WEYL GROUP SYMMETRY ON THE GKM GRAPH OF A GKM MANIFOLD WITH AN EXTENDED LIE GROUP ACTION

SHIZUO KAJI

(Received January 23, 2013, revised June 10, 2013)

Abstract

We consider the class of manifolds with compact Lie group actions which restrict to GKM-actions on the maximal torus. First, we see their GKM-graphs admit symmetry of the Weyl groups. And then, we study its combinatorial abstraction; starting with abstract GKM-graphs with symmetry, we derive certain properties which reflect topology in a purely combinatorial way.

1. Introduction

Let T be a compact n-dimensional torus acting on a closed oriented m-manifold M with finite fixed points. If M satisfies certain conditions (see §2), it is called a GKM-manifold. Goresky, Kottwitz and MacPherson ([4]) developed a powerful method to compute the torus equivariant cohomology $H_T^*(M; \mathbb{R})$ for a GKM-manifold M, by associating it a combinatorial data called the GKM-graph.

What we focus on in this note are the *GKM-manifolds with extended Lie group actions*. Let *G* be a compact, simple, simply-connected Lie group with the maximal torus *T*. If *M* admits a *G*-action whose restriction to *T* equips *M* a GKM-manifold structure, we call *M* a *GKM-manifold with an extended G-action* (see [9]). This class of manifolds includes interesting examples of flag varieties, and more generally, maximal rank homogeneous spaces. Our goal is to see what additional structures are imposed on the GKM-graph, and to what extent the topology of *M* is captured combinatorially.

The organization of this paper is as follows: After briefly recalling the GKM-theory in §2, we see in §3 that the GKM-graph of a GKM-manifold with an extended G-action has a symmetry of the Weyl group W of G, and that the localization map is compatible with it. In §4, we start with an abstract GKM-graph Γ with the symmetry of a finite Coxeter group W. We discuss the cohomology ring $H^*(\Gamma; \mathbb{R})$ of the graph and derive its properties combinatorially. In particular, we see a necessary condition for Γ to admit the symmetry of W. Finally in §5, we see that with our definition of the W-symmetry, a series of operators on $H^*(\Gamma; \mathbb{R})$ indexed by W are defined.

²⁰¹⁰ Mathematics Subject Classification. Primary 55N91; Secondary 57S15.

This work was supported by KAKENHI, Grant-in-Aid for Young Scientists (B) 22740051, and Bilateral joint research project with Russia (2010–2012), *Toric topology with applications in combinatorics*.

They correspond topologically to the *left divided difference operators*, and $H^*(\Gamma; \mathbb{R})$ is equipped with an action of the *nil-Hecke ring* ([8]). As an application of this fact, we obtain a retraction $H^*(\Gamma; \mathbb{R}) \to H^*(\Gamma; \mathbb{R})^W$, which is reminiscent of the Becker–Gottlieb transfer ([1]) $\tau: H_T^*(M; \mathbb{R}) \to H_G^*(M; \mathbb{R})$.

We assume that the coefficients for the cohomology ring is \mathbb{R} unless otherwise stated.

2. GKM theory

For a closed oriented manifold M with a T-action, we consider its T-equivariant cohomology $H_T^*(M) := H^*(ET \times_T M)$. Here $ET \times_T M$ is the Borel construction, which is the quotient space of $ET \times M$ by the equivalence relation $(u, m) \sim (ut^{-1}, tm)$, where $u \in ET$, $m \in M$, and $t \in T$. When M is a point, $H_T^*(pt) = H^*(BT)$ is the symmetric algebra over the dual Lie algebra t^* of T.

M is said to be a GKM-manifold if it satisfies the following conditions:

- it admits a *T*-invariant almost complex structure,
- it is equivariant formal, i.e., $H_T^*(M)$ is a free $H_T^*(pt)$ -module,
- the fixed points set M^T is finite,
- the weights of the isotropic T-action on the tangent space $T_p(M)$ are pairwise linearly independent for $\forall p \in M^T$.

