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I. Introduction

Let M be a compact, connected differentiable /^-manifold of class C ,  with 
/^>1. Take a non-degenerate function /  of class C" on M  whose existence is 
assured by [2] and [6]. In a neighborhood of a critical point P  of / ,  we choose 
coordinates Xi,- -  ,Xn so that the symmetric matrix

d V
dXrdXs

is diagonal. By the index of the critical point P  we mean the number of negative 
entries in the diagonal matrix. Let Pu (k = l , 2 ,  ,rii) be all the critical points 
of index i of / .  Then /  is called canonical if the following properties are 
satisfied:

1) A P D = A P D  = -  =AP^D a  = Ory,n)

2) < ^ n

where y] i =APi ) -
In the present paper the existence of a canonical function will be established. 

As an application it is proved that a sphere bundle with fibre and the base 
space M  can be embedded into the(2;^ + m+l)-dimensional euclidean space

2. Functions and vector fields 

The following theorem is proved in [2] and [6].

T h e o r e m  2.1. Given any differentiable function f : M —>R, and given e>0, 
there exists a differentiable function g : M - ^ R  such that

(1) g  has at most finite critical points,
(2) at each critical point the determinant of the Jacobian matrix

dxidxj

is not 0,
dgjx) __dAx) 

dxi dxi

for all in M and for all l < i ^ n ,  where Xi = ' ,n)  is a local coordinates 
system in a neighborhood of the critical point.



Since every differentiable manifold always admits a Riemannian metric we 
can introduce a metric ds^= gij{x) dx^dx^ into M, In this paper a function of 
class C  on M  will be referred to simply as a function on M, Let /  be a func
tion on M  satisfying the properties (I) and (2) of theorem 2.1. For a regular 
point P of /  we put f { P ) = c ,  Then the subvariety Vc defined by the equation 
f ( x ) = c  is a submanifold of M  which is called level manifold. Let be the 
tangent space of Vc at P  and Tp the tangent space of M  at P. Then we have 
direct sum

Tl = TT^ © n

where Tp is normal to with respect to the above Riemannian metric.
Taking the unit vector in Tp whose direction coincides with that of increasing 
of / ,  we have a vector field X  on M - Y l P ^  where P  ̂ (v = l, 2, •••) are all critical 
points of / .

If we take a suitable coordinates, /  is represented in a neighborhood of a 
critical point as

(2. 1) f =  c - x f -  ••• - 4  +  4 +1+  ••• + 4 -

Now we consider a vector field Z  in a neighborhood t/ of a critical point of 
/ .  From (2.1) we easily have

XU) = ... a ^ ... 9 )
\ r dxi r dxil \ r dxi+i r  dxn I

where r = ( 4 +  **• +4)^/^.
Let Ui be the number of the critical points of index i of / .  Then the 

following theorem is well known (see [3]):

T h e o r e m  2.1. S  ( —I ) ' ;^^=the Euler number of M,

3. L evel m anifolds

L e m m a  3.1. The level manifold Vc defined by f = c  is diffeomorphic with 
the level manifold Ve' defined by f=c^  if any critical value of /  does not exist 
in the closed interval [_c, c'~\.

Proof, Let x^,-'  ,x^ be local coordinates in a neighborhood W of P  on Ve, 
and let X  be the vector field induced from /. Write X =  I ] /*  {d/dx^). Then / '  
are differentiable functions since X  is differentiable. We consider a system of 
linear differential equations

(3.1) ^  i = I, -  n ,

for the unknown function (fiit),"' of one variable t. By a fundamental
existence theorem these equations have a unique set of solutions <Pi{t \ x), ,
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defined for \t\<Ce and \Xi\<Cd, which satisfy the initial conditions

x) = Xi .

The set of curves <p(t;x) is then defined on U = { { x i , , Xn)\xi\<Zd] by 
= y(Pn(t\x)). From the construction, it is obvious that (f{t ]x)

induce X  in U, The uniqueness of these curves cp(t; x) which induce X  is clear 
from the fact <p{t\x) must satisfy (3.1). It is also clear from (3.1) that any one 
of these curves does not intersect the others.

