Fujita, K.
Osaka J. Math.
52 (2015), 71-91

TOWARDS A CRITERION FOR SLOPE STABILITY OF
FANO MANIFOLDS ALONG DIVISORS

KENTO FUJITA

(Received January 23, 2013, revised July 2, 2013)

Abstract

We give a simple criterion for slope stability of Fano mahdfX along divisors
or smooth subvarieties. As an application, we show %at slope stable along an
ample effective divisoD C X unlessX is isomorphic to a projective space abid
is a hyperplane section. We also give counterexamples tansubonjecture on the
relation between the anticanonical volume and the existesfca Kéhler—Einstein
metric. Finally, we consider the case that dim= 3; we give a complete answer for
slope (semi)stability along divisors of Fano threefolds.

1. Introduction

Let X be a Fano manifold, that is, a smooth projective variety sheth the anti-
canonical divisor—Kyx of X is ample. It has been conjectured that tepolystability
of (X, —Kx) is equivalent to the existence of Kéhler—Einstein metridewever it is
difficult to judge the K-(poly, semi)stability in general. In this article, we caler
slope stability, which was introduced by Ross and Thomas (8]), that is weaker
than K -stability but is easy to describe. For example, the casera Raanifold is not
slope (semi)stable along a smooth curve has been compldgalsified, see [6] and [8].

First, we give a simple criterion for slope stability of Fammanifolds along div-
isors (or smooth subvarieties).

Proposition 1.1 (see Proposition 3.2 for detail) For a Fano manifold X and a

divisor D C X, X is slope stable(resp. slope semistaljlealong D if and only if
&(D) > 0 (resp. > 0), where

(D)
£(D) =volx(—Kx)+(e(D)—1)von(Kx—e(D)D)—/O voly (—Kx — xD) dx

and (D) is the Seshadri constant of D with respect-+& .

As an application, we can investigate the case where X is an ample divisor.
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Theorem 1.2 (= Theorem 4.6 (1)) For a Fano manifold X and an ample div-
isor D C X, X is slope stable along D unless X is isomorphic to a projecspace
and D is a hyperplane section.

We also construct the Fano manifolds which are not slopestahié along some div-
isors but have “small” anticanonical volumes, which arertetexamples to the following
Conjecture 1.3 (cf. Remark 5.6) on the relation between ttianonical volume oiX
and the existence of a Kahler—Einstein metricXn

Conjecture 1.3(see also Remark 5.6) Let X be a Fano n-fold. If the anticanonical
volumevoly (—Kx) is less than((n + 1)?/(2n))", then X admits K&hler—Einstein metrics.

Counterexample 1.4(= Corollary 5.5) For any n> 4, there exists a Fano n-fold
X such thatvolyx (—K x) = 2(3" — 1) (hence2(3" — 1) < ((n + 1)?/(2n))" holds if n> 5)
but X does not admit K&hler-Einstein metrics.

Finally, using the classification result [12], we give themgmete answer for slope
(semi)stability of Fano threefolds along divisors:

Theorem 1.5(= Theorem 6.2) Let X be a smooth Fano threefold.
(1) X is slope semistable along any effective divisor but therst® a divisor DC X
such that X is not slope stable along D if and only if X is isophic to one aof

P23, P1xP? Ppipi(O0, 1)@ O(1, 0)),
P!xP'xP!, P'xS, 1<m<7).

(2) There exists a divisor [@ X such that X is not slope semistable along D if and
only if X is isomorphic to one of

BIIine QS, BIIine ]Psl P]P’Z(O 2] O(l)), P]P’Z(O 2] 0(2)),
Pl xFy, Pp(0O®OE+ ), Ppp(0®O(,1)).

Notation and terminology. We always consider over the complex number field
C. A variety means an irreducible and reduced scheme of finite type oweeGSpThe
theory of extremal contraction, we refer the readers to F@jt a projective varietyX,
let Eff(X) (resp. NefiK)) be the effective (resp. nef) cone which is defined as the con
in N1(X) spanned by the classes of effective (resp. nef) divisorXofror a complete
variety X, the Picard number oK is denoted bypx. For a smooth projective variety
X, let NE(X) be the cone in NX) spanned by effective 1-cycles ox, and NE(X)
the closure of NEX) in Ny(X). For a smooth projective variet and aKyx-negative
extremal rayR ¢ NE(X), we define thdength (R) of R by

I[(R) := min{(—Kx - C) | C is a rational curve with€] € R},
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and we definea minimal rational curve of Rsuch that a rational curv€ C X with
[C] € Rand Kx -C) =I(R).

For an algebraic varietX and a closed subschenYeC X, denotes corresponding
ideal sheafZy C Ox, and Blk: Bly(X) — X or Blg,: Blz, (X) — X denotes the blowing
up of X along.

For algebraic varietieXy, ..., Xk, we write the projectionp;
Xy X+ oo X Xy

We say X is a Fano manifoldif X is a smooth projective variety whose anti-
canonical divisor—Kyx is ample. We note that iX is a Fano manifold, then there
is the canonical embedding P¥) — N%(X). For a Fano manifoldX, let the Fano
index of X be

t- Xj_X---XXk—)

maxr € Z.o | —Kx ~rL for some Cartier divisoL}.

For a completen-dimensional varietyX and a nef Cartier divisor (or a nef invertible
sheaf)D on X, thevolumeof D (denotes vol(D)) means the self intersection number
(D") of D.