It follows (see [5]) that the set of the one-dimensional orbits $\{x \in M \mid \dim(Tx) = 1\}$ is the disjoint union $\bigsqcup_{\hat{e} \in \hat{E}} X_{\hat{e}}^o$, where \hat{E} is a finite index set and the closure $X_{\hat{e}}$ of each component $X_{\hat{e}}^o$ is diffeomorphic to S^2 containing exactly two fixed points e_p and e_q at the north and the south poles. Then, the *GKM-graph* $\Gamma(M) = (V, E, \alpha, \theta)$ for M is constructed as follows:

- The vertex set V is the fixed points set M^T .
- The edge set E; for each two sphere $X_{\hat{e}}$ ($\hat{e} \in \hat{E}$), we draw an edge $e_p \to e_q$.
- The axial function $\alpha \colon E \to \mathfrak{t}^*$ is defined by assigning to $e_p \to e_q \in E$ the weight of the T-action on $T_{e_p}X_{\hat{e}}$. Note that α_e annihilates the Lie algebra of the stabilizer group of $X_{\hat{e}}$. We graphically denote an edge with the value of axial function by $p \xrightarrow{\alpha(e)} q$.
- Let $\operatorname{out}(p)$ be the set of the outgoing edges from $p \in V$. The restriction of TM around p splits into the sum of the plane bundles $\bigoplus_{e' \in \operatorname{out}(e_p)} L_{e'}$, where the restriction of $L_{e'}$ at e_p is isomorphic to $T_{e_p}X_{\hat{e'}}$. For each edge $e \in E$, the connection θ_e : $\operatorname{out}(e_p) \to \operatorname{out}(e_q)$ is the bijection which assigns to $e' \in \operatorname{out}(e_p)$ the edge corresponding to $L_{e'}|_{e_p}$.

The relationship between the topology of a GKM-manifold and the combinatorics of its GKM-graph is bridged by the *localization map*. The inclusion map $i: M^T \hookrightarrow M$ is T-equivariant, and hence it induces a map on the equivariant cohomology. We call the induced map

$$i^* = \bigoplus_{p \in M^T} i_p^* \colon H_T^*(M) \to \bigoplus_{p \in M^T} H_T^*(p) \cong \bigoplus_{p \in M^T} H^*(BT)$$

the localization map. We often denote $i_p^*(h)$ by h_p for $h \in H_T^*(M)$.

The main result in [4] states that the GKM-graph determines the image of the localization map, and thus encodes the T-equivariant cohomology:

Theorem 2.1 ([4]). The localization map gives the following isomorphism:

$$H_T^*(M) \cong \left\{ \bigoplus_{p \in M^T} h_p \; \middle| \; h_p \in H^*(BT), \; h_p - h_q \in (\alpha(e)) \; \text{if} \; p \xrightarrow{\alpha(e)} q \right\},$$

where \mathfrak{t}^* is identified with $H^2(BT)$. Note that the right hand side is determined purely combinatorially, and is often called the GKM-description of the equivariant cohomology.

3. Weyl group action

Let M be a GKM-manifold with an extended G action, where G is a compact, simple, simply-connected Lie group with the maximal torus T. The Weyl group W of G is by definition N(T)/T, where N(T) is the normalizer of the maximal torus in G. We denote the positive roots by Π^+ , and the reflection corresponding to $\alpha \in \Pi^+$ by $s_{\alpha} \in \operatorname{Aut}(\mathfrak{t}^*)$.

We define a right action of W on $ET \times_T M$ by $w(u, x) = (uw, w^{-1}x)$, which in turn induces a left action on $H_T^*(M)$. In particular, W acts on $H_T^*(pt) = H^*(BT)$. If we regard $H^*(BT)$ as the symmetric algebra over $\mathfrak{t}^* = \langle t_1, \dots, t_n \rangle$, the action is nothing but the standard action on the variables:

$$w(h)(t_1, \ldots, t_n) = h(wt_1, \ldots, wt_n), \quad w \in W, \ h \in H^*(BT) = \mathbb{R}[t_1, \ldots, t_n].$$

Note that the W-action is trivial on $EG \times_G M$, and so is on $H_G^*(M)$.

REMARK 3.1. The W action is not T-equivariant, and hence, it is well-defined only on $ET \times_T M$ but not on M.

We first investigate the W-action on $H_T^*(M)$ in terms of the GKM-description.

