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Abstract
On the basis of a result of Barrett [2], we show that members ofcertain classes of

abstract Levi flat manifolds with boundary, whose Levi foliation contains a compact
leaf with contracting, flat holonomy, admit noCR embedding as a hypersurface of
a complex manifold. In particular, it follows that the foliation constructed in [6] is
not embeddable.

In [2], Barrett showed that there is no Levi flat submanifoldS� S3, smoothly em-
bedded in a complex 2-manifoldM, such that its foliation is diffeomorphic to Reeb’s
one. A key ingredient in the proof is a result by Ueda [10], which allows to find an
equation for a compact complex curveC � M (in a neighborhood ofC), provided that
its normal bundle satisfies certain triviality conditions.

We show that Barrett’s method can be adapted to prove that other classes of Levi flat
manifolds, of dimension greater than 3, are non-embeddableas smooth hypersurfaces of
a complex manifold. This is due to the fact that the relevant part of Ueda’s argument is
valid also in dimension greater than 1.

In our situation, we assume the existence of a compact leaf whose holonomy is
isomorphic toZ, contracting and flat, as in the case of Reeb’s foliation. Moreover,
we ask for the holonomy covering of the compact leaf to be (partially) “extendable” at
infinity, a technical condition (based on the notion of partial compactification employed
in [7]) which can be verified in several examples—as in Reeb’scase, and in the case
of the examples discussed in Section 2.

The proof of Theorem 1.3 comes as a consequence of [2], [7] and[10]; the pur-
pose of this note is essentially to explain it in detail, and apart of our argument is
in fact pointing out why Theorem 3 in [10] applies to our situation. Once a defining
function for the compact leaf has been found, the proof becomes a not too difficult ap-
plication of the maximum principle and of the compactification lemma in [7] (see the
end of Section 1). Afterwards, in Section 2 we show how Theorem 1.3 applies to the
case of some well-known foliations.
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1. Main result

Statement. Let S be a C1 Levi flat 2n C 1-manifold with boundaryC D bS,
and denote byF its smooth foliation by complex leaves. We will assume thatC is a
compact complex manifold of dimensionn.

In order to state our main result, we need some definitions. First, we give a notion
which extends that of partial compactification employed in [7].

DEFINITION 1.1. Let M be a complex manifold of dimensionn. We say thatM
has anend E if there exists a sequenceU1 � U2 � � � � of connected open subsets such
that everybU j is compact and

T

i Ui D ;. Let now X be anothern-dimensional com-
plex manifold, and let� � X be a proper subdomain such thatb� is compact. We say
that X extends Mthrough its endE if there exists a biholomorphism9 W M ! � such
that

T

i 9(Ui )D b�. If � is dense inX andb�� H is a compactk-dimensional com-
plex submanifold ofX, with k < n, we say—in accordance with the definition given
in [7]—that X is a (partial)holomorphic compactificationof M by H at E-infinity.
Assume, now, thatM D L is a leaf of a foliationF as before. LetE D {Ui } be an
end of L, and suppose that (with respect to the topology ofS)

T

i Ui D C. In this
situation, we say thatL ends at Cand an extension ofL at E-infinity is also said to
be atC-infinity.

Next, we have to introduce some properties related to the holonomy of the compact
curve C.

DEFINITION 1.2. Let G denote the (germs at 0 of) smooth functions [0, 1)!
[0, 1) fixing 0 and let the homomorphismh W �1(C) ! G be the one-sided holonomy
mapping ofF aroundC. The holonomy groupis the subgroup ofG, isomorphic to
�1(C)=kerh, given byh(�1(C)). We say that the holonomy ofC is contracting if there
exists an elementd of h(�1(C)) such thatd(t) < t for t 2 [0, 1). Moreover, we say
that the holonomy issmoothly flatif for any germd in the holonomy group we have
d(t) � t D o(tk) for all k 2 N. The holonomy covering pW QC ! C is the (regular)
covering ofC with the property thatp

�

(�1( QC)) D kerh.