The symbolQ" denotes a smooth hyperquadric i*1. The symbolF; denotes
the Hirzebruch surface having the-X)-curvee C Fy, and let f C F; be a fiber of
PY-bundleF; — P. The symbolS, (1 <m < 7) denotes a (smooth) del Pezzo surface
S (Fano 2-fold) such that the anticanonical volumegyelKs) is equal tom.

2. Slope stabilities of polarized varieties

We recall slope stability of polarized varieties, which Heen introduced by Ross
and Thomas. See [18] in detail.

DEFINITION 2.1. Let (X, L) be a polarized variety of diX =n, let Z C X be
a closed subscheme, let: X — X be the blowing up ofX along Z and letE C X
be the Cartier divisor defined by (—E) = 07177 - Oy.
e Lete(Zz; (X, L)) be theSeshadri constant of Z with respect to(le often write
€(Z, X) or ¢(Z) instead ofe(Zz; (X, L)) for simplicity), which is defined as follows:

€(Zz; (X, L)) := maxic e R.g | 0*L — cE is nef on X}.
e Fork, xk e N with k > 0, we can write
x(X, 0% (kL) — XKE) = ap(x)k" + @y (x)k" ™ + - - - + @ (x),

wherea; (x) € Q[x]. Let uc(Zz,L) be theslope of Z with respect to L ande(0,¢(2)]
(we often writeuc(2Z) instead ofuc(Zz, L) for simplicity), which is defined as follows:

@0 + 8(x)/2) dx
helle D= T o ax
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We also definghe slope of X with respect to &s

- &
w(X) = (X, L) := '

wherea € Q are defined byy(X,rL) = ar" +a;r"™?* +--- + ay.

DEFINITION 2.2 (slope (semi)stability). LetX, L) (we often omit the polariza-
tion L) and Z C X be as above.

(X, L) is slope stable(resp.slope semistabjealong Z if:

e slope semistability

ne(Z) < u(X) for all c € (0, e(2)],

e slope stability

uc(Z) < u(X) for all ¢ € (0,€(Z2)), and also forc = €(Z) if ¢(Z) € Q and global
sections ofLk ®I§€(Z) saturates fok > 0.

For a polarized variety X, L) and a coherent ideal sheaf C Ox with
Ogi () (—E) := Bl; 17 - Okl (x), global sections of L® Z saturatesif Bl z*L(—E)
is spanned by global sections &f® Z. This condition is weaker than the condition
such thatL ® Z is globally generated.

REMARK 2.3. If X is a Fano manifold, then we omit the polarizatiog, £K).
More precisely,slope stability of X along a closed subschemeZ2X is nothing but
slope stability of K, —Kx) along a closed subschenzecC X.

The following is a fundamental result.

Theorem 2.4([5], [18]). Let (X, L) be a polarized manifold. I{X, L) admits a
Kéahler metric with constant scalar curvatyrthen (X, L) is slope semistable along any
closed subscheme @ X.

In particular, for a Fano manifold X if X admits a Kahler—Einstein metric then
X is slope semistable along any closed subschente X

3. Slope stability of Fano manifolds along smooth subvariés or divisors

In this section, we fix the notation.

NoTATION 3.1. We set thatX is a Fanon-fold and Z C X is a smooth sub-
variety of codimensionr > 2 or an effective divisor (not necessary smooth).Zlfis
an effective divisor onX, we setr := 1. We seto :=Blz: X — X. Let E C X be
the divisor which satisfie®;(—E) ~ 017 (i.e., if r > 2 then E is the exceptional
divisor of o, and ifr = 1 theno is the identity morphism and = Z).
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Under the notation, we consider slope stability Xf along Z C X. We can
show that

ap(x) = n—ll volg (0" (=Kx) — xE),

ar(x) = ﬁ(—l@< S(0*(—Kx) = xE)" Y,

2
n
2
by the weak Riemann—Roch formula (cf. [8]). Thus fox@ < ¢(Z), we have

ne(Z) < u(X)

& /Oc(r —X)(E - (0*(—Kx) —xE)"™ ) dx > 0

& 1 volx(—Kx) + (c—r) volg(c*(=Kx) — cE)

— /OC volg (0*(—Kx) —xE) dx > 0.
We set
£c(Z) :=r volx(—Kx) + (c —r) volg (0" (—=Kx) — CE)

C
—/ volg (0" (—Kx) — XE) dx.
0
Sinceo*(—Kyx) — cE is ample for any O< ¢ < ¢(Z), we have

d
- (6(2)

>0 (if 0 <c < min{r, e(2)}),

=n{r —c)(E-(6*(—Kx) — CE)n_l){< 0 (if r <c<e(2) (if €(2) >r)).

Assume thatX is not slope stable alond. Thené(Z) < 0 for some O< ¢ < ¢(2Z).
Hencee(Z) > r and &(Z) > & (z(Z) by the above argument. In particulaf(, is a
Fano manifold and hence N& is a rational polyhedral cone spanned by semiample
divisors (in particulare(Z) € Q.o holds). Therefore we have the following result.

Proposition 3.2. Let X be a Fano n-fold and Z X be a divisor or a smooth
subvariety of codimension* 1 (if Z is a divisor then we set .= 1). Then X is slope
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stable (resp. slope semistablalong Z if and only if§(Z) > 0 (resp. > 0), where

§(2) ==&2(2)
=1 VOlx(—Kx) + (¢(Z) —r) volg (0 *(—Kx) — €(Z)E)

€(2)
—/ volg (0" (=Kx) — XE) dx
0
€(2)
= n/ (r —x)(E - (0*(—Kx) — xE)" 1) dx.
0

REMARK 3.3. For a Fanm-fold X and Z C X a divisor or a smooth subvariety,
the definition of slope stability oX along Z is equivalent to the definition in [8] and
[6] by the above argument.