Put Vc,c'  =  { P \ c ^ f { P ) < c ' } ,  Let be a covering of Vc,  c and write sj  for 
the above a corresponding to Uj, By the compactness of Vc,e' we can take 
£o=miney>0 as a common e for all Uj,  

j
Now we put

Pk =  (p{^j; P k - i ) , k =  1 , 2 ,  •••,

where Pq is an arbitrary point of Ve- Then it is clear that the curve (p(t; p)  defined 
by

(p{t ;P)  =  (p{ t sk- ,Pk)  for s k ^ t ^ e i . k + 1 )

satisfies (3.1), and hence it has the vector field X \ ^  which is the restriction of 
X  on the curve 0. From (3.1) we have

i - m t ; P ) )  -  2 -  a  : m  -  X /
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and hence

A P k ) - f ( P o )  =  X f ^ k e v

where 7]= min /(P ) . Since Ve e' is compact and / ( ^ ) > 0  for an arbitrary point
P ̂ Ve,

X of Ve,e'y it follows that 7?>0. Taking k so that — we have
f { . P k ) ^ c \  Hence can arrive at the point P' of V, Bythecorrespondence
P ~ > P \  we have a deffeomorphism of Ve to Vc'. Thus the lemma is proved.

Now we shall consider the differences of topological structure between Ve 

and Ve' in the case critical points of /  exist in Ve, Ve'.
L e m m a  3.2. If these exists only one critical point of /  in Ve, e', then the 

difference between the Euler number of Vc and that of Ve' is ±2 or O according 
as dim M  is odd or even.

Proof, We may suppose without loss of generality that the critical point of 
f  is X =  O and that /  is written as —x l— ••• —4  + 4 4 1 + ••• + 4  in a neighborhood 
of X=O. Denote by the ball defined by 4 +  + 4 ^ ‘Ĵ and put Sr, = dB(ig), 
Then F_so5(^) is written as

- 4 -  - 4 + 441+  ••• +4 =  - £

4 +  ••• + 4 + 4+1+  +4 =  ^ ,

or



xl+ • • •  +
4+1+ ••• +4 = K-e + ̂ ) .

Hence F_sr>,S(7?) is diffeomorphic to

Since the set of (xi+i, " - ,x^) for all ^ is digeomorphic to 0-diniensional 
ball which we shall denote by we have

Similarly we have
Vsr^B(Ti) ^  B̂  X

Let ^ be a function on which has just one critical point of index O and 
just one caitical point of index i —1. Let h he a function in given by
h = y l +  ••• + y l - i  where y  is the coordinate system in R^~\ Put

F = g + h .

Then F  is a function in S^~^xR^~  ̂ and it is obvious that F has only two critical 
points of index O and index 1. Take a number c so that max g(P) .  Thenpes*-i
the subset F"" of points P^S^~^xR^~^ at which F ( P ) ^ c  is diffeomorphic with 
Si~'^xB^~\ This is shown as follows. For an arbitrary point F ^ c  im
plies JVi+ ••• - ^ y i - i ^ c —g{P),  Hence F"" — S^xB^'^K Let be a diffeomorphism 
of V - 2 r B̂r, to F"". Then we have a function F-a which is defined in F_s Br̂  
and constant on d ( V - s —By,). Obviously F -a has two critical points of index O 
and i —1. Now we extend to over F-s and denote it by Fi.

Similarly let g' be a function on which has only two critical points of
index O and index n — i —1, and let ^ be a function in R̂  such as h ' = y i +  ••• +jvf. 
Put

F' =  g ' + h \

Then the subset F'"" of points P^R^xS^~^~^ at which F \ P )  is diffeomorphic 
with xS^“—̂  Let a' be a diffeomorphism of Vs Br, to F'"". We have a function 
F'(^' which is defined in F s and ̂ constant on 6>(Fs Br,), and which has just 
one critical point of index O and just one crictical point of index n —i —1. Since 
F - S - ( F - s —F s - ( F s -^^7,), Fi=Const on (F_s Fr,), and F'a'= cons t  on 
^(Fs^Fy,). Consequently we can extend F^a' to a function F2 on Fs so that 
nk =  nk where nu or Uk is the number of critical points of index k of Fi in V- 2 —Br, 
or F2 in Vs-Brj. From theorem 2.1 we have

the Euler number of F_s = S  ( — l)^nk + l + {  — i y ~ ^ , 
the Euler number of Fs = S  ( —l)^i^^ + l + ( — .
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Thus the difference between these numbers is =
( I —( —1)^), and the lemma is proved.

