %.

By restricting homomorphism�
%

WMh(Ng)!M�(Sg,1
0 ) to the subgroupMhC(Ng)

we obtain the exact sequence

1! h%i !M
hC(Ng)

�

%

�!M(Sg,1
0 )! 1.

Now if we lift the presentation from Theorem 3.2, we get the following.

Theorem 4.4. If g > 3, then MhC(Ng) has the presentation with generators
ta1, : : : , tag�1, % and defining relations:
(E1) tak ta j D ta j tak for jk � j j > 1 and k, j < g,
(E2) ta j ta jC1ta j D ta jC1ta j ta jC1 for j D 1, 2, : : : , g� 2,

(E3) (ta1 � � � tag�1)
g
D

�

1 for g even,
% for g odd,

(E4) %2
D 1,

(E5) %ta j % D ta j for j D 1, 2, : : : , g� 1.

Corollary 4.5. If g > 3, then

H1(MhC(Ng)) D

�

Z2(g�1)g for g odd,
Z(g�1)g � Z2 for g even.

Proof. Relation (E2) implies that the abelianization of thegroupMhC(Ng) is an
abelian group generated byta1, %. Defining relations take form:

t (g�1)g
a1

D

�

1 for g even,
% for g odd,

%

2
D 1.

Hence H1(MhC(Ng)) D hta1i ' Z2(g�1)g for g odd and H1(MhC(Ng)) D hta1, %i '
Z(g�1)g � Z2 for g even.
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REMARK 4.6. To put Corollaries 4.2 and 4.5 into perspective, recallthat in the
oriented case (Theorem 8 of [4]),

M
h(Sg)

D hta1, : : : , ta2gC1, % j tak ta j D ta j tak , ta j ta jC1ta j D ta jC1ta j ta jC1,

(ta1ta2 � � � ta2gC1)
2gC2
D 1, % D ta1ta2 � � � ta2gC1ta2gC1 � � � ta2ta1,

%

2
D 1, %ta1% D ta1i, where j D 1, 2, : : : , 2g, jk � j j > 1.

The presentation for the groupMh�(Sg) is obtained from the above presentation by
adding one generators and three relations:

s2
D 1, sta1sD t�1

a1
, %s% D s.

Consequently,H1(Mh�(Sg)) D Z2� Z2 and

H1(Mh(Sg)) D

�

Z4gC2 for g even,
Z8gC4 for g odd.

This suggests that algebraically the groupMhC(N) corresponds toMh(S), whereas
Mh(N) corresponds toMh�(S).

5. Computing H1(MhC(Ng)I H1(NgI Z)) and H1(Mh(Ng)I H1(NgI Z))

5.1. Homology of groups. Let us briefly review how to compute the first hom-
ology of a group with twisted coefficients. Our exposition follows [6, 17].

For a given groupG and G-module M (that is ZG-module) we define thebar
resolution which is a chain complex (Cn(G)) of G-modules, whereCn(G) is the free
G-module generated by symbols [h1 j � � � j hn], hi 2 G. For n D 0, C0(G) is the
free module generated by the empty bracket [� ]. Our interest will restrict to groups
C2(G), C1(G), C0(G) for which the boundary operator�nW Cn(G)! Cn�1(G) is defined
by formulas:

�2([h1jh2]) D h1[h2] � [h1h2] C [h1],

�1([h]) D h[ � ] � [ � ].

The homology ofG with coefficients inM is defined as the homology groups of
the chain complex (Cn(G)
M), where the chain complexes are tensored overZG. In
particular, H1(GI M) is the first homology group of the complex

C2(G)
 M
�2
id
���! C1(G)
 M

�1
id
���! C0(G)
 M.

For simplicity, we denote� 
 id D � henceforth.
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Fig. 4. SurfaceNg as a sphere with crosscaps.

If the group G has a presentationG D hX j Ri, denote by

hXi D h[x] 
m j x 2 X, m 2 Mi � C1(G)
 M.