Let S be as above; we regardC as a boundary leaf forF . Our main assumptions
will regard the holonomy of this compact leaf:
(A) the (one sided) holonomy group ofC is isomorphic toZ; moreover, the holonomy
is contracting and smoothly flat.
When (A) is satisfied, the holonomy group ofC has a contracting generatord, and QC
has precisely one endE corresponding tod (see also Remark 1.2).
(B) the holonomy coveringQC of C extends throughE.
Then we have
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Theorem 1.3. With the hypotheses above, there is no smooth embedding of S as
a Levi flat hypersurface(with boundary) of a complex manifold.

We remark that the hypotheses of Theorem 1.3 regard only the compact leafC. If
the holonomy ofC is tangent to identity but not smoothly flat, then there may exist an
embedding ofS; in fact, in [2] Barrett shows an explicit construction of a (Lipschitz)
embedding ofS3, with a foliation that is homeomorphic to Reeb’s one but whose toric
leaf’s holonomy is notC1 flat. In our context, since we are dealing with a situation
with boundary, it is not difficult to give counterexamples where the holonomy is even
of classCk (see Example 2.1).

Proof. To prove Theorem 1.3, as said before, we follow step by step the method
employed by Barrett in [2]. Assume, then, that there is a smooth embedding ofS into
a complex (n C 1)-manifold M; we will fix our attention to a neighborhood of the
compact leafC. We claim that

Lemma 1.4. There exists a holomorphic defining function h for C, defined in a
neighborhood of C in M. Moreover, h can be chosen in such a way that d(Reh)jS
does not vanish in C.

To prove this lemma, we first give—following [10]—a definition:

DEFINITION 1.5. LetC be a compact complex hypersurface of a complex mani-
fold M, and suppose that the normal bundle ofC is holomorphically trivial. LetV D
{Vi } be a small enough covering of a neighborhood ofC in M, and letU D {Ui } D

{Vi \ C}; then it is easy to see that there exists a system{wi } of local equations of
Ui in Vi such thatwi =wk is well defined and equal to 1 inUik D Ui \ Uk. Denoting
by zi a suitable set of local coordinates inUi (such that (zi , wi ) give coordinates for
Vi ), this means that for some positive integer� and fik 2 O(Uik) we have

wk � wi D fik(zi )w
�C1
i C o(� C 1)

on Vik D Vi \ Vk. In such a case, the system{wi } is said to beof type�. It is readily
verified (see again [10]) thatfik is a cocycle inZ1(U, O), and that it is a coboundary
if and only if there exists a system of type� C 1. C is said to beof infinite typeif
any such system is a coboundary, i.e. there exists a system oftype � for all � 2 N.

REMARK 1.1. The type in the sense of Ueda defined above has the following geo-
metrical meaning: it is the order of contact alongC of the line bundle [C] (generated
by C as a divisor) and the trivial extension of the normal bundle to a neighborhood.

By hypothesis, the holonomy of the foliation ofS that we are considering along
the compact leafC is trivial to infinite order. As a consequence of this fact, inthe
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Appendix of [2] the following is proven:

Lemma 1.6. The normal bundle of C is holomorphically trivial; moreover, C is
of infinite type in M.

The point of the proof of the previous statement lies in the isomorphism (up to any
finite order) between the sheaf of functions which are locally constant on the leaves
of F and a particular subsheaf of holomorphic functions ofM. This isomorphism in
turn depends on a result in [3] about the local (finite order) approximation of Levi flat
hypersurfaces by zero sets of pluriharmonic functions, which holds for any dimension.