4. Ortho-f-arcs

Let be the set of critical points of /  on M. Then by (3.1) the trajectories 
orthogonal to the level manifolds of /  are well-defined in M —Qq, These trajec
tories is celled ortho-/-arcs on M. From now on we suppose that the direction 
of trajectories accords with that of increasing of / .

For every critical point P of /  we choose coordinates Xi , - '  ,Xn in a neigh
borhood Up of P  so that

/ =  Cq- x I - -------4 + 4 + 1 +  ••• + 4 .

Furthermore in M  we can introduce such a Riemannian metric as '^dx)  in
3

Up, Under the above metric we have

L e m m a  4 .1 .  In the above neighborhood of a critical point P, denote by L 
the set of all ortho-/-arcs stretched into P and by U  the set of all ortho-/-arcs 
issueing out from P. Then L  ̂P - B ^  and P —B^~K

Proof, Since

f  =  C o - x l - -----4+ 4+ 1+  + 4 ,

the vector field induced from /  is written as

where e j=  — ! for I ^ j and ej =  l  for Hence every ortho-/-arc
satisfies the differential equations

and the solution of these equations is

Xj ( t )  =  c j e x p e j c ( t )

where t  is an arbitrary common parameter on all ortho-/-arcs. Therefore if we 
put Ci^i= ••• =C^ = Oandmake it follows that L P =  {:r|:r/+i= ••• =Xn = 0}.
Similarly putting Ci= ••• =Ĉ  = O and making we see that L'"- P= {x \x i
=  -  =^.- =  0}.

L e m m a  4.2. Denote by Li the set of all points which are on the ortho-/- 
arcs stretched into the critical point P, and which satisfies / (P ) ^ /( a : ) > c ,  then 
Lc is diffeomophic with ^-dimensional ball B ^ d M  if and only if there is no 
critical point in Li,
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Proof. Each ortho-/-arc <p of Li satisfies the system of linear differential 
equations

(4. 1) i = l . - , n .

By the fundamental existence theorem the unique set of solutions (pi(t; x) with 
initial conditions ŷ(0, x)=x  are differentiable with respect to t and x. For |a;|<^ 
where  ̂>  O is sufficiently small, by using lemma 4.1 we have Li — B\  Hence 
we can uniquely represent by using t and Xi, '",Xi  satisfying
4 +  ^xl  = S. Thus Li is diffeomorphic with a /-dimensional ball.

R e m a r k . Denote by the set of all points w h ic h  l ie  on the ortho-/-
arcs issuing from a critical point Q of index j  and satisfy c ' ^ f ( x ) > f ( Q ) .  If Li 
and dL ĵ  ̂ are in a general position, we have

dim (Lir^dL^vD

Hence we may suppose that on Li there is not any critical point of index y, j  >  i.

5. E xistence of canonical fu n ction s

T h e o r e m  5.1. There esists a function /  with the following properties.
1) For all critical points Pj (y = l, 2, ••• ni) of index i and for all /, O ^ i ^ n

f(Pi )  = f ( P D  = = f i P ^ , ) ,
2) f { P l ) < f { P \ ) <  < f ( P i i ) .

We shall call a function to be canonical if it satisfies I) and 2) in theorem 5.1.

Proof. We arrange these critical points in a sequence Pi, P2 , ••• so that the 
index of P ^ ^  the index of P̂ a+i. Now we shall prove it by the induction for 
/i. By certain coordinates in a neighborhood of Po /  is written as

/  = a + 4 +  ••• + 4 .

Take a function g  which satisfies the following conditions :

1) g{r) = a for O ^   ̂ and g{r) = Q for r~^2d

2) Q ^ g ( r )  g X r ) > 0  and a:+ / ( P o X  min/(Q )
QG M

where r=(xi-h ••• +4)^^^ and 5 is a sufficiently small positive number.
Putting

/  = f + g
we  have

I(Po) = / ( P o ) + g ( P o )  = / ( P o ) + «
and

^  = = 2 r + g ' ( r ) > 0  for 0 < r ^ 2 3 .

