Journal of the Institute of Polytechnics, Osaka City University, Vol. 11, No. 2, Series A

On embedding of level manifolds and sphere bundles

By Hiroshi YAMASUGE

(Received October 10, 1960)

1. Introduction

Let M be a compact, connected differentiable *n*-manifold of class C^{∞} , with n > 1. Take a non-degenerate function f of class C^{∞} on M whose existence is assured by [2] and [6]. In a neighborhood of a critical point P of f, we choose coordinates x_1, \dots, x_n so that the symmetric matrix

$$\left|\frac{\partial^2 f}{\partial x_r \partial x_s}\right|$$

is diagonal. By the index of the critical point P we mean the number of negative entries in the diagonal matrix. Let P_k $(k=1, 2, \dots, n_i)$ be all the critical points of index i of f. Then f is called canonical if the following properties are satisfied:

1)
$$f(P_1^i) = f(P_2^i) = \cdots = f(P_{n_i}^i) \quad (i = 0, \cdots, n)$$

2)
$$\eta_0 < \eta_1 <$$

where $\eta_i = f(P_1^i)$.

In the present paper the existence of a canonical function will be established. As an application it is proved that a sphere bundle with fibre S^m and the base space M can be embedded into the(2n+m+1)-dimensional euclidean space R^{2n+m+1} .

....< \eta_n

2. Functions and vector fields

The following theorem is proved in [2] and [6].

THEOREM 2.1. Given any differentiable function $f: M \to R$, and given $\varepsilon > 0$, there exists a differentiable function $g: M \to R$ such that

- (1) g has at most finite critical points,
- (2) at each critical point the determinant of the Jacobian matrix

$$\left\| \frac{\partial^2 f}{\partial x_i \partial x_j} \right\|$$

is not 0,

(3)
$$|g(x)-f(x)| < \varepsilon, \quad \left|\frac{\partial g(x)}{\partial x_i} - \frac{\partial f(x)}{\partial x_i}\right| < \varepsilon$$

for all x in M and for all $1 \le i \le n$, where x_i $(i=1, \dots, n)$ is a local coordinates system in a neighborhood of the critical point.

Since every differentiable manifold always admits a Riemannian metric we can introduce a metric $ds^2 = g_{ij}(x) dx^i dx^j$ into M. In this paper a function of class C^{∞} on M will be referred to simply as a function on M. Let f be a function on M satisfying the properties (1) and (2) of theorem 2.1. For a regular point P of f we put f(P) = c. Then the subvariety V_c defined by the equation f(x) = c is a submanifold of M which is called level manifold. Let T_P^{n-1} be the tangent space of V_c at P and T_P^n the tangent space of M at P. Then we have direct sum

$$T_P^n = T_P^{n-1} \oplus T_P^1$$

where T_P^1 is normal to T_P^{n-1} with respect to the above Riemannian metric. Taking the unit vector in T_P^1 whose direction coincides with that of increasing of f, we have a vector field X on $M-\sum P_{\nu}$ where P_{ν} ($\nu=1, 2, \cdots$) are all critical points of f.

If we take a suitable coordinates, f is represented in a neighborhood of a critical point as

(2,1)
$$f = c - x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2.$$

Now we consider a vector field X in a neighborhood U of a critical point of f. From (2.1) we easily have

$$X(x) = -\left(\frac{x_1}{r}\frac{\partial}{\partial x_1} + \cdots + \frac{x_i}{r}\frac{\partial}{\partial x_i}\right) + \left(\frac{x_{i+1}}{r}\frac{\partial}{\partial x_{i+1}} + \cdots + \frac{x_n}{r}\frac{\partial}{\partial x_n}\right)$$

where $r = (x_1^2 + \cdots + x_n^2)^{1/2}$.

Let n_i be the number of the critical points of index *i* of *f*. Then the following theorem is well known (see [3]):

THEOREM 2.1. $\sum_{i=0}^{n} (-1)^{i} n_{i}$ = the Euler number of M.

3. Level manifolds

LEMMA 3.1. The level manifold V_c defined by f=c is diffeomorphic with the level manifold $V_{c'}$ defined by f=c' if any critical value of f does not exist in the closed interval [c, c'].