Lemma 3.2. For $w \in W$, $p \in M^T$, and $h \in H_T^*(M)$, we have

$$w(h)_n = w(h_{w^{-1}n}) \in H^*(BT).$$

Proof. By the following commutative diagram

$$ET \times_T \{p\} \xrightarrow{w} ET \times_T \{w^{-1}p\}$$

$$\downarrow^{i_p} \qquad \qquad \downarrow^{i_{w^{-1}p}}$$

$$ET \times_T M \xrightarrow{w} ET \times_T M,$$

we obtain $i_p^* \circ w = w \circ i_{w^{-1}p}^*$.

The GKM-graph $\Gamma(M)$ admits the following symmetry of W.

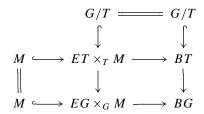
Theorem 3.3. (1) If there is an edge $p \xrightarrow{\alpha(e)} q$, then so is $wp \xrightarrow{w(\alpha(e))} wq$.

- (2) If $q = s_{\alpha} p$ for some $\alpha \in \Pi^+$, there is an edge $p \xrightarrow{\alpha} q$.
- (3) $w(\theta_e(e')) = \theta_{w(e)}(w(e'))$ for all $e, e' \in E$ and $w \in W$.
- Proof. (1) Assume that $T_p(M) = \bigoplus_{e \in \text{out } p} \mathbb{C}_{\alpha(e)}$, where \mathbb{C}_{α} is the complex one-dimensional T-module with the weight $\alpha(e)$. Then the tangent space at wp decomposes to $T_{wp}(M) = \bigoplus_{e \in \text{out } p} \mathbb{C}_{w\alpha(e)}$.
- (2) Let $P_{\alpha} \subset G$ be the subgroup corresponding to the root α . The P_{α} -orbit of p is $P_{\alpha}/T \cong S^2$ with p and q as its north and south poles. Since, $T_p(P_{\alpha}/T) \cong \mathbb{C}_{\alpha}$ by definition, the assertion follows.
- (3) The decomposition $\bigoplus_{e' \in \text{out}(p)} L_{e'}$ in the definition of θ is mapped by w to $\bigoplus_{e' \in \text{out}(p)} wL_{e'}$.

The relationship between the G-equivariant cohomology and the T-equivariant cohomology is summarized as follows.

Proposition 3.4. (1) $H_T^*(M) \cong H^*(BT) \otimes H^*(M)$ as $H^*(BT)$ -modules.

- (2) $H_G^*(M) \cong H^*(BG) \otimes H^*(M)$ as $H^*(BG)$ -modules.
- (3) $H_T^*(M) \cong H^*(BT) \otimes_{H^*(BG)} H_G^*(M)$ as $H^*(BT)$ -algebras.
- (4) $H_G^*(M) \cong H_T^*(M)^W$ as $H^*(BG)$ -algebras.
- Proof. (1) Consider the fibration $M \hookrightarrow ET \times_T M \to BT$. Since $H_T^*(M)$ is a free $H^*(BT)$ -module by assumption, we have $H_T^*(M) \cong H^*(BT) \otimes H^*(M)$ by the Serre spectral sequence.
- (2) By Borel's localization theorem, $H^*(M)$ should be concentrated in even degrees. Then by the Serre spectral sequence for the fibration $M \hookrightarrow EG \times_G M \to BG$, we have $H^*_G(M) \cong H^*(BG) \otimes H^*(M)$.
 - (3) Consider the following pullback diagram:



The Eilenberg-Moore spectral sequence collapses at E_2 -term and we have $H_T^*(M) \cong H^*(BT) \otimes_{H^*(BG)} H_G^*(M)$ as $H^*(BT)$ -algebras. Note that there are no extension problem in this case.

(4) Since W acts on $H_G^*(M)$ trivially, the assertion follows from the previous isomorphism.

EXAMPLE 3.5. We recover the well-known specialization formula for the double Schubert polynomials. Let M be the flag variety G/T, with the G-action induced by the left multiplication. The fixed point set of the action restricted to the maximal torus T is $\{wT/T \mid w \in W\}$. Since $H_G^*(G/T) = H^*(BT)$, we have $H_T^*(G/T) = H^*(BT) \otimes_{H^*(BG)} H^*(BT)$ by Proposition 3.4. It is well-known that $H_T^*(G/T)$ admits a free $H^*(BT)$ -module basis indexed by W called the *Schubert classes* (see, for example, [6]). Let $S_w(t;x) \in \mathbb{R}[t_1,\ldots,t_n,x_1,\ldots,x_n]$ be a polynomial representing a Schubert class $S_w \in H_T^*(G/T)$, where t_i 's and t_i 's are the generators for the left and the right factors of $H^*(BT) \otimes H^*(BT)$. Then, the localization at a fixed point $v \in W$ is the specialization at $t_i = v^{-1}t_i$:

$$i_v^*(\mathcal{S}_w) = \mathcal{S}_w(t_1, \ldots, t_n; vt_1, \ldots, vt_n).$$

Proof. Since $EG \times_T \{*\} \to EG \times_G G/T$ induces the isomorphism $H^*(BT) \cong H_G^*(G/T)$, the localization map at the identity element i_e^* is the identity map on the right factor. Hence, by Lemma 3.2,

$$i_{v}^{*}(S_{w}) = v \circ i_{e}^{*} \circ v^{-1}(S_{w})$$

$$= v \circ i_{e}^{*}S_{w}(v^{-1}t_{1}, \dots, v^{-1}t_{n}; x_{1}, \dots, x_{n})$$

$$= vS_{w}(v^{-1}t_{1}, \dots, v^{-1}t_{n}; t_{1}, \dots, t_{n})$$

$$= S_{w}(t_{1}, \dots, t_{n}; vt_{1}, \dots, vt_{n}).$$

4. Abstract GKM-graph with symmetry

Modeled after the topological setting we have just seen, we consider an abstract GKM-graph with the symmetry of a finite Coxeter group.

DEFINITION 4.1. Let \mathfrak{t}^* be the vector space generated on a basis t_1, \ldots, t_n . A connected, finite, m-valent graph $\Gamma = (V, E, \alpha, \theta)$ with the following additional structures is said to be a GKM-graph:

- (1) The axial function $\alpha \colon E \to \mathfrak{t}^*$ satisfies that $\{\alpha(e) \mid e \in \operatorname{out}(p)\}$ are pairwise linearly independent for all $p \in V$.
- (2) The connection θ assigns for each edge $e \in E$ a bijection between $\operatorname{out}(e_p)$ and $\operatorname{out}(e_q)$, satisfying that $\alpha(\theta_e(e')) \alpha(e')$ is a scalar multiple of $\alpha(e)$ for any adjacent edges e and e'.

We say that Γ has the symmetry of a rank n finite Coxeter group W if W acts as an automorphism on the vertices and edges and further it satisfies

- (1) $\alpha(w(e)) = w(\alpha(e))$ for $\forall e \in E$.
- (2) If $q = s_{\alpha} p$ and $q \neq p$ for some $\alpha \in \Pi^+$, there is an edge $p \stackrel{\alpha}{\to} q$.

(3) $w(\theta_e(e')) = \theta_{w(e)}(w(e'))$ for all $e, e' \in E$ and $w \in W$. In the above, W action on \mathfrak{t}^* is given by the standard representation.

We see in §3, for a GKM manifold M with an extended action of a Lie group G, the GKM-graph $\Gamma(M)$ admits the symmetry of the Weyl group of G.

The cohomology of Γ is defined following Theorem 2.1:

DEFINITION 4.2. Let $\mathbb{R}[t_1, \dots, t_n]$ be the symmetric algebra over \mathfrak{t}^* , where the generators t_i 's are considered to be of degree two.

$$H^*(\Gamma) = \left\{ \bigoplus_{p \in V} h_p \mid h_p \in \mathbb{R}[t_1, \dots, t_n], h_p - h_q \in (\alpha(e)) \text{ if } p \xrightarrow{\alpha(e)} q \right\}.$$

We consider $H^*(\Gamma)$ as a $\mathbb{R}[t_1, \ldots, t_n]$ -submodule of $\bigoplus_{p \in V} \mathbb{R}[t_1, \ldots, t_n]$, where the module structure is diagonal.

Note that $\mathbf{1} = \bigoplus_{p \in V} 1$ is the generator for $H^0(\Gamma) \cong \mathbb{R}$. If Γ has the symmetry of W, then W acts on the cohomology.

Lemma 4.3. For $h \in H^*(\Gamma)$, the element $w(h) \in \bigoplus_{p \in V} \mathbb{R}[t_1, \dots, t_n]$ defined by

$$(4.1) w(h)_p = w(h_{w^{-1}p})$$

belongs to $H^*(\Gamma)$.