Hence 7 has the same critical points as /  and 7(PoX7(P/x), ^ l .
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Now we assume that /  satisfies the following conditions.
1) If the index of Fp, = the index of and then /(P]a) =/(Pv).
2) If the index of P/x< the index of Pv and then /(PjuXZ(Pv) for 

all V.
We shall show that we can modify /  so that the critical points are unchange

able and the conditions I) and 2) are satisfied for P^,
Let Lk̂ -l be the set of all ortho-/-arcs stretched into the critical point Pk^i. 

By the remark we may assume that P^^Lki-i, + By lemma 4.2. Lk^i is 
diffeomorphic with a ball , ^"=the index of P^+i. Since along an arbitrary ortho- 
/-arc the values of /  increase in a monotone, Vcoo^^-i-i is diffeomorphic to S '̂, 

Let Q be an arbitrary point close to L^+i and let Q' be the intersecting point 
of VCq and the ortho-/-arc passing through Q, Consider on Vcq the metric 
induced from M. Then on Vcq we can draw the unique geodesic which passes 
through Q' and is orthogonal to Vcr^Lk^i- Denote by Q'' the intersecting point 
of this geodesic and Vcq Lk+i and by r(Q) the geodesic distance on between 
Q' and Since r(Q )—>0 (Q->Oo^^^+i Li+i where is the set of all ortho- 
/-arcs issuing from the point P̂ ^+i), we may consider that t{Qq)= 0 ,  Qq^Lk î 

Lk+i- Then we have. r(Q )=0 if and only if QeLk+i^ LUi  Pk  ̂i- 
Denote by L^+i(c) the set of all points Q on Lk^i, which satisfies /(P^+i)

a) In the case the index of P^ = the index of P^+i.
Define a function g  such that

^ ( O = O  for t < f { P k ) - 2 e ,
=  A P k ) - f i P k ^ i )  for t ^ f i P k ,  

for all t ,

where e is a sufficiently small positive number so that on L^+i(c), c=f{Pk)  — 2e, 
there is not any critical point except P̂ +̂i.

Furthermore define a function h(t) such that

hit) = I for t £^ d  
= O for t ^ 2 d

where  ̂ is a small positive number.
Put

7=/(0) + ̂ (/(0))«KQ)).

Since r(P^+i)=0, from I) and 2) we have

f  (Pk^i )  = f ( P k + i ) + f  ( P k ) - Z ( P k ^ i )  = Z ( P k ) -

Consider a vector X q  at Q, which is orthogonal to the level manifold 7/cq) 
defined by Z = Z ( Q ) -  Then we have
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X Q f = X Q f + g ' ( . f ) ( X Q f ) h  
= Z Q /( i+ ^ r ' ( / ) « .

Since Z©/4=0 for Q € C/(Lft+i(c)) where f/(I*+i(c)) is a sufficiently small neigh
borhood of Z,*+i(c), it follows that

Z q/ 4=0 for Q 4= P .

In a neighborhood of P  we have

?{Q)  = /(© ) + const,

and hence 7 has the same critical points as / .
b) In the case the index of Pk-Cfhe index of Pk+i- 
Define a function g  such that

^(O = O for t < f i P k )
=  A P k ) - f (Pk-^i)+ 2e for t ^ f i . P k ^ , ) - e  

g \ t ) > - l

where /(P * )+ 2s= m in/(P^).

Put
h Q )  = A Q ) + g { A Q ) ) K r { Q ) ) .

Then in the same way as a) we see that /  satisfies I) and 2) for fx^ki -1 .
Thus the theorem is proved.

6. R e g u la r  e m b e d d iu g

L e m m a  6 .1. L e t

(6.1) f i ( x u  ••• = O  (f = I, ••• ,;  ̂+ l)

( /  are polynomials) be a set of non-homogeneous equations with indeterminate 
coefficients and let

(6.2) f i i x u  ••• = O (/ = I, ••• ,;^-f-l)

be the equations obtained from (6.1) by a given specialization of the coefficients 
in (6.1). Thenanecessaryconditionfor the existence of a solution of the equa
tions (6.2) is T(^)=O where T is a certain polynomial in the indeterminate 
coefficients («1, of fi  and («i, a^,-" is the given specialization of
( « 1 , CC2 , c iv ) .

Proof, Make fi  homogeneous by introducing a new indeterminate Xq and 
replacing Xu/ xq for Xk. Then there is a non-zero resultant form for n-\-l equations 
in ;̂  + l  unknowns such that

7(^1 a D  X l t]Ai(Xo Xn)fi{Xo " ' X n )
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for a suitable integer r, the A j  being polynomials in with coefficient
K[_ai, ••• ,a-J]. Here let X be one of the solutions of (6. 2), and we have

= 0 .