Proof. Let x_1, \dots, x_n be local coordinates in a neighborhood W of P on V_c , and let X be the vector field induced from f. Write $X = \sum f^i (\partial/\partial x^i)$. Then f^i are differentiable functions since X is differentiable. We consider a system of linear differential equations

(3.1)
$$\frac{d\varphi_i}{dt} = f_i(\varphi_1(t), \cdots, \varphi_n(t)), \ i = 1, \cdots n,$$

for the unknown function $\varphi_1(t), \dots, \varphi_n(t)$ of one variable t. By a fundamental existence theorem these equations have a unique set of solutions $\varphi_1(t; x), \dots$,

 $\varphi_n(t;x)$, defined for $|t| < \varepsilon$ and $|x_i| < \delta$, which satisfy the initial conditions

$$\varphi_i(0, x) = x_i$$

The set of curves $\varphi(t;x)$ is then defined on $U = \{(x_1, \dots, x_n) | x_i | < \delta\}$ by $\varphi(t;x) = (\varphi_1(t;x), \dots, \varphi_n(t;x))$. From the construction, it is obvious that $\varphi(t;x)$ induce X in U. The uniqueness of these curves $\varphi(t;x)$ which induce X is clear from the fact $\varphi(t;x)$ must satisfy (3.1). It is also clear from (3.1) that any one of these curves does not intersect the others.

Put $V_{c,c'} = \{P | c \leq f(P) \leq c'\}$. Let $\bigcup U_j$ be a covering of $V_{c,c}$ and write ε_j for the above ε corresponding to U_j . By the compactness of $V_{c,c'}$ we can take $\varepsilon_0 = \min \varepsilon_j > 0$ as a common ε for all U_j .

Now we put

$$P_k = \varphi(\varepsilon_j; P_{k-1}), \quad k = 1, 2, \cdots,$$

where P_0 is an arbitrary point of V_c . Then it is clear that the curve $\psi(t; p)$ defined by

$$\psi(t; P) = \varphi(t - \varepsilon k; P_k)$$
 for $\varepsilon k \leq t \leq \varepsilon (k+1)$

satisfies (3.1), and hence it has the vector field $X|\psi$ which is the restriction of X on the curve ψ . From (3.1) we have

$$\frac{d}{dt}f(\psi(t\,;P)) = \sum \frac{\partial f}{\partial x_k} \frac{dx_k}{dt} = \sum \frac{\partial f}{\partial x_k} \cdot f_k(\psi(t\,;p)) = Xf$$

and hence

$$f(P_k)\!=\!f(P_0)=\int_0^{k^{\mathrm{g}}} Xf\!\ge\!k$$
erg

where $\eta = \min_{P \in V_{c_i,c'}} f(P)$. Since $V_{c,c'}$ is compact and f(x) > 0 for an arbitrary point x of $V_{c,c'}$, it follows that $\eta > 0$. Taking k so that $k \ge (c'-c)/\varepsilon \eta$, we have $f(P_k) \ge c'$. Hence $\psi(t; p)$ can arrive at the point P' of V. By the correspondence $P \rightarrow P'$, we have a definition of V_c to $V_{c'}$. Thus the lemma is proved.

Now we shall consider the differences of topological structure between V_c and $V_{c'}$ in the case critical points of f exist in V_c , $V_{c'}$.

LEMMA 3.2. If these exists only one critical point of f in $V_{c,c'}$, then the difference between the Euler number of V_c and that of $V_{c'}$ is ± 2 or 0 according as dim M is odd or even.

Proof. We may suppose without loss of generality that the critical point of f is x=0 and that f is written as $-x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2$ in a neighborhood of x=0. Denote by $B(\eta)$ the ball defined by $x_1^2 + \cdots + x_n^2 \leq \eta$ and put $S_{\eta} = \partial B(\eta)$. Then $V_{-\varepsilon} \cap S(\eta)$ is written as

$$egin{array}{rll} -x_1^2-\, \cdots \, -x_i^2+x_{i+1}^2+\, \cdots \, +x_n^2=-arepsilon \ x_1^2+\, \cdots \, +x_i^2+x_{i+1}^2+\, \cdots \, +x_n^2=\eta \ , \end{array}$$

or

$$x_1^2 + \cdots + x_i^2 = \frac{1}{2}(\varepsilon + \eta)$$
$$x_{i+1}^2 + \cdots + x_n^2 = \frac{1}{2}(-\varepsilon + \eta)$$

Hence $V_{-\varepsilon} S(\eta)$ is diffeomorphic to $S^{i-1} \times S^{n-i-l}$:

$$V_{-\varepsilon} S(\eta) \simeq S^{i-1} \times S^{n-i-r}$$

Since the set of (x_{i+1}, \dots, x_n) for all η is digeomorphic to (n-i)-dimensional ball which we shall denote by B^{n-i} , we have

$$V_{-\varepsilon} B(\eta) \simeq S^{i-1} \times B^{n-i}$$
.