Proof. Suppose that there is an edge $p \xrightarrow{\alpha} q$. Then there should be an edge $w^{-1}p \xrightarrow{w^{-1}\alpha} w^{-1}q$. $w(h)_p - w(h)_q = w(h_{w^{-1}p} - h_{w^{-1}q})$ is divisible by $w \circ w^{-1}\alpha = \alpha$. \square

The action reduces trivially on the "ordinary cohomology."

Lemma 4.4. For $h \in H^*(\Gamma)$ and $\alpha \in \Pi^+$, we have

$$h - s_{\alpha}(h) \in (\alpha \cdot \mathbf{1}).$$

Proof. Since

$$(h - s_{\alpha}(h))_p = h_p - s_{\alpha}(h_{s_{\alpha}p}) = (h_p - h_{s_{\alpha}p}) + (h_{s_{\alpha}p} - s_{\alpha}(h_{s_{\alpha}p}))$$

is divisible by α , the assertion follows.

Since $w_1w_2(h)-h=(w_1w_2(h)-w_2(h))+(w_2(h)-h)$ for $w_1,w_2 \in W$, it follows that $w(h)-h \in (\mathbb{R}^+[t_1,\ldots,t_n]\cdot \mathbf{1})$ for any $w \in W$, that is, W acts trivially on $H^*(\Gamma)/(t_1,\ldots,t_n)$.

REMARK 4.5. Note that if Γ is a GKM-graph of some GKM G-manifold, it is an easy topological consequence; The fiber inclusions $\iota \colon M \to ET \times_T M$ and $w \circ \iota$ is homotopic since G is connected and there exists a path from (a representative of) w to the identity element. Therefore, they induces the same map $H_T^*(M) \to H^*(M) \cong H_T^*(M)/(H^+(BT))$.

From this lemma, we deduce a necessary condition for Γ to admit the symmetry of W. For this purpose, we define a graph theoretical analogy for torus invariant submanifolds. A connected subgraph Λ of Γ is said to be *closed under the connection* θ when $\theta_e(e') \in \Lambda$ for $\forall e, e' \in \Lambda$. Since θ_e is bijection for all $e \in E$, Λ is always a regular graph. Let Γ_k be the set of all the k-valent subgraphs which are closed under the connection. For $\Lambda \in \Gamma_k$, we obtain the class $\lambda \in H^{2m-2k}(\Gamma)$ which is supported on Λ by

$$\lambda_p = \begin{cases} \prod_{e \in \text{out } p \setminus \Lambda} \alpha(e) & (p \in \Lambda), \\ 0 & (p \notin \Lambda). \end{cases}$$

Note that $\lambda \in H^*(\Gamma)$ is clear from the definition of θ . Suppose that another class $\lambda' \in H^{2m-2k}(\Gamma)$ has the same support as λ , that is, $\lambda'_p \neq 0$ iff $p \in \Lambda$. Then it must be a scalar multiple of λ . To see this, observe that there exists $c_p \in \mathbb{R}$ for each $p \in \Lambda$ such that $\lambda'_p = c_p \lambda_p$. Take $q \in \Lambda$ which is adjacent to p by an edge e. Then $(\lambda' - c_p \lambda)_q$ must be divisible by $\alpha(e) \prod_{e' \in \text{out } q \setminus \Lambda} \alpha(e')$ and so must be 0 by degree reason. It follows that $c_q = c_p$, and by the connectivity of Λ all the c_p 's for $p \in \Lambda$ must be equal. Since W permutes Γ_k , we have

Proposition 4.6. W acts on the set $\{\pm \lambda \in H^{2m-2k}(\Gamma) \mid \Lambda \in \Gamma_k\}$ as a signed permutation.

In some cases, this imposes a cohomological restriction on what kind of W can act on Γ .

EXAMPLE 4.7. Assume that the classes corresponding to Γ_{m-1} gives a free basis for $H^2(\Gamma)$. Since $H^2(\Gamma)$ contains $\mathfrak{t}^* \cdot \mathbf{1}$, the action is faithful. Furthermore, each reflection $s_\alpha \in W$ fixes all but one or two elements. To see this, first observe that the trace of the action of s_α on \mathfrak{t}^* is n-2 since it is a reflection. In addition, by the previous Lemma, s_α acts trivially on $H^2(\Gamma)/\mathfrak{t}^*$. Therefore, the trace of the action of s_α on $H^2(\Gamma)$ must be two less than the rank of $H^2(\Gamma)$. It follows that we can choose a subset of $\{\pm\lambda\in H^2(\Gamma)\}$ of cardinality equal to or less than 2(n+1), on which W acts faithfully as a signed permutation. In particular, such W is restricted to of classical types. (Readers also refer to [12] and [10]).