Then, using the formula for�2, one can show thatH1(GI M) is a quotient ofhXi \
ker�1.

The kernel of this quotient corresponds to relations inG (that is elements ofR).
To be more precise, ifr 2 R has the formx1 � � � xk D y1 � � � yn andm 2 M, thenr gives
the relation (inH1(GI M))

(5.1) r 
mW
k
X

iD1

x1 � � � xi�1[xi ] 
mD
n
X

iD1

y1 � � � yi�1[yi ] 
m.

Then
H1(GI M) D hXi \ ker�1=hRi,

where
RD {r 
m j r 2 R, m 2 M}.

5.2. Action of Mh(Ng) on H1(NgIZ). Let c1, : : : , cg be one-sided circles indi-
cated in Fig. 4. In this figure surfaceNg is represented as the sphere withg crosscaps
(the shaded disks represent crosscaps, hence their interiors are to be removed and then
the antipodal points on each boundary component are to be identified). The same set
of circles is also indicated in Fig. 2—for a method of transferring circles between two
models ofNg see Section 3 of [15].

Recall thatH1(NgIZ) as aZ-module is generated by1 D [c1], : : : , g D [cg] with
respect to the single relation

2(1C 2C � � � C g) D 0.

There is aZ2-valued intersection paringh , i on H1(NgI Z) defined as the symmetric
bilinear form (with values inZ2) satisfyinghi , j i D Æi j for 16 i , j 6 g. The mapping
class groupM(Ng) acts onH1(NgIZ) via automorphisms which preserveh , i, hence
there is a representation

 WM(Ng)! Iso(H1(NgI Z)).
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In fact it is known that this representation is surjective—see [13, 8].
Since we have very simple geometric definitions oftai ,s,% 2Mh(Ng) it is straight-

forward to check that

 (tai ) D I i�1�

�

0 1
�1 2

�

� Ig�i�1,

 (t�1
ai

) D I i�1�

�

2 �1
1 0

�

� Ig�i�1,

 (s) D

2

6

6

6

6

6

6

6

6

4

�1 2 �2 2 : : : (�1)g � 2
0 1 �2 2 : : : (�1)g � 2
0 0 �1 2 : : : (�1)g � 2
0 0 0 1 : : : (�1)g � 2
...

...
...

...
.. .

...
0 0 0 0 : : : (�1)g � 1

3

7

7

7

7

7

7

7

7

5

,

 (%) D �Ig,

where Ik is the identity matrix of rankk.
The above matrices are written with respect to the generating set (1, 2, : : : , g).

Note that H1(NgI Z) is not free, hence one has to be careful with matrices—two dif-
ferent matrices may represent the same element.

5.3. Computing hXi \ ker �1. Observe that ifG DMh(Ng), M D H1(NgI Z)
and h 2 G then

�1([h] 
  j ) D (h � 1)[ � ] 
  j D [ � ] 
 ( (h)�1
� Ig) j .

If we identify C0(G)
 M with M by the map [� ] 
m 7! m, this formula takes form

�1([h] 
  j ) D ( (h)�1
� Ig) j .

Let us denote [%] 
  j , [s] 
  j , [tai ] 
  j respectively by% j , sj and ti , j . Using the
above formula, we obtain

�1(% j ) D �2 j ,

�1(sj ) D

(

�2
P j

kD1 k for j odd,
��1(sj�1) for j even,

�1(ti , j ) D

8

<

:

i C iC1 for j D i ,
�i � iC1 for j D i C 1,
0 otherwise.