L e m m a  6. 2. L e t

(6. 3) f i {x, - 'Xn)  = M y i ' - y n )  d  = I r "  , 2n+l )

be a set of non-homogeneous equations with indeterminate coefficients and let

(6. 4) f i i x i  Xn) =  f i ( y i  " ' yn)  {i =  I, •••

be the equations obtained from (6. 3) by a given specialization of the coefficient 
in (6. 3). Then a necessary condition for the existence of a solution of (6. 4) 
such as X ^ y  is R { a ) = 0  where R is some polynomial in the indeterminate 
coefficients (<̂ i ••• a^) of f i  and (<5i ••• â j.) is the specialization of (̂ ?i •••

Proof, Put
yk = xk+x'k (k =  I, •••,/«) 

and suppose x i ^ O  then we have

( f ( x + x ^ ) - f ( x ) ) / x {  = O (/ = I, -  ,2/2 + 1).

Here we can consider that X i - - X n  1/xl x ^ Xn are unknowns. Let R be the 
resultant form for ( f i ( x  + xO—fi( x ) ) / x i  and from lemma 6.1 we have immediately

R(a) = 0 .

Let / v , / v '  (î  = l -- -m) be arbitrary differentiable functions on a compact 
manifold K  and {Ur} be a covering of K  and wl'" wl be local coordinates of Ur- 
Define d K i f \  f ' )  as the following:

dKif', /") = m a x j s  l/^(i>)-/v"(P)+ S  (^) I
P g E  I v  M-, V, ̂  ow]̂  owjl •

L e m m a  6. 3. If by y v= fv  a compact manifold K  is regularly embedded into 
R"̂  ̂ then there exists a positive number such that K  is always regularly embedded 
into R^  by y v = f V  only if d { f \  f ' ' )<y] .

Proof, By the hypothesis there exists ^ > 0  as follows.

1 )  m i n  I Z ^ ( P ) - / ^ ( Q )  I  > ^ ^ > 0
P g K, q g s - ^SC P )

where B^{P) is a geodesic ball with radius d having P  as its center.
2) For some

^ ( . f l  fy^—I fji^+s ! \  ^ / /  \  A

where are the coordinates of Ur-
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From

min \ f " ( . P ) - r { Q ) \ >  min \ f \ P ) - f ' i . Q ) \
PGE, PGE, QSE-j5SCP)

-  max I f ' { P ) - f ' \ P )  I -  max I/ ' (Q )- /" (Q )  I
P e K  <2SK

( max ir (P )  - /" ( P )  I + maxl/'CQ)- /" (Q )  1 - 0  (  ̂ -  O)) ,
and

^  9 (/ i / ^ i / , i + . )
d(Wi-- -Wi j . )  d ( w - - - w ^ )

Qi f i '  - f ' U  Q{ f {  -  / ; - !  /;!+ .)
diwi-'-Wij.) diwi-'-Wy.)

9 ( / r  - / / ^ l  /A+s) Q i f - f ' y ^ l f ' A . ' )  
Qiwi-'-w^') d iwi -"w^)

If 7? is sufficiently small, it follows immediately that

O (if->0)

min i r ( P ) - / " ( Q ) |> | -
P G K y Q G K - B S C F : )  I  ,

Qj f i '  - f '^ i  /^ '+ J
0(Wi ••• »n) > 2 •

Hence the lemma is proved.

7. R egular em bedding of le v e l m anifold

From now on for the sake of simplicity we write

ixi ,  ••• , 4 )  =  y ’‘ , (4+1,  ••• , 4 )  =  2 * ,
iul ,  ••• ,Mt) = M*,  ivl ,  ••• =  » * ,

S (4 )^  = (4)^ = (y )^+ (^^ )^

S ( m|)^ = (m̂ )% S(t^§)* = (t'")^/,=1

Choose coordinates in o neighborhood of a critical point Pu of index i so that 
/  is represented as

/ =  - c ' ^ - i y ’̂ y+i z '^y .