REMARK 3.4. If X is not slope stable along, thene(Z) > r holds by the above
argument. This result has been already known in [17, 8§8] é&s® [8, Lemma 2.10]).
In fact, Yuji Odaka pointed out to the author thatXf is not slope stable (resp. not
slope semistable) along thene(Z) > r(n+1)/n (resp.€(Z) > r(n+1)/n) holds. See
[16, Proposition 4.4] for detail.

Now, we show that slope stability of Fano manifolds along sthasubvarieties can
reduce to slope stability of Fano manifolds along divisors.

Proposition 3.5. Let X be a Fano n-fold and let Z X be a smooth subvariety
of codimension r> 2. Leto :=Bl;: X — X and let EC X be the exceptional divisor
of o. If X is not slope stable along ,Zhen X itself is a Fano n-fold andX is not
slope semistable along E.

Proof. We have already seen thétis a Fano manifold. We note that
r <e(Z, X) =€(E, X)+r—1.
Hence we have

€(E,X)
SEE) = [ A0 - (K - xEN Y dx

€(Z,X)—(r—1)

:/ 1 =X)(E- (0" (-Kx) + (1 =1 = x)E)" ) dx
0
€(Z,X)

= / (r —X)(E-(g*(_KX)_XE)nfl)dX

-1

r—1
= 6@~ [~ (E (0 (K - xEy Y dx

<0,
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sinceo*(—Kx) — XE is ample for any O< x <r — 1 (< €(Z, X)). 0

4. First properties

4.1. Convexity of the volume function. In this section, we consider slope stabil-
ity of Fano manifolds in terms of the convexity of the volummétion vo (o *(—Kx) —
X E) (under Notation 3.1).

Proposition 4.1. We fixNotation 3.1
(1) 1f N7,y (the dual of the normal bund)és nef ande(Z) = 2r holds then X is not
slope stable along Z.
(2) Furthermore X is not slope semistable along Z if we assume the assumptid) i
and one of the following holds > 2, €(Z) > 2r or zv/x is ample.
(3) If r =1, Z?%is a nonzero effective cycle ar@Z) < 2 holds then X is slope stable
along Z.

We note that a vector bundl@ on a projective varietyy is nef (resp.amplg if
the corresponding tautological line bundi®, )(1) on Py(E) is nef (resp. ample).

Proof of Propostion 4.1. We can assua{&) > r by Remark 3.4. We write :=
€(Z) for simplicity. We definef (x) := voly(6*(—Kx) — XE). Then we can write

g(Z):rf(O)—k(e—r)f(e)—/OE f(x) dx.

We note that

%(X) =-—n(E-(0*(—Kx) = XxE)" 1) <0 (for any 0< x <€),

2f
T2 ®) =0 = (- (0" (~Kx) = XE)"™?).
We recall thatO;(—E)|e =~ Op,(s)(1). Hence f(x) is a convex upward (resp. strictly
convex upward) and strictly monotone decreasing functiver @an interval (0,¢) if
NZV/X is nef (resp. ample). Then (1) and (2) follows immediatelfieTproof of (3) is
same as those of (1) and (2). ]

4.2. Product cases. We consider the case that a Fano maniféldcan be de-
composed into the producX = X; x X,. It is easy to show that botiX; and X;
are Fano manifolds, the vector spacé(X)) is naturally decomposed into IX) =
N(X1)@®N(X2) and the cones can be written as Eff(= Eff(X1)+ Eff(X2), Nef(X) =
Nef(X1)+Nef(X,) under the decomposition, respectively. Werget= dimX; (i = 1,2).
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Proposition 4.2. Let Dy, C X; be a divisor on X. Then slope stabilityresp. slope

semistability of X; along Dj is equivalent to slope stabilitresp. slope semistability
of X along [ D;.

Proof. Lete; := €(Dy, X1). Then we know that; = €(pj D1, X). By the defin-
ition of &£(p;D1), we have

£(py D1) = volx(—Kx) + (e1 — 1) volx (—Kx — €1 py D1)

€1
_/ voly(—Kx — xp; D) dx
0
ni+n
= ( 1I’l 2) 'V0|x2(—Kx2){V0|x1(—Kx1) + (1= 1) volx, (=K, —€1D1)
1
€
_/ V0|x1(—Kx1—XD1)dX}
0

= (nl: nz) volx,(—Kx,) - £(Da).

1

Therefore the signs of(D;) and &£(p;D,) are same. ]

Proposition 4.3. Let O C X; be divisors on X for i = 1,2 If X; is slope
semistable along Dfor any i =1,2,then X is slope stable along 3= p; D1+ p; Do.

Proof. Lete¢ :=¢(Dj, Xj) fori =1, 2 and lete := ¢(D, X). We can show that
€ = min{ey, €2}. We can assume > 1 by Remark 3.4. We note that

%(VOIXI (=Kx, —xD)) = —ni(D; - (—Kx, —xD)" 1) <0 (0<x <¢)
for anyi = 1, 2. By the definition of¢(D), we have
1
(D) = [ (volx(—Kx) ~volx(~Kx —xD)) dx
— /E(V0|x(—Kx — XD) —V0|x(—Kx - GD)) dx
1

= (”1 + ”2) { fo 1(v0IX1(—Kx1) Volx,(—Kx,)