Proposition 5.1. Let g> 3 and GDMhC(Ng) then hXi \ ker�1 is the abelian
group which admits the presentation with generators:
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(F1) ti , j , where iD 1, : : : , g� 1 and j D 1, : : : , i � 1, i C 2, : : : , g,
(F2) t j , j C t j , jC1, where jD 1, : : : , g� 1,
(F3) 2t j , j C % j C % jC1, where jD 1, : : : , g� 1,

(F4)

�

2t1,1C 2t3,3C � � � C 2tg�2,g�2 � %g for g odd,
2t1,1C 2t3,3C � � � C 2tg�1,g�1 for g even

and relations

r t j W 0D 2t j ,1C � � � C 2(t j , j C t j , jC1)C � � � C 2t j ,g for j D 1, : : : , g� 1,

r
%

W

8

�

�

<

�

�

:

2(2t1,1C %1C %2)C � � � C 2(2tg�2,g�2C %g�2C %g�1)
D 2(2t1,1C 2t3,3C � � � C 2tg�2,g�2 � %g) for g odd,
2(2t1,1C %1C %2)C � � � C 2(2tg�1,g�1C %g�1C %g)
D 2(2t1,1C 2t3,3C � � � C 2tg�1,g�1) for g even.

Proof. By Theorem 4.4,hXi is generated byti , j and % j . Using formulas for
�1(ti , j ) and �1(% j ) it is straightforward to check that elements (F1)–(F4) areelements
of ker�1. Moreover,

2t j ,1C 2t j ,2C � � � C 2t j ,g D [ta j ] 
 2(1C � � � C g) D 0,

hencer t j is indeed a relation. Similarly we check thatr
%

is a relation.
Observe that using relationsr t j and r

%

we can substitute for 2t j ,g and 2%1 respect-

ively, hence each element inhXi can be written as a linear combination ofti , j , % j ,
where each oft1,g, t2,g, : : : , tg�1,g, %1 has the coefficient 0 or 1. Moreover, for a given
x 2 hXi � C1(G)
 H1(NgIZ) such a combination is unique. Hence for the rest of the
proof we assume that linear combinations ofti , j , % j satisfy this condition.

Suppose thath 2 hXi \ ker�1. We will show thath can be uniquely expressed as
a linear combination of generators (F1)–(F4).

First observe thathD h1Ch2, whereh1 is a combination of generators (F1)–(F2),
and h2 does not contain generators of type (F1) nor elementst j , jC1. Moreover,h1 and
h2 are uniquely determined byh.

Next we decomposeh2 D h3 C h4, whereh3 is a combination of generators (F3)
and h4 does not contain% j for j < g. As before,h3 and h4 are uniquely determined
by h2.

Elementh4 has the form

h4 D

g�1
X

jD1

� j t j , j C �%g,

for some integers�, �1, : : : , �g�1. Hence

0D �1(h4) D �11C (�1C �2)2C � � � C (�g�2C �g�1)g�1C (�g�1 � 2�)g.
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If g is odd this implies that

�1 D �3 D � � � D �g�2 D 2k, �2 D �4 D � � � D �g�1 D 0, � D �k,

for somek 2 Z. For g even we get

�1 D �3 D � � � D �g�1 D 2k, � D �2 D �4 D � � � D �g�2 D 0.

In each of these casesh4 is a multiple of the generator (F4).

By an analogous argument we get

Proposition 5.2. Let g> 3 and GDMh(Ng) then hXi \ ker�1 is the abelian
group which admits the presentation with generators: (F1)–(F4),
(F5) sj C sj�1, where j is even,
(F6) sj � %1 � %2 � � � � � % j , where j is odd.
The defining relations are rt j , r

%

and

rs W

8

<

:

0D 2(s2C s1)C 2(s4C s3)C � � � C 2(sg�1C sg�2)
C 2(sg � %1 � %2 � � � � � %g) for g odd,

0D 2(s2C s1)C 2(s4C s3)C � � � C 2(sg C sg�1) for g even.

5.4. Rewriting relations. Using formula (5.1) we rewrite relations (E1)–(E5) as
relations in H1(MhC(Ng)I H1(NgI Z)).

Relation (E1) is symmetric with respect tok and j , hence we can assume that
j C 1< k. This relation gives

r (E1)
k, j Wi W 0D ([tak ] C tak [ta j ] � [ta j ] � ta j [tak ]) 
 i

D tk,i C [ta j ] 
  (t�1
ak

)i � t j ,i � [tak ] 
  (t�1
a j

)i

D �

8

<

:

0 if i ¤ k, kC 1, j , j C 1,
t j ,k C t j ,kC1 if i D k or i D kC 1,
tk, j C tk, jC1 if i D j or i D j C 1.