Similarly we have

$$V_{\varepsilon} \cap B(\eta) \simeq B^i \times S^{n-i-1}$$
.

Let g be a function on S^{i-1} which has just one critical point of index 0 and just one calcial point of index i-1. Let h be a function in R^{n-i} given by $h=y_1^2+\cdots+y_{n-i}^2$ where y is the coordinate system in R^{n-i} . Put

$$F = g + h$$

Then F is a function in $S^{i-1} \times R^{n-1}$ and it is obvious that F has only two critical points of index 0 and index i-1. Take a number c so that $c > \max_{P \in S^{i-1}} g(P)$. Then the subset F^c of points $P \in S^{i-1} \times R^{n-i}$ at which $F(P) \leq c$ is diffeomorphic with $S^{i-1} \times B^{n-i}$. This is shown as follows. For an arbitrary point $P \in S^{i-1}$, $F \leq c$ implies $y_1^2 + \cdots + y_{n-i}^{t} \leq c - g(P)$. Hence $F^c \simeq S^i \times B^{n-i}$. Let σ be a diffeomorphism of $V_{-\varepsilon \cap} B_{\eta}$ to F^c . Then we have a function $F \cdot \sigma$ which is defined in $V_{-\varepsilon} - B_{\eta}$ and constant on $\partial (V_{-\varepsilon} - B_{\eta})$. Obviously $F \cdot \sigma$ has two critical points of index 0 and i-1. Now we extend to over $V_{-\varepsilon}$ and denote it by F_1 .

Similarly let g' be a function on S^{n-i-1} which has only two critical points of index 0 and index n-i-1, and let h be a function in R^i such as $h'=y_1^2+\cdots+y_i^2$. Put

$$F' = g' + h'.$$

Then the subset F'^c of points $P \in \mathbb{R}^i \times S^{n-i-1}$ at which $F'(P) \leq c$ is diffeomorphic with $B^i \times S^{n-i-1}$. Let σ' be a diffeomorphism of V_{ε} B_{η} to F'^c . We have a function $F'\sigma'$ which is defined in $V_{\varepsilon} \supset B_{\eta}$ and *constant on $\partial(V_{\varepsilon} \supset B_{\eta})$, and which has just one critical point of index 0 and just one crictical point of index n-i-1. Since $V_{-\varepsilon} - (V_{-\varepsilon} \supset B_{\eta}) \simeq V_{\varepsilon} - (V_{\varepsilon} \supset B_{\eta})$, $F_1 = \text{const}$ on $(V_{-\varepsilon} \supset B_{\eta})$, and $F'\sigma' = \text{const}$ on $\partial(V_{\varepsilon} \supset B_{\eta})$. Consequently we can extend $F'\sigma'$ to a function F_2 on V_{ε} so that $n_k = \overline{n_k}$ where n_k or $\overline{n_k}$ is the number of critical points of index k of F_1 in $V_{-\varepsilon} - B_{\eta}$ or F_2 in $V_{\varepsilon} - B_{\eta}$. From theorem 2.1 we have

the Euler number of
$$V_{-\varepsilon} = \sum (-1)^k n_k + 1 + (-1)^{i-1}$$
,
the Euler number of $V_{\varepsilon} = \sum (-1)^k \overline{n_k} + 1 + (-1)^{n-i-1}$.

Thus the difference between these numbers is $(-1)^{i-1}-(-1)^{n-i-1}=(-1)^{i-1}$ $(1-(-1)^n)$, and the lemma is proved.

4. Ortho-f-arcs

Let Ω_0 be the set of critical points of f on M. Then by (3.1) the trajectories orthogonal to the level manifolds of f are well-defined in $M-\Omega_0$. These trajectories is celled ortho-f-arcs on M. From now on we suppose that the direction of trajectories accords with that of increasing of f.

