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Abstract
The quintic-mirror family is a well-known one-parametemiity of Calabi—Yau
threefolds. A complete description of the global monodragngup of this family is
not yet known. In this paper, we give a presentation of théalenonodromy group
in the general linear group of degree 4 over the ring of integeodulo 5.

1. Introduction

The quintic-mirror family W, ), cp: — P is a family, whose restrictiofi: (W;),ecu —

U onU := P! — {0, 1,00} is a smooth projective family of Calabi-Yau manifolds. Fix
b € U and let(, ) be the anti-symmetric bilinear form dd3(W,, Z) defined by the cup
product. The global monodromy groupis the image of the representatian(U, b) —
Aut(H3(Wh, Z), (, )) corresponding to the local systeR? f,Z with the fiberH3(W, Z)
over b. When we take a symplectic basis, we can identify AW, Z), (, ))
with Sp(4,Z).

In this paper, we are concerned with a description"ofMatrix presentations of
the generators of" are well studied and it is also known thBtis Zariski dense in
Sp(4.z2) (e.g. [1], [3]). However, it is not known whether the indek Io in Sp(4,2) is
finite or not (e.g. [2]). A direct approach for this problemtes describel” explicitly.
In the main theorem of this paper, we give a presentation af GL(4,Z/5Z), which
is a small attempt toward a description Bf

On the other hand, Chen, Yang and Yui find a congruence supdrgd, 5) of
Sp(4,Z) of finite index, which containg™ in [2]. Combining their result and our main
theorem, we can construct a smaller congruence subgrésips) of Sp(4,Z) of finite
index, which containd”. However this result is merely the fact thE(5, 5) contains
I'. After all, the index ofl" in Sp(4,Z) is still unknown.

2. The quintic-mirror family

The quintic-mirror family was constructed by Greene andsgde We review the
construction of the quintic-mirror family after [4].
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Let v € P! = C U {o0}, and let
Qy = {X € P X7 + X3 + X3 + X3 + X3 — 5P X1 XoXaXaXs = O}.
A finite group G, which is abstractly isomorphic t@Z(5Z)3, acts onQy, as follows.

us: the multiplicative group of the 5-th root of 4 C,

G = (us)’/{(0, ..., @5) € (us)’ | @y = - -+ = a5},
G:{(Oll,...,a5)€é|C(1"'Ol5:1},

GxQy —> Qy, ((o1,...,a5), (X1, ..., Xs)) > (01Xq, - . ., A5X5).

When we take the quotient of the hypersurf&gg by G, canonical singularities ap-
pear. Forny € C C P, it is known that there is a simultaneous minimal desingzddion
of these singularities, and we have the one-parameterygi), ), .p: whose fibres are
listed as follows:

e Wheny belongs tous C C C P, W, has one ordinary double point.

e W, is a normal crossing divisor in the total space.

e The other fibres of W, ),cp: are smooth with Hodge number®9 = 1 for p +
g=3,p,q=0.

By the action of

o € s, (X]_, . X5) = (X]_, .y Xa, oFlX5),

we have the isomorphism from the fibre owgrto the fibre overav. Let A = ¢°
and let

(W) repr == (Wy )y cp1)/ 115

(r-plane) (y-planey us.
This family (W,),cp: is the so-called quintic-mirror family. (For more detail§ the
above construction, see e.g. [4], [5].)

3.  Monodromy

Letb e P1—{0, 1,00} on ther-plane. In [1], Candelas, de la Ossa, Green and Parks
constructed a symplectic bagig!, A2, By, By} of Ha(Wh, Z) and calculated the mon-
odromies around. = 0, 1,00 on the period integrals of a holomorphic 3-form on this
basis. By the relation in [5, Appendix C] between the symitebasis{A*, f2, a1, as)
of H3(W, Z), which is defined to be the dual basis {@;, B,, At, A%}, and the period
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integrals, we have the matrix representations of the locahadromies for the basis
{BL, B2, a1, az}. We recall their results.

Matrix representation®\, T, T, of local monodromies around = 0, 1,00 for the
basis{8, B2, a1, ao} are as follows:

11 8 -5 0 1 00 O -9 -8 5 0
A— 5 -4 3 1 T= 01 0 -1 T = 0 1 0 O
20 15 -9 0 0 01 O -20 =5 11 O
5 -5 31 0 00 1 -15 5 8 1

In particular, the aboveA and T are the inverse matrices of the matricAsand T in
the lists of [1], respectively.