Lemma 1.4 is then a consequence of Theorem 3 in [10]. Althoughthat theorem
is stated only for complex curves—since that is the framework of Ueda’s paper—its
proof works as well for any compact complex hypersurface of acomplex manifold.
In fact, the proof involves the construction of a new set of coordinate functions{ui }

in Vi which satisfyui D u j on Vi j . This is first carried out formally, expressingui

as a power series in{wi } with coefficients inO(Ui ) in such a way that the relation is
satisfied; the construction is possible because of the existence of a system of type� for
all � 2 N, which (roughly) implies the vanishing of the obstruction to the existence of
each successive term of the series. The variableszi appear only through coefficients of
the series inO(Ui ), and the number of coordinateszi plays no role. The power series
in wi can be so constructed that they are convergent, using a lemmaby Kodaira and
Spencer [5]. The argument is valid regardless of the dimension of C.

Proof of Theorem 1.3. Leth be the function obtained by Lemma 1.4; Reh has
constant sign in a neighborhood ofC in S, we may suppose Reh > 0. For a small
enough", {0< Reh < "} is a one-sided tubular neighborhoodW of C in S. A contra-
diction will be obtained by considering the behavior of the restriction ofh to L \W,
where L is a leaf in Sn C whose closure containsC. To this purpose, we first define
a notion introduced in [6], [7]:

DEFINITION 1.7. we say thatF is tameif the following occurs: define the mani-
fold S0 as

S0 D St (C � [0, 1])=bS� C � {0}

(i.e. S0 extendsS by attaching a collarC � (0, 1] alongC), and consider the foliation
of S0 which agrees withF on S and with the trivial one (induced by the submersion
C � [0, 1]! [0, 1]) on C � [0, 1]. Moreover, endow the leaves of the foliation ofS0

contained inS with the complex structure inherited byF , and each leaf contained in
C � [0, 1] with the complex structure ofC. Then the foliation obtained is a smooth
Levi foliation of S0.
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For tame foliations, we can employ a compactification lemma proved in [7]. Con-
sider, on the restriction ofF to a tubular neighborhood ofC in S, a second (tame) com-
plex structureJ1 such that the structure induced onC is the same as the original one.
Then we can give the following variant of the compactification lemma cited above:

Lemma 1.8. Let L be a leaf ofF ending in C, and V a small enough tubular
neighborhood of C. Let L1 be the same leaf, but endowed by a complex structure J1

as above. If L1 admits an extension at C-infinity by a complex manifold X, then so
does L.

Proof. The proof employed in [7] carries over: in fact, by thesame argument the
tameness ofF implies thatJ1 extends tob� smoothly (as an endomorphism ofT(X))
and J1jb� D Jjb�. Hence J1 extends smoothly on all ofX, and it must be integrable
since it is in� and X n�, so it is a complex structure inX.

To use the previous lemma, we first need the following standard fact from foliation
theory:

Lemma 1.9. Under the assumption(A) of Theorem 1.3,there exists a leaf L
which has an end in C.

Proof. We can apply Theorem 1 in [9]. The cases (1) and (2) in the statement of
that result do not occur since, respectively, the holonomy of C is (strictly) contracting
and the holonomy group is isomorphic toZ. From the description in case (3) then
follows that, for a suitable neighborhoodV of C, all the leaves ofF jV have in fact
(exactly) one end inC.

REMARK 1.2. Let QC
�

�! C be the holonomy covering ofC; then there exists an
open subsetQV � QC � [0, 1), QC � {0} � QV , and a covering map (which we still denote
by �) from QV onto a small tubular neighborhoodV of C in S which coincides with
the holonomy covering onQC � {0} and such that the lift ofF jV by � coincides with
the trivial foliation by QC � {t}, t 2 [0, 1). A generatorT of the deck transformation
group for� can be expressed as

T (p, t) D (T(p, t), d(t))

with p 2 QC and t 2 [0, 1), where the functiond(t) satisfiesd(t) < t for t 2 (0, 1)
and d(t) � t D o(tk) for all k 2 N. As a consequence, the restriction of the action of
the deck group toQV \ ( QC � (0, 1)) does not fix any leaf, hence for eacht > 0 the
covering map� sends (QC � {t})j

QV diffeomorphically to a leafL t of F jV . The end of

L t identified in Lemma 1.9 induces then an endE of QC, which is the one considered
in the assumption (B) of Theorem 1.3.
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Next, in order to apply Lemma 1.8 we show—following the reparametrization method
of Corollary 3 in [7]—that we can reduce to a tame situation. We use the notation
of the previous remark; consider the continuous mapping8 W

QC � [0, 1]! QC � [0, 1]
defined by

8(p, t) D (p, ��1(t)), �(t) D e�1=t .