Ny

—Volx, (—Kx, — xDy) volx,(—Kx, — xD2)) dx

€
— / (V0|)(1(—K)(1 —X D1) V0|>(2(—K)(2 —X D2)
1

— VO|)(1(—K)<1 — ED]_) VO|>(2(—KX2 — EDz)) dX}
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1
N (n1 y nz) {/ (volx, (=K x,) — volx, (—=Kx, — x D1)) volx,(—Kx,) dx
Ny 0

1
+ / VOl (K x, — X Dy)(Volx,(—K x,) — Volx,(—Kx, — X D2)) dx
0

—/ (volx, (—Kx, —xDj) — volx,(—Kx, —€Dy))
1

x Volx,(—Kx, — x D) dx
€
—/ VO|X1(—KXI—GD1)
1

x (Volx,(—Kx, — X Dg) — volx,(—Kx, — € D2)) dx}

Ny + Ny 1
g ( n ){/ (volx, (—Kx,) — volx, (—=Kx, — X Dy)) volx,(—Kx, — D2) dx
1 0

1
+ / Voly, (—K x, — D1)(VOlx,(—Kx,) — Volx,(—Kx, — X D)) dx
0

€
- / (volx, (—Kx, — xDy) — volx, (—Kx, — eDy))
1

XVO|)(2(—K><2 — Dz)dX
—/ V0|x1(—le - Dj_)
1

x (VOIXZ(_KXZ —xDy) — V0|x2(—KX2 —eDy)) dX}
= (nl :1 nz){VO|x1(—Kx1 — D1) - £&(D2) + volx,(—Kx, — D2) - £&(D1)}
- (nlr:nz){vo'xl("‘xl ~ D)+ £(D2) + vol,(~Kx, — D) §(D)} = 0.

Therefore X is slope stable alond. O
As a consequence of Propositions 4.2 and 4.3, we have thewfoly result.
Corollary 4.4. Let X be a Fano manifold which is the product of Fano manifolds
X = [T, Xi. Then X is slope stablgesp. slope semistabl@long any divisor if and

only if X; is slope stablgresp. slope semistall@long any divisor for anyl <i <m.

4.3. Length of extremal rays. We show that if a Fano manifolX is not slope
stable along a divisor, then there exists an extremal rajhefléngth> 2.
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Proposition 4.5. Let X be a Fano manifold and & X be a divisor. Assume X is
not slope stable along D. Then for any irreducible curvecCX, we have(—Kyx - C) >
(D - C). In particular, there exists an extremal ray ® NE(X) such that (R) > 2.

Proof. We have:(D) > 1 by Remark 3.4. Hence we have
(D-C) = (—Kx/€(D)-C) < (—Kx - C).

Since D is an effective divisor, there exists an extremal Ry NE(X) with a minimal
rational curve €] € R such that D - C) > 0. Therefore we have—(Kx - C) > 2 since
(—Kx -C) > (D -C) holds. O

4.4. Slope stability of Fano manifolds along nef divisors.

Theorem 4.6. Let X be a Fano n-fold and @ X be a divisor.
(1) If D is an ample divisgrthen X is slope stable along D unless X is isomorphic
to a projective space and D is a hyperplane section.
(2) If D is a nef divisor and(D' - (—Kx —e(D)D)"™") =0 for any1 <i <¢(D)—1
(resp.1<i < ¢(D)—1), then X is slope stabléresp. slope semistaljl@long D.

Proof. First, we consider the case thaKy and D are numerically proportional
(i.e., there exists a positive rational numhkesuch that—Kx = tD). We note that
t <n+ 1 and the equality holds if and only K >~ P" and D € |Opn(1)| by [10]. In
this case we have

£(D) = von(D){tn - /:(t —x)" dx} = voIX(D)t”(l— nL—l—l) >0,

and equality holds if and only if = n+ 1. Therefore we have proved the theorem for
the case—Kyx and D are numerically proportional.

Now we consider the case thatKx and D are not numerically proportional. We
can assume(D) > 1 by Remark 3.4. LetP ¢ N%(X) be the 2-dimensional vector
subspace spanned by-Kx] and [D] (the classes of-Kyx and D in N%(X)). We take
[Hi], [H2] € P N Nef(X) such thatP N Nef(X) = Rxg[Hi1] + R>o[H2]. Then after
interchangingH; and H,, if necessary, we can write Ky = p1H; + poH, and D =
O1H1 + g2H2, where py, p2, a1 > 0, g2 > 0 and Ye(D) = qi1/p1 > g2/ p2 holds. We
note thatD is ample if and only ifg, > 0. We also note that there exists extremal
rays Ry, R, € NE(X) such that H; - R;) = 0 if and only ifi # j holds where I<i,

j < 2, since the class ofKy lives in the interior of Nef). We choose minimal
rational curvesC; andC, of R; and Ry, respectively. We have{Kx -C;) < n for any
i =1,2 by [4]. If g > O then we havep,/gi <n since Kx-Cj)<n,(D-Cj)>1
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and pi /g = (—Kx - C;j)/(D - C;) hold. Then we can show that

&(D) = volx(p1H1 + p2H2) + (% — 1) volx((pz — qZ%) Hz)

1

p1/0u
—/ Vol ((p1 — 01xX)Hy + (p2 — g2x)Hz) dx
0
P1 % pr\" P/ay R\
— Hn n{1+(__ )(1___) —/ 1——Xx dX
(H2) P (of] P2 01 0 P2
n-1 i —i
. . (n P1/0h 01 ! (o3 n—l
S nn (- [ (- ) (-2 o
i;( el A o o
p1/0h n
+(Hf)pg{1—/ (1—$x) dx}.
0 P1

We denote the coefficient oH{ - H'~") by M;. We claim that Hi - HJ"") > 0 for
any 0<i <nand Hi-Hy™) > 0 for somei sinceH; and H, are nef and fKx] € P.