Here we assume c*=0 and F -s is written as

F _ , |- ( / )H (2 ^ )^ )  = - £ .
Put

G;i(e) = {(y,2 '=)l(y)^ = 5, 2̂  = 0},
HkiS) = { i u \  V̂ ) I iu>‘y  <  I ,  i v ’̂ y =  S^),

and identify iu^,v^) and iy^,z^) by 

(7.1) /  = uKs^^tiiu'^yyi^
Ẑ = \û \v̂  i\u’‘\̂  = iu'^y) .



Then from (F-E-SG feCs))^S we have a manifold denoted as
k k

F-., 6 = (F-.-SGfe) UEFfe(<5)
* CTs

where (Se represents the identifying (7.1).

L e m m a  7.1. (F -.-2 G fe (e )) U S  H f e ) 5 ) ( F - . ' - S  Gfe(sO) U 2i/^(5 ).
* (Tg CTg'

Froo/. It is sufficient for the purpose to prove the lemma when |£-e'| is 
sufficiently small. If we correspond («*, w*) 6 F-e,s to («*,«;*)€  F-e', §, from
(7.1) it induces the correspondence between (F -s -U G *(s )) BkiZŜ  + ̂ Y'’̂ and 
(F-e '-SG fe(£0 ) Bki28  ̂+ e')y  ̂ such as

(7.2) = + e'.A:*) {x^o.Hkid), x'e<^,'Hk(S)), 
h\dhl/dxl->0 ( I S -e'1 - 0 )

where h’̂ =(hi, ••• ,A^). On the other hand at every point x (l F-e —S -B*(^V2 + s)'̂  ̂
(Gfc(£)c5ft(5^/2 + s)̂ /̂ ) we draw the geodesic orthogonal to V s .  Let x' be the 
intersecting point of the geodesic and F-e'. Then the correspondence x-^x' is 
written in 5^(25^+ s')'/" as

(7.3) x'>̂  = x’‘ + gKe,e',x’̂ ),
g\dg'^/dxl^O ( l e - e ' l - > 0 ) ,

where gk = (g l, ■■■ ,gn).
Define a function (fix’’) such as

, fo  (^^ )"^2aH s,

On embedding o f level manifolds and sphere bundles 25

(x*)" ^  572+s.

Let r{a, b) be the geodesic distance (with respect to the metric on F-e' induced 
from M ) on F-e' between a and b ia ,b^Vs ').  Moreover let x"^ be the point 
on the geodesic passing through x’’ + g'  ̂ and x'‘^W‘ + :r* + A* € F-eO, which 
satisfies

jix ^ g ^ ^ x ::^ _  ^ 
d(x^^g^, ^ ĥ )

where x'^̂  is between x̂  + g  ̂ and x -̂ ĥ̂  on the geodesic. Then we have 
immediately

(7.4) = x ]^ g )^ f , {x ^ ) (k ) -g ] )

where ^j = O for (x^y^2d‘̂ ^e and (p] = l  (x^y^d'^/2 + e. Now we define the cor
respondence between Fg, s and F-g',a as follows.

F-s, S 3 (w^ (^^ € F_ĝ , S
F-g  ̂{Bk(2d  ̂+ £)V2-5,(^V2 + £)V2) 3 X̂



From (7.2), (7.3) and (7.4) this correspondence is I —I when |e '-e | is sufficiently 
small and it induces s ~  6 •

Lemma. 7> 2. Ve — F_s, s •

Proof. From lemma 7.1 it is sufficient to prove Vz\ 52 — V-^', s for small 
e '> 0 . An arbitrary point x’‘ ^Vz'a^r\Bhi2Si‘ + e'd'^)y‘̂ is written as

(7.5) yk =  uH  ( (« ^ )^ < 1 ) ,
z>̂  =  V K i W ^ y ( ( ^ , * ) 2  ^2) _

Hence from (7.1) the correspondence Vs'i‘i^ x = {y {u ,v ) ,  z{.u ,v))-^x' =  {u,v) 
CF-E',8 is written in Bki2S^ + SH 'y/^-Bk{8y2+B ' a s

x'k =  x'̂  +  h' îe', Xk) , 
h,dh]/dx\-*0  ( s ' - O ) .