5. Divided difference operators

In this section, we construct a series of operators on $H^*(\Gamma)$. Topologically, they coincide with the left divided difference operators.

First, we need the following lemma:

Lemma 5.1.
$$(h - s_{\alpha}(h))/\alpha$$
 is in $H^*(\Gamma)$.

Proof. First see

$$(h - s_{\alpha}(h))_p - (h - s_{\alpha}(h))_q = h_p - h_q + s_{\alpha}(h_{s_{\alpha}q} - h_{s_{\alpha}p}).$$

If $q \neq s_{\alpha} p$ and $p \xrightarrow{\beta} q$, it follows $s_{\alpha} p \xrightarrow{s_{\alpha}(\beta)} s_{\alpha} q$. Hence, both $h_p - h_q$ and $s_{\alpha} (h_{s_{\alpha}q} - h_{s_{\alpha}p})$ is divisible by β and since the labels are pairwise linearly independent, $(h - s_{\alpha}(h))_p / \alpha - (h - s_{\alpha}(h))_q / \alpha$ is divisible by β . If $q = s_{\alpha} p$ and $p \xrightarrow{\alpha} q$, we put $h_p - h_{s_{\alpha}p} = \alpha \cdot f$ with $f \in \mathbb{R}[t_1, \ldots, t_n]$. Then we see

$$h_p - h_q + s_\alpha (h_{s_\alpha q} - h_{s_\alpha p}) = \alpha \cdot f + s_\alpha (\alpha \cdot f) = \alpha (f - s_\alpha (f))$$

is divisible by α^2 .

Now, we can define the operators.

DEFINITION 5.2. The *left divided difference operator* associated to $\alpha \in \Pi^+$ is defined to be

$$\partial_{\alpha} \colon H^*(\Gamma) \to H^{*-2}(\Gamma),$$

$$h \mapsto \frac{h - s_{\alpha}(h)}{\alpha},$$

or equivalently,

$$\partial_{\alpha}(h)_{p} = \frac{1}{\alpha}(h_{p} - s_{\alpha}h_{s_{\alpha}p}).$$

It is well-known (see [8], for example) that they satisfy the braid relation for W, and hence, we can define ∂_w for $w \in W$ as the composition $\partial_{\alpha_1} \partial_{\alpha_2} \cdots \partial_{\alpha_l}$, where $w = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_l}$ is a reduced decomposition for w.

Let us recall the definition of the *nil-Hecke ring* from [8]: Let $S = \mathbb{R}[t_1, \ldots, t_n]$ be the symmetric algebra over \mathfrak{t}^* and Q be its quotient ring. We denote the smash product of the group ring $\mathbb{R}[W]$ and Q by Q_W . Then the nil-Hecke ring R is the sub ring of Q_W generated freely as a left S-module by ∂_W 's for $\forall w \in W$.

Theorem 5.3. Let Γ be a GKM-graph with the symmetry of a finite Coxeter group W (Definition 4.1). Then, $H^*(\Gamma)$ is a module over the nil-Hecke ring R.

EXAMPLE 5.4. When M = G/T, the left divided difference operator ∂_w exhibits the hierarchy of the Schubert classes: (We use the same notation as in Example 3.5.)

$$\partial_v(\mathcal{S}_w) = \begin{cases} \mathcal{S}_{vw} & (v \le w), \\ 0 & (\text{otherwise}). \end{cases}$$

This is easily seen by comparing the support, since the Schubert classes are known to be characterized by the upper-triangularity of the support (see, for example, [6]). Note that the operators here are so-called the *left* divided difference, and in [8] they consider the *right* divided difference.

Now we consider the W-invariant subalgebra of $H^*(\Gamma)$.