Relation (E2) gives

r (E2)
j Wi W 0D ([ta j ] C ta j [ta jC1] C ta j ta jC1[ta j ]

� [ta jC1] � ta jC1[ta j ] � ta jC1ta j [ta jC1]) 
 i

D

8

�

�

<

�

�

:

t j ,i � t jC1,i if i ¤ j , j C 1, j C 2,
t j , jC2 � t jC1, j if i D j C 2,
(�)C 2(t j , j C t j , jC1) if i D j ,
(�) � (t j , j C t j , jC1) � (t jC1, jC1C t jC1, jC2) if i D j C 1.
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In the above formula (�) denotes some expression homologous to 0 by previously ob-
tained relations. Carefully checking relationsr (E1)

k, j Wi and r (E2)
j Wi we conclude that gener-

ators (F1) generate a cyclic group, and generators (F2) generate a cyclic group of order
at most 2.

We next turn to the relation (E5). It gives

r (E5)
j Wi W 0D ([%] C %[ta j ] � [ta j ] � ta j [%]) 
 i

D

8

<

:

�2t j ,i if i ¤ j , j C 1,
�2t j , j � % j � % jC1 if i D j ,
(% j C % jC1C 2t j , j ) � 2(t j , j C t j , jC1) if i D j C 1.

These relations imply that generators (F3) are homologically trivial, and generators (F1)
generate at mostZ2.

We now turn to the most difficult relation, namely (E3). This relation gives

r (E3)
i W 0D

g�1
X

kD0

g�1
X

nD1

(ta1 � � � tag�1)
kta1 � � � tan�1[tan ] 
 i � "%i

D

g�1
X

nD1

[tan ] 
  (ta1 � � � tan�1)
�1

g�1
X

kD0

 (ta1 � � � tag�1)
�k
i � "%i

D

g�1
X

nD1

[tan ] 
 Yn

g�1
X

kD0

Yk
gi � "%i .

Where" D 0 for g even," D 1 for g odd, andYn D  (ta1 � � � tan�1)
�1. Using the matrix

formula for  (t�1
ai

), we obtain

Yni D

8

<

:

�i�1 if 2 � i � n,
i if i > n,
21C � � � C 2n�1C n if i D 1.

In particular

Yk
gi D (�1)ki�k,

where we subtract indexes modulog. Therefore we have

r (E3)
i W 0D

g�1
X

nD1

[tan ] 
 Yn

g�1
X

kD0

(�1)ki�k � "%i .

In order to simplify computations we replace relations:

r (E3)
1 , r (E3)

2 , : : : , r (E3)
g
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with relations:

r (E3)
1 C r (E3)

2 , r (E3)
2 C r (E3)

3 , : : : , r (E3)
g�1 C r (E3)

g , r (E3)
g .

Let us begin withr (E3)
g .

r (E3)
g W 0D

g�1
X

nD1

[tan ] 
 Yn

g�1
X

kD0

(�1)kg�k � "%g

D

g�1
X

nD1

[tan ] 


 

g�n�1
X

kD0

(�1)kg�k C

g�2
X

kDg�n

(�1)kC1
g�k�1

C (�1)g�1(21C � � � C 2n�1C n)

!

� "%g.

Since all generators of type (F1) are homologous to a single generator, sayt , and 2t D
0, the above relation can be rewritten as

r (E3)
g W 0D (g� 1)(g� 2)t C

g�1
X

nD1

[tan ] 
 ((�1)g�n�1
nC1C (�1)g�1

n) � "%g.