First, we consider the cade is ample. It is enough to shoW; > 0 for anyi by
the above claim. We have

Mo:pn{l_ : &+(1_M)”(&_1+ L (&_&))}>o
2 n+1la P2 01 O n+1\ge o ’

1 m
f— n S —
Mn_pl(l - 1ql)>O,

. . p1/q1 n
M; > (n) p'lpg'{l—/ (1— Ex) dx}
| 0 7]

1
(M i P2 {n 02 ( o} pl)n+} .
=1. _ +1)—-1+|1-—— >0 (O<i <n).

(I)plpz G(n + 1) ( )pz P2 0u ( )

Thus we have proved the theorem for the c@sés ample.
Now, we consider the case thit is not ample. Since, = 0, we have

n
. r n . . 1 p1
D — HI . Hn 1 I ~N—I 1_ L
(D) ;( 1" H2 )(i)plpZ ( i+1q1)
Therefore we havé(D) > 0 (resp.> 0) if (Hi-HJ) =0 for any 1<i < p/q1 —1
(resp. 1<i < p1/q. — 1) by the same argument of the caBeis ample. O

As an immediate corollary of Theorem 4.6, we get Odaka’sltesu

Corollary 4.7 (Odaka) Let X be a Fano manifold with the Picard humbey =
1 and let DC X be a divisor. Then X is slope stable along D unless X is isphior
to a projective space and D is a hyperplane section.
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Proof. The divisorD is ample sinceox = 1. Hence the assertion is obvious from
Theorem 4.6 (1). 0

REMARK 4.8. There exists a Fano-fold X and a nef effective divisoD C X
such thatX is not slope semistable alorg. For example, lefX be the Fano manifold
obtained by the blowing up of tha-dimensional projective space along a (reduced)
point and D be the strict transform of a hyperplane passing through #mec of the
blowing up. ThenD is a nef divisor and

Volx(—Kx —=xD)y=n+1-x)"—(n—1—x)"

holds. Hence we have

2(n—-1)

5(B) = n+1

{n . 2n71 _ (n _ 1)n71},
which takes a negative value iif > 5.

5. Examples and applications
5.1. Projective spaces. Let Z C P" be a linear subspace of codimensioi 1.
If r =1, then

n+1
g(Z):(n+1)“—/0 (N+1-x)"dx=0

(see also the proof of Theorem 4.6).

We consider the case > 2. Let the blowing up ofP" along Z be 6: X — P"
and the exceptional divisor bE. We can show tha¢(Z) =n+1, E ~P"" x P’ 1,
Ngx = Oprrypra(1, =1) and Og (—Kg)[e = Opn-rxpr1(N =1 + 2,1 — 1). Hence

n+1
%-(Z) =N [ (r - X) VOl]pn—r X]pr—l(olpn—r X]pr—l(n + 1 - X, X)) dX
0

n—1 n+1
= n( ) / r=x)(n+1—x)""xtdx=0
r—1 0

by a simple calculation. Therefore, we have the following:

Proposition 5.1. The projective spac®" is not slope stable but slope semistable
along any linear subspace.

In fact, it is well known that ther-dimensional projective space admits a Kahler—
Einstein metrics; the Fubini—Study metric.
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5.2. Surfaces. In Section 5.2, we consider the case such that the dimension i
equal to two.

Proposition 5.2. Let S be a del Pezzo surfadbat is S is a Fano manifold with
dmS=2
(1) S is slope semistable along any curve but there exists a ddrgeS such that S
is not slope stable along C if and only if S is isomorphic th&itP? or P! x P2,
(2) There exists a curve € S such that S is not slope semistable along C if and
only if S is isomorphic tdF;.

Proof. If vols(—Ks) < 7, then we know that any extremal rdy C NE(S) sat-
isfies thatl(R) = 1. HenceS is slope stable along any curve by Proposition 4.5. If
S=P? or P! x P%, then the assertion (1) in Proposition 5.2 holds by Theoresn(%)
and Corollary 4.4. IfS = Fy, then S is not slope semistable alorggC F; by Propos-
itions 5.1 and 3.5. ]

REMARK 5.3. In fact, Tian [21] proved tha® doesnot admit Kahler—Einstein
metrics if and only ifS is isomorphic toF; or S;.

5.3. Non-slope-semistable exampleslLet Z be a Fanorf — 1)-fold of p; =1
and the Fano index > 2. Let Oz(1) be the ample generator of P& We note that
t <n, see [10].

We setX := Pz(0Oz & Oz(s)) % Z with t > s> 0. We denote the section of
with Ng/x >~ Oz(-s) by E C X. Then it is easy to show thaX is a Fanon-fold
which satisfies that

voly (k) — LT ; t—s)"

volz(Oz(1))
and
NE(X) = R=o[ f] + R=o[€],
where f is a fiber ofr ande C E is an arbitrary irreducible curve iE. Then we
can show that(E) = 2. Hence we have the following result by Proposition 4.1 (2).

Proposition 5.4. X is not slope semistable along E.

As a corollary, we give the following counterexample.

Corollary 5.5 (counterexamples to Conjecture 1.3For any n> 4, there exists a
Fano n-fold X such that

(1) the anticanonical volume of X is equal &3 — 1) (note that2(3" — 1) <
((n+ 1)%/2n)" if n > 5) and
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(2) X does not admit Kahler—Einstein metrics.