Define a function ¥>(x*) such as

(^^)^ii5(l + eOV̂
I i  ix '^ y ^ s ih + s 'y /^

and by the same way as that In the proof of lemma 7.1 we easily Vs'8̂ — V-s',8-

T h eo rem  7.1. If a level manifold Vc in is regularly embedded into 
^n+i~i there exists no other critical point than index then Vc' can
be regularly embedded into

Proof, By the way similar to the proof of the theorem (5.1) we may sup
pose that for all critical points Pk (k = l,2 ,  •••) /(P ^) =  O. Hence we have V s-V c  
and V -S^V e'. Put

(7.6) yk =  aK{^^y-^e)y^ =  I

where a\) and /3̂  =  (l3f ,

Then (7.6) induces —/  + 0  ̂=  —e.
Let F  be a regular embedding map of V-s into Then for Bk((2+e)y^)

F{V -s) is represented by (o;^,/3̂ ) as

0^), F ^ =  { F i r -  , F L i - i ),
where Z^ =  (Z i ••• Zw+«-i) is the coordinates of Define maps f^ (u ,v) from
0 < |z /^ l< l ,  |z ;^ |< l into R^^  ̂ as the following:

f^{u^,v^) =  (F^{u^/\u^\, \u^\v^), exp (l/((^/^)^ —I)) \u ^ \< il.

To simplify the notations for a while we abbreviate index k. From

A u , v ) = f ( u \ v )  ( U | , U ' | < 1 )
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we have
u / \ u \  =  U / \ u \  , \ u \ v  =  W \ v '  , \u\  =  \u' \  

and hence we have
U =  u '  , V =  v ' .

Put

y =  p n - i  =  V n - i  •

If ( 1 ^ X 0  we can use \ u \ ,  ^at r "  ,o^i, f t , ,/3 -̂  ̂ as local coordi
nates in{{u,v)\u^c^l, v‘̂ ^ 1 ) .  Then we see

I
/ l  fn^-s-^ fn ^ i)  _  2\u\  U^~l d (F i ' "  Fn -I F n + s-i)

d(oCi ••• at ••• a;,- f t  ••• ^n-i\u\) ••• ••• Ui f t  f t _ / ) .

Hence the Jacobian of the right hand is not zero for some 5. Thus by /  the 
set K = { u , v ) \ l ^ \ u \ < C l ,  |z ;|^ l}  is regularly embedded into and hence for
K  there exists t] in lemma 6. 3.

Let h y ( u , v )  be polynomials and put

f { u ,  v )  =  f { u ,  v )  ^  < p { u ) ( h { u ,  v ) - f ( u ,  v ) )

( h = ( h - h n  + i))
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where

(p(u) =  1 \u\

=  O

Now consider the equations

(7.9) h n - l  h „ ^ s - , l  I q  (s =  l , - , i  +  l )

d y u i  ••• U i Vi ••• V n - i )  .

with unknowns Ui,--,Ui. By lemma I there exist polynomials h-̂  such that 
dK(f, f)<^V and (7.9) has no solution. Hence for a given u \u \^ i )  there exist 
s =  s(u) and d(u)

d ( h i ' "  hn- i  h n ^ s - i )  
d { U i  ••• U i Vi ••• V n - i )

H=O for I I ^  d{u) .

Put 3=  min 3{u) and we easily see ^>0 . Furthermore from lemma (6.2) we

can take so that the equations h^{u,Q)=hy{,u\Q) (v =  l, ••• , + / ; i<Cn) have 
no solution and min |A(e/, 0) —/?(m', 0) 1>0. Hence if v,v' is sufficiently small

u,\u — u'\'^d
we also have min \h{u,v) — h{u\v')\^0.  Hence by h {(u,v)\ \u\^iy

u,\u — u'\'^d
is regularly embedded where 3 is sufficiently small.

Now we shall show that {{u,v)\\u\<CX bl is regularly embedded by 
f {u ,v )  into It is clear for \ u \ < l  or from f = h  or / = / .  It is



clear for by lemma 6.3 since dK K fyA ^ V  where K' = { (u ,v )\ i< u
I z; I Hence it is proved.

Now consider F_s, 8 and from (7.1) and (7. 6) we have

uKx^) = \ẑ \ŷ /\dyf̂ \ , vKx^) =
and

= ŷ /\ŷ \ ,
which induce

(7.10) a^{x^) =  u^{x^)/\uKx^) \ , = \u {̂x )̂\v{x )̂ .