For any fixedt 2 [0, 1], the restriction of8 to QC � {t} sends it diffeomorphically to
QC � {��1(t)}. We can thus endowQV with the pull-back of the originalCR structure

of by 8j
QV , obtaining a manifold QV 0 with a foliation whose leaves are, by definition,

biholomorphic to the leaves ofQV . Now, the quotientV 0 of QV 0 under the action of the
group generated by

8 Æ T Æ8�1(p, t) D (T(p, �(t)), ��1
Æ d Æ �(t))

carries a smooth, tame foliationF 0 whose leaves are biholomorphic to the leaves ofF .
Now, by (B) and Lemma 1.8 we deduce that a leafL ending inC can be extended at
C-infinity. In fact, if we endow each leafL of V 0 with the structureLpb (obtained by
pulling back the complex structure ofC by a suitable submersion, see the corollary of
compactification lemma in [7]) and we give toQV 0 the trivial structure, the previously
described coveringQV 0

! V 0 is a biholomorphism along the leaves. It follows that each

Lpb
t , henceL t , can be extended.

Consider, then, the biholomorphism9 W L ! � given by Definition 1.1; we are
interested ing D h Æ 9 2 O(9�1(LW)), where LW D L \ W. Since hjLW converges
to zero at the ending corresponding toC, we have thatg extends continuously (by 0)
to b� and thus to (X n �) [ 9�1(LW). By Rado’s theorem, then, follows thatg is
holomorphic everywhere, hence� is actually dense inX and b� D H is an analytic
subset ofX. Then Reh Æ9 is a non-constant pluriharmonic function on9�1(LW)[ H
which assumes minimum in its interior part (onH ), a contradiction.

2. Examples

Suspension of a Hopf manifold. Fix coordinates (z, w) in C

2. As classified by
Kodaira [4], anyHopf surfaceis a quotient ofC2

n {(0, 0)} by the action of

H W (z, w)! (�zC �wm, �w)

wherem 2 N and �, �, � 2 C satisfy (�m
� �)� D 0 and 0< j�j � j�j < 1.

Let, now,%W R! R be a strictly increasing smooth function such that%(t) < t for
t > 0 and%(t) � t D o(td) as t ! 0 for all d 2 N. Considerr W (C2

n {(0, 0)}) � R!
(C2
n {(0, 0)}) � R defined as

r W (z, w, t)! (H (z, w), %(t))
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and let S be the quotient of (C2
n {(0, 0)})�R by the action ofr . Since the action of

r preserves the foliation of (C2
n {(0, 0)})�R by {t D const.}, S inherits a structure of

Levi flat manifold; the leaves are all isomorphic toC2
n {(0, 0)}, except a compact leaf

C corresponding to{t D 0} which is a Hopf surface diffeomorphic toS3
� S1. Clearly,

since C is compact and non-Kähler, we know a priori that there is no embedding of
S as a Levi flat submanifold of either a Stein or a Kähler manifold. By Theorem 1.3
we have that actually

Corollary 2.1. S does not admit a C1 embedding as a Levi flat hypersurface of
a complex3-manifold.

In this case, the holonomy covering of the Hopf surfaceC coincides with its uni-
versal coveringC2

n {(0, 0)}, which has a partial holomorphic compactification by the
CP

1 at infinity (and in fact the non-compact leaves are in turn compactifiable).
Moreover, by the choice of% the holonomy ofC is contracting andC1 flat, so that
Theorem 1.3 applies.