Let (, ) be the anti-symmetric bilinear form oH3(W,, Z) defined by the cup
product. The global monodromy is Im(ri (P — {0, 1,00}) — Aut(H3(Ws, Z), (, )).
When we take{B!, B2, a1, ap} as the basis oH3(Wy, Z), Aut(H3(W, Z), (, )) is
identified with Sp(47Z), andT is the subgroup of Sp(4,) which is generated byA
andT.

We can partially normalize A and T simultaneously as follows

Lemma. There exists R GL(4, Q) such that

110 O 1 000
011 -1 0100
“1a-1p _ “1lv-1p _
PrATP= 001 -1Ff TP 0011
55 5 -4 0 001
5 -300
_| 0 010 ;
Proof. We takeP = | ;» = g 0)' The assertion follows. ]
0 001

4. Main result

Let ' = (P~IXP € GL(4,Z) | X € T'}, and letp: GL(4, Z) — GL(4, Z/5Z) be
the natural projection. DefinE = p(I'"). We will study T".

Let A= p(P LA IP), T = p(P T 1P) € GL(4,Z/5Z). By a simple calculation,
we obtain

n 3n(n+4) n(n+1)(4n+ 1)
1 n 2n(n + 1)

0 1 h

0 0 1

€ GL(4, Z/52).

o O o
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Let I be
1 n 3n2+2n a
0 1 n b
0 0 1 c € GL(4,Z/5Z) | n,a,b,c € Z/5Z ;.
0 0 0 1

I" is a subgroup of GL(4Z/5Z) which containsA and T. The following Theorem and
Corollary are the main results of this paper.

Theorem. ['=T.
Proof. T' c I' follows from what we just mentioned. So we shall prove the-con

verse inclusion.
From the presentations of elementsIofwe see thaf is generated by

100 1 1000

- 0100 010 1

AT E = E, —

TBE=g 091 o] @ E={g4 10
0001 000 1

Therefore, it is enough to shol; and E, belong tol". In fact, we have
E, = ATA'TY, E; = (E3A’TAST)A
HenceEy, E, € . O
Corollary. Let X e I'. Then the characteristic polynomial of X is
x* 4+ (5m + 1)x3 + (5n + 1)x? + (5Gm + 1)x + 1,
where mn are some integers. In particulaif X is not the unit matrix and the or-
der of X is finite then the order of X i$ and the eigenvalues of X aexp(2ri/5),

exp(4ri/5), exp(6ri/5), exp(8ri/5).

Proof. We shall prove the first part. Let, A,, A3, A4 be the eigenvalues oX.
Then the the characteristic polynomip{X) of X is

x4—< > xixj,\k>x3+( > Aixj)x2—<2 Ai)x—i—l.

1<i<j<k<4 1<i<j<4 1<i<4
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On the other hand, the the characteristic polynonpiéX—%) of X~ is

111 11 1
4 3 2
e D ] L B ——)x—(Z—)x+1
<1§i§j§k§4 A Aj Ak) <1§isjs4 i hj 152 M
=X4—<Z Ai)x3+< Z liAj)XZ—( Z /\iAjAk>x+1.

1<i<4 l<i<j=4 1<i=<j=k=4
Since X € Sp(4,Z), p(X) = p(X~1). So p(X) is the formx* + ax® + bx? + ax + 1,
wherea, b € Z. 1t follows from the theorem thah = —4, b = 6 mod 5. Hence the
claim of the first part follows.
Next we shall prove the latter part. Létbe an eigenvalue oK. It follows from
p(X) = p(X) and p(X) = p(X~1) that &, 1/A, 1/1 are also eigenvalues of. Since
the determinant ofX is 1, if 1 or —1 is an eigenvalue oK, its multiplicity is even.