Proof. Letr: Z — P"~! be the double cover such that the branch loBus P"-!
is a smooth divisor of degree r2¢- 2). We note thatZ is isomorphic to a weighted
hypersurface of degreer2{2) in P(1",n—2). Let Oz(1) := t*Opn-1(1), then we have
Oz(—Kz) >~ t*(Opn-1(—Kpn-1) ® Opn-1(2—n)) >~ Oz(2). HenceZ is a Fano (—1)-fold
with pz = 1, the Fano index o is equal to 2 and vel(Oz(1)) = 2 holds.

Let X :=Pz(0Oz & 0Oz(1)), then X is a Fanon-fold and vok(—Kx) = 2(3" — 1).
On the other handX is not slope semistable by Proposition 5.4. Thxisdoes not
admit Kéhler—Einstein metrics by Theorem 2.4. O

REMARK 5.6. In [1], Aubin reduced Conjecture 1.3 to [1, Inequalith)]( How-
ever the inequality does not hold, as already pointed out ljy Sano, for example for
S x PL

REMARK 5.7. The above Fano manifolds, which are given ¥y= Pz(0Oz ®
Oz(s)) such thatZ is a Fano i — 1)-fold of p; = 1 and the Fano index which
satisfiest > s > 0, are characterized by the smooth projective varietieschviiave
an elementary birationaK x-negative extremal divisor-to-point contraction and have
P!-bundle structure. See [7, Remark 2.4 (a)] or [3, Lemma 3.6].

6. Threefold case

Throughout this section, leX be a Fano threefold which satisfies tl§&D) < 0 for
some divisorD C X. For thetype of an extremal ray for smooth projective threefolds,
we refer the readers to [14].

6.1. px = 1 case. This case has been shown in Theorem 4.6 (1) since any ef-
fective divisor is ample. We havi ~ P2 and D is a hyperplane section. In this case,
X is slope semistable alonD.

6.2. px = 2 case. We set NEK) = R; + R, and we also set minimal rational
curves [1] € Ry and [;] € R,. We denote the contractions := contg: X —Y; and let
Hi € Pic(X) be the pullback of the ample generator of Rj¢( We note that Nef) =
R>o[H1] + R>o[H2]. Then we have
e Pic(X) = Z[H1] ® Z[H],

e (Hi-lp)=1, (Hz2-1) =1,
o —Kx~I(R)H1 +I(Ry)H2
by [14, Theorem 5.1].

First, we consider the cadéR;) = 3 (i.e., ¢1 is aP?-bundle). ThenX is either
isomorphic toP! x P2 or Ppi(O & O & O(1)).

(1) If X ~PtxP? thenX is not slope stable along some divisor but slope semistable
along any divisor by Theorem 4.6 (1) and Corollary 4.4.
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(2) If X ~Ppi(O® O O(1)), thenX is isomorphic to the blowing up dP® along a
line. Thus X is not slope semistable along the exceptional divisor byp&sitions 5.1
and 3.5.

Hence we can assumhéR;) < 2 andI(R;) < 2. By Proposition 4.5, we can assume
I[(Ry) =2 and O -1;) = 1. Hence we can writd ~ aH; + H, (a € Z). Note that
a <0 by Theorem 4.6 (1).

Assume thata = 0. We setb := I(R;) (note thatb = 1 or 2). Then we have
—Kx ~bH; 4+ 2H; and D ~ H, hencee(D) = 2. However we have

1 2
360) = [ =Xz O + @2 0H) dx
0
= D)+ 2 =0,

and equality holds if and only ifH; - H?) = 0 and HJ) = 0. In this casep, is a
del Pezzo fibration with(R,) < 2 andl(R;) = 2. However there are no Fano three-
folds satisfying these conditions by [14, Theorem 1.7]. reéfare £(D) always takes a
positive value; this leads to a contradiction.

As a consequence, we hage< 0. SinceD ~ aH; + H, is effective, ¢, is a
divisorial contraction. Hencé, is of type E;, E,, Es, E4 or Es.
(1) If Ry is of type E,, E3, E4 or Es (divisor-to-point type),X is either isomorphic to
Pp2(O ® O(1)) or Pp2(O & O(2)) by [14, Theorem 1.7]. These are not slope semistable
along a divisor by Proposition 5.4.
(2) We consider the case thR} is of type E; (divisor to smooth curve). LeE be the
exceptional divisor ofp, andt be the Fano index of,. We haveF ~ —H; + (t —2)H,
since—Kyx ~ Hi +2H; and—Kyx ~ tH,—F. Since EffX) N (R>o[—H1] + Rx>o[H2]) =
R>o[F] + R>o[H2] and D ~ aH; + H; is an effective divisor, we have = 3 (i.e.,
Y, ~ Q% anda = -1 (i.e.,, D = F) (hencee(D) = 2). ThereforeX is isomorphic to
either Blonic Q2 or Bline Q2 sincel(Ry) = 2 (see [14, (5.3), (5.5)]).

o If X =~ Bleonic Q3 then it is easy to show tha ~ P! x P! and NVg/x =~

Opiypi(2, —1) and Ox(—Kx)|r >~ Opiypi(4, 1). Hence we have

2
%g(F) = /O (1 — x) volp1,p:(O(4, 1)— xO(2, —-1))dx = g > 0,

this lead to a contradiction.
e If X =~ Bljne Q3 then it is easy to show tha ~ F; and Mg x ~ O, (—€)
and —Kx|r >~ Op,(3f + €). Hence we have

2
%E(F) =/O (1 — x) volg, (3f + e—x(—€)) dx = _g' <0.