Define a map of F -s ,s into as follows:

U ^ K l ,  \v̂ \ = d}3x^ -^ (F(x^ ),  0)

F _ e . s o S { v ,2 ;^ )  f  < | « "| < 1 ,  =8\^x>^

ll{(.u\v>‘)\ |#1<1, =5}9(m*, z; )̂.

Since for § < U ^ | < 1  from (7.7), (7.8) and (7.10) it follows that

f{u^{x^)y v^(x^)) = f{u^(x^), z;̂ (jr̂ )
=  {F(u^{x^)/\u^{x^)\, , exp 1/(1 ^^(^^) 1^-1))
=  {F(a (̂^x )̂ , & {̂x )̂) , expl/(lz^^(jr^)l"-l))
=  (F(^^), e x p l / ( k " ( ^ ) r - D )

the above definition is well defined.
It has already been proved that the above map embeds F-s s ~ S { (^ ^ ,  v̂ )\%

k

<|^^^|<1, |z;̂ | =^ } and every {(^^^ z;̂ ) I I w^|<l, \v^\=d} into Itisnecessary
to show that the image of {{u ,̂ v )̂\\u^\<Ci, ]z;^l=^} and the image of {{u ,̂v )̂\ 
U ^ K f , Iz;̂ I =(5} hove no intersection if ^4=/.

From (7. 8) we have

\f(u^y V )̂—fKu\  ẐO l^ l/^ (^ ^  V̂ )—fKu\ V̂ ) I —7]̂  —7]̂  
ŷ k ^  v^)—h (̂u ,̂ V̂ ) I and
yji Z =  \f\u\ v̂ ) — hKu\ ẐOl •

Since there exists r > 0  such as

V )̂- fK u \  Ẑo I >   ̂ for all k , l  (^ H= /)

if we take hĴ , V so that \f^—h^\<C  ̂ and we have4 4

Furthermore it is clear that (F-s s - S  {(«*, «̂ *) I § < ! « * ! < i, k*| = 5 } ) ^ { ( m', I i  

<Z\u‘ \<C\, Hence the theorem is proved.
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Let / be a cononical function as in theorem 5.1. If it is obvious
that Vc\f=c  is diffeomorphic with spheres and Vc is regularly embedded into 
Hence by using theorem 7.1 and the induction we have immediately

C o r o l l a r y .  Let / be a canonical function as in theorem 5.1. Then V e l f  = c  

(Vi<Cc<Cigz+i) is regularly embedded into

8. Embedding of sphere bundles

Let C be a sphere bundle consisting of [£*, M, tt], where tt is a map from E  

onto and whose fibre and group are S"* and where is the m-dimensional 
orthogonal group. Consider (m + l)-plane Ep such as E plD7z~^{P)r^P. Let  ̂ be 
the map E P P. Then we have (m + l)-plane bundle C = [^, M, rf] associated with 
C and we can consider that E ZD E, Introduce a Riemannian metric into C and 
denote byr(Q, Tr(Q)) the geodesic distance on ErccQ̂  between Q and Tr(Q).

Let / be a function of M  which satisfies I) and 2) in theorem 5.1. Put

/(Q) = / «Q ))+ r^ (Q , Tr(Q)).

Then / has the same critical points as /. Denote all the critical points of index 

i by P l  (^ = 1, 2, •••)• Then we can choose coordinates in a neighborhood
of Pf so that

f  =  a ^ - ( x i y --------(4 )^-h(4+i)H  -  + (4 )^

+ ( y i )  + ••• +(ym+iY •

Hence / has the index i at P\. Since f ( P l ) = f ( P k ) y  / satisfies I ) and 2) in 
theorem 5.1. Putting

c>m ax/ (P )
P e M

we have c'^y^n- Since the maximum index of the critical points of / in
in fly by using corollary of theorem 7.1 we see that Te\f=c  is regularly embedded
into

For an arbitrary point Q ^ E  we have Q^E^cq^, On E^cq^ we consider ortho- 
flE^ccQraYC tcq passing through Q  and T r (Q )  where f\EjccQ  ̂ is the restriction of / 
on E^cq). Since on icq there exists a unique point Q' such as

rKQ\ T r ( Q ) )  =  c - / ( tt( Q ) )  >  O ,

by Q - > Q" we get the 1-1 correspondence between E  and Vc , which induce E - V e -  

Hence we have

T h e o r e m  8.1. A  sphere bundle with fibre group and base space 
can be regularly embedded in
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