DEFINITION 5.5. Let $H_W^*(\Gamma) = H^*(\Gamma)^W$. More explicitly, it is described as follows: Fix a set of representatives p_1, \ldots, p_k for the right W-cosets $W \setminus V$ of $W \cap V$ and denote by $W^{p_i} = \{w \in W \mid wp_i = p_i\}$ the isotropy subgroup at p_i . Since, by (4.1), $h_{wp} = w(h_p)$ for $h \in H^*(\Gamma)^W$, we have

$$H_W^*(\Gamma) = \left\{ \bigoplus_{i=1}^k h_{p_i} \mid h_{p_i} \in \mathbb{R}[t_1, \dots, t_n]^{W^{p_i}}, h_{p_i} - wh_{p_j} \in (\alpha(e)) \right\}$$
if $\exists w \in W/W^{p_j} \text{ s.t. } p_i \xrightarrow{\alpha(e)} wp_j \right\}.$

REMARK 5.6. Since $H_G^*(M) \cong H_T^*(M)^W$ by Proposition 3.4, we have $H_W^*(\Gamma(M)) \cong H_G^*(M)$. The above definition gives a combinatorial description for $H_G^*(M)$.

As an application of the left divided difference operators, we can define the *Becker–Gottlieb transfer*. Let $w_0 \in W$ be the longest element.

DEFINITION 5.7. Define

$$\tau \colon H^*(\Gamma) \to H_w^*(\Gamma)$$

by

$$\tau(h) = \partial_{w_0}(d\mathbf{1} \cdot h),$$

where $d = \prod_{\alpha \in \Pi^+} \alpha$.

Then, we recover the famous theorem by Brumfiel and Madsen ([2]).

Proposition 5.8. τ is given by

$$\tau(h) = \sum_{w \in W} w(h).$$

In particular, $\tau/|W|$ is a left inverse to the inclusion $\iota: H_W^*(\Gamma) \hookrightarrow H^*(\Gamma)$, that is, $\tau \circ \iota/|W|$ is the identity map.

Proof. Fix a reduced expression $w_0 = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_{l(w_0)}}$. It is well-known (see [3], for example) that

$$\partial_{w_0} = \alpha_1^{-1}(1 - s_{\alpha_1})\alpha_2^{-1}(1 - s_{\alpha_2})\cdots\alpha_{l(w_0)}^{-1}(1 - s_{\alpha_{l(w_0)}}) = \frac{1}{d}\sum_{w\in W}(-1)^{l(w)}w.$$

Since $w(d) = (-1)^{l(w)}d$, we have the assertion.

EXAMPLE 5.9. In [7, §7], it is shown that

$$\frac{1}{|W|}\tau(S_w) = (-1)^{l(w)} S_{w^{-1}},$$

where S_w is the equivariant Schubert class associated to $w \in W$ and $s_{w^{-1}}$ is the ordinary Schubert class associated to $w^{-1} \in W$ as in Example 3.5.

References

- [1] J.C. Becker and D.H. Gottlieb: The transfer map and fiber bundles, Topology 14 (1975), 1–12.
- [2] G. Brumfiel and I. Madsen: Evaluation of the transfer and the universal surgery classes, Invent. Math. 32 (1976), 133–169.
- [3] M. Demazure: Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287–301.
- [4] M. Goresky, R. Kottwitz and R. MacPherson: Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83.
- [5] V. Guillemin and C. Zara: 1-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J. 107 (2001), 283–349.
- [6] S. Kaji: Schubert calculus, seen from torus equivariant topology, Trends in Mathematics New Series 12, (2010), 71–90.
- [7] S. Kaji: Equivariant Schubert calculus of Coxeter groups, Proc. Steklov Inst. Math., 275 (2011), 239–250
- [8] B. Kostant and S. Kumar: The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. in Math. 62 (1986), 187–237.
- [9] S. Kuroki: GKM graphs induced by GKM manifolds with SU(l+1)-symmetries, Trends in Mathematics New Series 12, (2010), 103–113.
- [10] M. Masuda: Symmetry of a symplectic toric manifold, J. Symplectic Geom. 8 (2010), 359–380.
- [11] M. Masuda and T. Panov: On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), 711–746.
- [12] M. Wiemeler: Torus manifolds with non-abelian symmetries, Trans. Amer. Math. Soc. 364 (2012), 1427–1487.

Department of Mathematical Sciences Faculty of Science Yamaguchi University 1677-1, Yoshida, Yamaguchi 753-8512 Japan e-mail: skaji@yamaguchi-u.ac.jp