Therefore X is not slope semistable alorfg.
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6.3. px = 3 case. By Proposition 4.5, there exists an extremal fRyC NE(X)
with a minimal rational curveQr] € R such that (R) = 2 and 0.Cr) = 1. HenceR
is either of typeE, or C.

(1) If Ris of type E> (smooth point blowing up), theX is isomorphic to Bj(Yy)
(let ¢ := Blp) with 1 <d < 3, whereo: Yq — P is the blowing up ofP® along B such
that Hy C P2 is a hyperplaneB C Hyp is a smooth curve of degre®y H C Yq is the
strict transform ofHy and satisfiep ¢ H (see [12, p.160] or [2]).

Let E be the exceptional divisor ap, let F be the exceptional divisor of and
let F’ be the strict transform of the locus of lines passing throygpghnd B. We set
eC E andh c H such that lines (botlE and H are isomorphic tdP?), f ¢ F be an
exceptional curve oty and f’ C F’ be the strict transform of a line passing through
p and a point inB. Then it is easy to show that

NE(X) = Rxo[€] + Rxo[h] + R0 f] + Rxo[ f'],
Pic(X) = Z[E] @ Z[H] & Z[F],

—Kx ~ —2E +4H + 3F,

F' '~ —dE +dH + (d — 1)F.

We can show thaE + F’, F + H and F + F’)/d are nef. Therefore, fordE+qH +
rF] € Eff(X) (p, q,r € R), we have

e r=(pE+qH+rF-(F+H))=>0,

e p+r=(pE+qH+rF-((F+F)/d)?)=>0,

e dg=(pE+gH+rF-F+H-E+F) >0,

e (d-1)p+dg=(pE+gH+rF-(F+F)/d-E+F)>0.

Hence we have

Eff(X) = R=o[E] + R=o[H] + R=0[F] + R=o[ F'].

We write D ~ pE+qgH +rF, wherep,q,r € Z. Then we have-€) =1, (D-f) <0,

(D-f)<0and O-h) < (—Kx-h) =4—d by Proposition 4.5. Thus we haye= —1,

g =1,r =1 sinceD is effective. HenceD ~ —E + H 4+ F and ¢(D) = 2. Therefore
we have

2
%é(D) =/ A-=X)(—~E4+H +F-(x—2E+ (4—x)H + (3—x)F)?) dx
0
= /2(1—x)(—4x+12—d)dx= § > 0;
0 3

this leads to a contradiction.

(2) If Ris of type C,, then R induces aP-bundler: X — Z. Since px = 3,
Z is isomorphic to eitheif, or P! x PL,

We claim that such Fano threefolds has been classified by eszand
Wisniewski [20]:
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Claim 6.1. (i) If Z ~F;, X is isomorphic to one oy xp2 P(Tp2), F1 x P! or
F1 xp2 P(O & O(1)).
(i) If Z ~PtxP?, X is isomorphic to one of a smooth divisor of tridegfdel, 1)in
P! x P! x P2, Pp1,p:(O(0, 1)@ O(1, 0)), P x P x P, Fy x P! or Ppi,p1(O @ O(1, 1)).

() AssumeX =~ Fi xp2 P(Tp2). Then we can show thaX C F, x P? is a smooth
divisor with X € |Op,«p2(e+ f,1). Let E, F, H be effective divisors orX correspond
to Ox(e, 0), Ox(f, 0), Ox(0, 1), respectively. Then we can show that

Pic(X) = Z[E] @ Z[F] & Z[H].

We can also show that there exists the structure of the bipwmX — P! x P? with
the exceptional divisoE’ ~ H — E. We note that~, H and E + F are nef. Therefore,
for [pE + gF +rH] € Eff(X), we have

e r=(pE+qF+rH-(E+F)?) =0,

e g=(pPE+qF+rH-H?>0,

e p+r=(pE+gF+rH-F-H)>0.

Hence we have

Eff(X) = Rxo[E] + Rxo[F] + Rx>o[E']
and it is easy to show thatKyx ~ E + 2F + 2H.

Let m be a fiber ofr, let| be an exceptional curve X — P(Tp2) and letl’ be
an exceptional curve oK — P! x P2, Then it is easy to show that

NE(X) = R=o[m] + Rxo[l] + R=o[l'].
We write D ~ pE + qF + rE’, wherep, q, r € Z. Then we have - m) = 1,

(D-1)<0and O©-I") <0 by Proposition 4.5. We also note that=1,q=0,r =1
(henceD ~ H) ande¢(D) = 2 sinceD is effective. Therefore we have

1 2
55(0):/ (1—Xx)(H - (E + 2F + (2—x)H)?) dx
0
= /2(1—x)((’)(0, 1)- O(e + 21, 2—x)?- O(e + f, 1))g,xp> dx
02 o
=/ Q1L—x)(11-4x)dx == > 0;
o 3

this leads to a contradiction.

(I Assume X ~F; x P1. Then X is not slope semistable alorngje by Propos-
itions 5.2 and 4.2.

(1) Assume X ~ F1 xp2 P(O & O(1)). Let H be the section ofr with normal
bundle Vy/x >~ Op,(—e— f), let E be the pullback ofe C F; with respect tor and
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let F be the pullback off C F; with respect tor. Then we can show thatKyx ~
4F 4+ 3E + 2H, ¢(H) = 2 and

1 2
-g(H):[ (1—x)(H - (4F + 3E + (2—x)H)?) dx
3 0
=/2(1—x)(1+x)(3+x)dx=—4<0,
0

henceX is not slope semistable alorig.
(IV) Assume X € |Opi,pip2(1, 1, 1). Let Hi (1 <i < 3) be the restriction of
pO(1) to X. Then we have

Pic(X) = Z[H1] & Z[H2] & Z[Hs]

by the theorem of Lefschetz. We can show thax ~ H; + Hy + 2H;. We can
also show thatpys|x: X — P! x P? and p3|x: X — P! x P? are the blowing up
along smooth curves with the exceptional divisétg ~ Hy — Hy + Hz and Fy3 ~
—H; + H, + Hg, respectively.