If g is even, this gives the relation

r (E3)
g W 0D (�t1,1C t1,2)C (�t2,2� t2,3)C � � � C (�tg�1,g�1C tg�1,g)

D (t1,1C t1,2) � (t2,2C t2,3)C � � � C (tg�1,g�1C tg�1,g)

� 2(t1,1C t3,3C � � � C tg�1,g�1).

If g is odd, we have

r (E3)
g W 0D (t1,1� t1,2)C (t2,2C t2,3)C � � � C (tg�1,g�1C tg�1,g) � %g

D �(t1,1C t1,2)C (t2,2C t2,3) � � � � C (tg�1,g�1C tg�1,g)

C 2(t1,1C t3,3C � � � C tg�2,g�2) � %g.

In both cases relationr (E3)
g implies that generator (F4) is superfluous.

Now we concentrate on the relationr (E3)
i C r (E3)

iC1 .

r (E3)
i C r (E3)

iC1 W 0D
g�1
X

nD1

[tan ] 
 Yn

g�1
X

kD0

(�1)k(i�k C iC1�k) � "(%i C %iC1)

D

g�1
X

nD1

[tan ] 
 Yn(iC1C (�1)g�1
iC1) � "(%i C %iC1).
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If g is even, this relation is trivial, and ifg is odd it gives

r (E3)
i C r (E3)

iC1 W 0D 2
g�1
X

nD1

[tan ] 
 Yn(iC1) � (%i C %iC1)

D 2(t1,iC1C � � � C ti ,iC1 � tiC1,i � � � � � tg�1,i ) � (%i C %iC1)

D (�)C 2(ti ,i C ti ,iC1) � (2ti ,i C %i C %iC1).

Hence this relation gives no new information.
Relation (E4) gives no new information, hence we proved the following theorem.

Theorem 5.3. If g > 3, then

H1(MhC(Ng)I H1(NgI Z)) D Z2� Z2.

5.5. Computing H1(Mh(Ng)I H1(NgI Z)). If G D Mh(Ng), then by Propos-
ition 5.2 the kernelhXi \ ker�1 has two more types of generators: (F5), (F6), and
by Theorem 4.1 there are three additional relations: (C4), (C5), (C8).

r (C4)
i W 0D [s] 
 i C s[s] 
 i D si C [s] 
  (s)i

D 2(�1)i
�

s1C s2C � � � C si�1C
1C (�1)i

2
si

�

.

This (inductively) implies that each generator of type (F5)has order at most 2.

r (C8)
i W 0D ([%] C %[s] � [s] � s[%]) 
 i D %i � 2si � [%] 
  (s)i

D %i � 2si � (�1)i (2%1C 2%2C � � � C 2%i�1C %i )

D

�

�2(si � %1 � � � � � %i ) for i odd,
�2(si�1C si )C 2(si�1 � %1 � � � � � %i�1) for i even.

This implies that generator (F6) has also order at most 2.

r (C5)
i W 0D ([ta j ] C ta j [s] C ta j s[ta j ] � [s]) 
 i

D t j ,i C [s] 
  (t�1
a j

)i C [ta j ] 
  (s) (t�1
a j

)i � si .

If i ¤ j and i ¤ j C 1, then

r (C5)
i W 0D (�1)i (2t j ,1C � � � C 2t j ,i�1C (1C (�1)i )t j ,i ),

which gives no new information. Ifi D j or i D j C 1 and j is odd, then

r (C5)
i W 0D (�)� [(sj C sjC1)C (t j , j C t j , jC1)],
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where as usual (�) denotes homologically trivial element. This relation implies that
generators (F5) are superfluous.

Finally, if i D j or i D j C 1 and j is even then

r (C5)
i W 0D (�)� [(sjC1 � %1 � � � � � % jC1) � (sj�1 � %1 � � � � � % j�1)].

This implies that all generators of type (F6) are homologous, hence we proved the
following.

Theorem 5.4. If g > 3, then

H1(Mh(Ng)I H1(NgI Z)) D Z2� Z2� Z2.
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