Since the order oK is finite, we can express eigenvalues>fby exp(6), expio,),
exp(62), expEify) (0 < 64, 6, < ). Then the characteristic polynomial of is

x*—2(coshy +C0Sh) x> +2(c0S01 +02) + Cospr —62) + 1)x? —2(cosd; +C0sbz)x + 1.
By the claim of the first part of this Corollary, we have
—2(cosfP1+coshy) = 5m+1, 2(cosf,+02)+cosP1—62)+1) = 5n+1, m,n € Z.
By the addition theorem for cosines, we have
2(cosby + costyp) = —5m—1, 4 cos; cosh, = 5n — 1.
It follows from —4 < 2(cos9; + cosb,) < 4 thatm =0 or —1. If m = —1, then co#,,

cost, = 1 and all eigenvalues oX are 1. Since the order o is finite, X is the unit
matrix. This contradicts the assumption thétis not the unit matrix. Hencen = 0 and

1
C0S6H71 + c0sHy = —5

It follows from —4 < 4 cost; cosd, < 4 thatn =0 or 1. If n = 1, then co®; = +1,
cos#, = +1. This contradicts the fact that cés+ cosd, = —1/2. Hencen = 0 and

1
CO0SH1 COSHy = ——.
1 2 4
Combining these two equations, we have

1 1
co 6, + = costy — = = 0.
1+2 i
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When we solve this equation for cés

—1+ 5 . V10+ 24/5

C0osH; = singp = ———,
1 4 Ny 2

1545 . V10F 25

C0SsH, = — sing, = —

Then we can verify easily that (exp())® and (expi(f.))® = 1. Hence 1, 6,) =
(27/5, 47/5) or (4t/5, 21/5). O

5. A relation to the other result

In this section, we shall compare the main result of this papiéh the result of
Chen, Yang and Yui. In [2], they find the congruence subgrd\p, 5) which con-
tains the global monodromy. Combining their result and our theorem, we can find
a smaller group which contairis.

The congruence subgroup(5, 5) is defined by

1 x x %

0 1 % =
rsé,5)=:XesSp4,z) | y= 00 1 0 (mod 5);.

0 0 % 1

I'(5, 5) contains the principal congruence gros) = Ker(Sp(4,Z) — Sp(4,Z/5Z))
as a normal subgroup of finite index.
Let X e I'(5, 5) and expresX by

5x11+1 X12 X13 X14
5Xo1 5%+ 1 Xo3 Xo4 L.
i €L < < 4).
BX31 BX3o BXsz+ 1 BX34 X € (1 =hl= 4)
5X41 S5Xa2 X43 5x44 + 1

Then we have

1 —9X31 —X12+3Xz2 —X14+ 3Xas
_ 0 1 —2X]_2 —2X14
L(4,Z) > PIXP = .
GL(4,Z) > 0 0 1 Yos (mod 5)
0 0 0 1

By the main theorem, iX € T, then p(P~1XP) € T" and

—O9X31 =N, —2X2=Nn, —Xi2+3Xz=3n*+2n (mod 5).
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wheren is some integer. From a simple calculation, the above equadi equivalent to
X31 = 3X12, X3gp = 4X]2_2 + 4Xq2 (mod 5)

So we define

Sx11+1 X2 X13 X14 X31 = 3X12,
~ 5X21  SXpo+1 X3 X24 2
rG,5) = € Sp(4 X302 = 4X7,+4Xq0 ¢ .
( ) 5X31 5X32 5X33+1 5X34 p( Z) 32 12+ 12
5X41  SXa2 X43  SXaa+1 (mod 5)

Then we have the following Corollary.

Corollary. (i) T(5, 5)is a subgroup off'(5, 5).
(i) T cI(55)%TI(5,5)
(i) T'(5, 5)is a congruence subgroup &p(4,Z) of finite index.

Proof. Letp’: I'(5,5)— GL(4,Z), X — P XP and letr = pop’: I'(5, 5)—
GL(4,Z/5Z). T'(5, 5) = =~}(T") follows from what we just mentioned. Since is a
group homomorphismyz (") is a subgroup of’(5,5). Hence the claim of (i) follows.

We can verify easily thalA and T belong toI'(5,5). Thereforel'(5,5) containsl".
1000

We shall show thaf’(5,5) is a proper subgroup @f(5,5). We takeX = (5) (1) 2 8
) 0001
Then X e I'(5) Cc I'(5, 5) andX ¢ I'(5, 5). Hence the claim of (i) follows.

Finally, we shall show the claim of (iii)['(5, 5) contains the principal congruence
subgroupI'(25) = Ker(Sp(4,Z) — Sp(4,Z/25Z)) as a normal subgroup. Hence we
obtain |I'(5, 5): Sp(4,Z)| < |I'(25): Sp(4,Z)| = |Sp(4,Z/25Z))| < . O

QUESTION. There are other 13 mirror families of Calabi—Yau threefoldith
h>! =1 as discussed in [2]. Is it possible to find smaller subgrdnphose 13 cases
as well?
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