We note thatH;, H, and Hz are nef. Therefore, foraj Hy +a;Hy +agHs] € Eff(X)
(a1, a2, a3 € R), we have
o az=(aH; +aH>+azHz-Hy-Hy) >0,
o a+az3=(myHy+aHy +azHz- Hy- Hs) > 0,
o a+az=(mHy+aHy +azHz- Hy- Hs) >0,
° a1+a2=(a1H1+a2H2+a3H3-H§)ZO.
Hence we have

Eff(X) = R>o[H1] + Rxo[H2] + Rxo[F13] + R>o[ F23].

Let I3, I2, 11 be nontrivial irreducible fibers oPiz|x, pi3|x, P23lx, respectively. Then
we can show that

NE(X) = Rxo[l1] + Rxo[l2] + Rxo[l3].

We write D ~ a;H; + a,H, + aszHs, whereay, a,, a3 € Z. Then we have -1,) <0,
(D-l,) <0 and O -13) = 1 by Proposition 4.5. We also know that = 0, a, =0 and
az = 1 (henceD ~ H3) ande(D) = 2 sinceD is effective. Hence we have

1 2
360) = [ (Ha (Hu + Ho 2 - ) dx
0
2
= / (1—x)(O(0, 0, 1)- O(1, 1, 2— x)?- O(1, 1, D) p1,piype dX
0

2 8
=/ (1—x)(10—4x)dx = = > 0;
0 3
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this leads to a contradiction.

(V) AssumeX =~ Pp1,p1(O(0, 1)® O(1, 0)). LetE; and E, be the sections of
such that the normal bundles ak&,, x ~ O(—1, 1) andNg, x ~ O(1,-1), andH; :=
T*prO(1) (i =1, 2). Lete C E; be a fiber of the projectiom;: E ~ P! xP! — P!
(for {i, j} = {1, 2) and f be a fiber ofr. Then we can show thatKyx ~ 3H; +
H, + 2E,,

NE(X) = Rxo[€&1] + Rxo[&] + Rxo ],
Pic(X) = Z[H1] @ Z[H,] & Z[E4],
Eff(X) = R>o[H1] + Rxo[H2] + Rxo[E1] + R>o[ E2].

Hence we can show thdd ~ E; or D ~ E; or D ~ E; + H; (in each case we have
€(D) = 2).
If D~ E; + Hy, then we have

2
360) = [ (L=X(E: + o (= 0Hy + He + (2~ VE?) dx
= /2(1—x)(2—x)(4—x)dx= 8 > 0;
0 3

this leads to a contradiction.
If D~ E; (or Ep), then we have

1 2
§§(D)=/ (1—x)(Ez- (3H1 + Hz + (2— x)E1)?) dx
0
=/22(1—x)(1+x)(3—x)dx=0.
0

Hence X is slope semistable but not slope stable al@g(and also alongey).
(V) Assume X ~ P! x P! x P1. Then X is slope semistable along any divisor
but is not slope stable along a fiber pf by Theorem 4.6 (1) and Corollary 4.4.
(VII) Assume X =~ Ppi,p:(O & O(1, 1)). Let E be the section ofr with the
normal bundleNg,x ~ O(—1,—1). Then we have(E) = 2. ThereforeX is not slope
semistable alonde by Proposition 4.1 (2).

6.4. px =4 case. There exists an extremal raig C NE(X) of type C, by Prop-
osition 4.5 and [12, p. 160]. We write its contractian X — S. We know thatS is
a del Pezzo surface gfs > 3. Hence we haveX ~ P! x S, with 1 <m < 7 by [15,
Theorem 4.20] (see also [20]).

Hence X is slope semistable along any divisor but is not slope staldag some
divisor by Proposition 5.2, Theorem 4.6 (1) and Corollarg. 4.

As a consequence, we have the following result:
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Theorem 6.2. Let X be a Fano threefold.
(1) X is slope semistable along any effective divisor but theist® a divisor DC X
such that X is not slope stable along D if and only if X is isopic to one aof

P32, P1xP2? Ppipi(O0, 1)® O(1, 0)),
P!xP'xP!, P'xS, 1<m<7).

(2) There exists a divisor @ X such that X is not slope semistable along D if and
only if X is isomorphic to one of

BIIine Qsa BIIine ]P,3, ]P)]P’Z((9 2] 0(1))1 ]P]PZ(O 2] 0(2))1
P! xFy, Pr(0O® O+ ), Pprp(0® O, 1)).

REMARK 6.3. By Theorem 6.2, [6, Theorem 1.1] and the result of Steffd9,
Theorem 3.1], there exists a Fano threefdldwhich is slope stable along all divisors
and smooth subvarieties but has the unstable tangent buRdieexample,X is the
blowing up of Pp2(O @ O(1)) along a line on the exceptional divisor (P?) of the
blowing up Pp2(O & O(1)) — P2 (no. 29 in Table 3 in Mori and Mukai’s list [12]).
In fact, Mabuchi [11, Remark 2.5] observed that the ab¥veoes not admit Kéhler—
Einstein metrics.
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