On the other hand, in the non-smooth case the embedding is possible:

EXAMPLE 2.1. In fact, one can obtain an embedding in such a way that the
holonomy of C is flat up to any fixed orderd: let %(t) D t � td, and define the sus-
pension as above. The resultingS has a real analytic Levi foliation, and as such it can
be embedded (see [1]). Notice that, sinceC2

n {(0, 0)} is compactifiable at both ends,
the example also works for%(t) D t C td.

Partial generalization. Let P be a homogeneous polynomial inCn, and assume
that V D {P D 0} is a smooth complex manifold outside the origin, with a smooth
closure inCPn. Choosing 0< � < 1 and%W R! R as above, we define the suspension

SD (V n {0}) � R={(z, t) � (�z, %(t))}.

We shall denote byC the compact leaf, corresponding to{t D 0}, of the foliation of
S induced by that of (V n {0}) � R; the other leaves are isomorphic toV n {0}.

As before, we have

Corollary 2.2. S does not admit a C1 embedding as a Levi flat hypersurface of
a complex n-manifold.

In this case, too, the holonomy covering ofC coincides with its universal covering;
the partial compactification ofQC D V n {0} is obtained by addingV \ CPn�1, where
V is the closure inCPn.
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Foliation of a 5-manifold in [6]. In [6] (cf. also [8]) it is constructed a smooth,
one-codimensional Levi foliation of a certain real 5-manifold Z, with two compact
leaves. Each one of the compact leaves is isomorphic to a principal bundle over an
elliptic curve E

!

whose fibers are in turn elliptic curves. Since these compactleaves
are not Kähler, it is once again clear that this foliation does not admit an embedding
as Levi flat submanifold of a Stein or Kähler manifold. In fact

Corollary 2.3. There is no smooth embedding of Z as a Levi flat hypersurface
of a complex manifold whose Levi foliation is diffeomorphicto the one obtained in[6].

In order to show that Theorem 1.3 applies, we give a brief description of the foli-
ation of Z. This is constructed by gluing two partial ones, defined in certain 5-manifolds
with boundaryM andN . The foliation inN is defined by taking a suitable quotient of
eX D C�

� (C � [0,1) n {(0, 0)}) (whose foliation is the trivial one, induced by the level
sets{t D t0} where t is the [0,1)-coordinate) by two commuting actionsT andU . T
does not act on thet-coordinate, whileU acts by a contracting functiond(t) which is
tangent to the identity to infinite order. The holonomy of thecompact boundary leafS

�

is thus isomorphic toZ; in a neighborhood ofS
�

the foliation is homeomorphic to the
product of a disc by a neighborhood of the toric leaf in Reeb’sfoliation. In particular
we have that the holonomy alongS

�

is contracting and trivial to infinite order.
In this case the holonomy covering ofS

�

does not coincide with its universal cover-
ing, but it is isomorphic to the complex manifoldW defined as

W D {(z1, z2, z3) 2 C3
n {(0, 0, 0)} W z3

1C z3
2C z3

3 D 0}.

Hence, the holonomy covering admits a partial holomorphic compactification byW \
CP

2
1

, where once againW is the closure inCP3. Thus, the hypotheses of Theorem 1.3
are satisfied, which gives Corollary 2.3.

Alternatively, a more direct proof of the corollary can be achieved in the following
way: let h be as in Lemma 1.4. For a leafL sufficiently close toS

�

and a small
enough", the intersection

L \ {0< Reh < "}

is holomorphically equivalent toD � D?, where D is the unit disc andD? is an annu-
lus. The restriction of Reh to 0� D? is a positive harmonic function which vanishes,
along with its conjugate, at 0. But then Reh extend to the whole disc, giving a con-
tradiction by the maximum principle (see also [2]).

REMARK 2.1. Regardless of the validity of assumption (B) in Theorem1.3, when-
ever it can be established that an internal leaf of the foliation extends atC-infinity the
arguments of Section 1 apply.
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REMARK 2.2. One may conjecture that the flatness of the holonomy alone is suf-
ficient to ensure that no embedding exists; the methods used in the paper, though, do
not seem sufficient to prove such a result.
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