For every critical point P of f we choose coordinates x_1, \dots, x_n in a neighborhood U_P of P so that

$$f = c_0 - x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2$$

Furthermore in M we can introduce such a Riemannian metric as $ds^2 = \sum_j dx_j^2$ in U_P . Under the above metric we have

LEMMA 4.1. In the above neighborhood of a critical point P, denote by L the set of all ortho-*f*-arcs stretched into P and by L' the set of all ortho-*f*-arcs issueing out from P. Then $L^{\bigcirc}P \simeq B^i$ and $L'^{\bigcirc}P \simeq B^{n-i}$.

Proof. Since

$$f = c_0 - x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2$$

the vector field induced from f is written as

$$X = \sum_{j} \varepsilon_j \frac{x_i}{r} \frac{\partial}{\partial x_j}, \quad r = (x_1^2 + \cdots + x_n^2)^{1/2}$$

where $\varepsilon_j = -1$ for $1 \leq j \leq i$ and $\varepsilon_j = 1$ for $i < j \leq n$. Hence every ortho-*f*-arc satisfies the differential equations

$$\frac{dx_j(t)}{dt} = c(t) \varepsilon_j x_j(t), \quad 1 \leq j \leq n,$$

and the solution of these equations is

$$x_j(t) = c_j \exp \varepsilon_j c(t)$$

where t is an arbitrary common parameter on all ortho-f-arcs. Therefore if we put $c_{i+1} = \cdots = c_n = 0$ and make $c(t) \to \infty$, it follows that $L \cup P = \{x \mid x_{i+1} = \cdots = x_n = 0\}$. Similarly putting $c_1 = \cdots = c_i = 0$ and making $c(t) \to -\infty$, we see that $L' \cup P = \{x \mid x_1 = \cdots = x_i = 0\}$.

LEMMA 4.2. Denote by L_c^i the set of all points which are on the ortho-*f*-arcs stretched into the critical point *P*, and which satisfies $f(P) \ge f(x) > c$, then L_c^i is diffeomorphic with *i*-dimensional ball $B^i \subset M$ if and only if there is no critical point in L_c^i .

Proof. Each ortho-*f*-arc φ of L_c^i satisfies the system of linear differential equations

(4.1)
$$\frac{d\varphi_i}{dt} = f_j(\varphi_1(t), \cdots, \varphi_n(t)), \quad i = 1, \cdots, n.$$

By the fundamental existence theorem the unique set of solutions $\varphi_i(t; x)$ with initial conditions $\varphi_i(0, x) = x$ are differentiable with respect to t and x. For $|x| < \delta$ where $\delta > 0$ is sufficiently small, by using lemma 4.1 we have $L_c^i \quad B_\delta \simeq B^i$. Hence we can uniquely represent $x(|x| \ge \delta)$ by using t and x_1, \dots, x_i satisfying $x_1^2 + \dots + x_n^2 = \delta$. Thus L_c^i is diffeomorphic with a *i*-dimensional ball.

REMARK. Denote by $L_{c'}^{n-j}$ the set of all points x which lie on the ortho-*f*-arcs issuing from a critical point Q of index j and satisfy $c' > f(x) \ge f(Q)$. If L_c^i and $\partial L_{c'}^{n-j}$ are in a general position, we have

$$\dim \left(L^i_{c} \cap \partial L^{n-j}_{c'} \right) = i - j - 1.$$

Hence we may suppose that on L_c^i there is not any critical point of index $j, j \ge i$.

5. Existence of canonical functions

THEOREM 5.1. There esists a function f with the following properties. 1) For all critical points P_j^i $(j=1, 2, \dots n_i)$ of index i and for all $i, 0 \le i \le n$

2)
$$f(P_1^i) = f(P_2^i) = \dots = f(P_{n_i}^i),$$
$$f(P_1^0) < f(P_1^1) < \dots < f(P_{n_i}^i).$$

We shall call a function to be canonical if it satisfies 1) and 2) in theorem 5.1.

Proof. We arrange these critical points in a sequence P_1, P_2, \cdots so that the index of $P_{\mu} \leq$ the index of $P_{\mu+1}$. Now we shall prove it by the induction for μ . By certain coordinates in a neighborhood of $P_0 f$ is written as

$$f=a+x_1^2+\cdots+x_n^2.$$

Take a function g which satisfies the following conditions:

1)
$$g(r) = \alpha$$
 for $0 \leq r \leq \delta$ and $g(r) = 0$ for $r \geq 2\delta$

2)
$$0 \leq g(r) \leq \alpha, g'(r) > 0 \text{ and } \alpha + f(P_0) < \min_{Q \in \mathcal{M}} f(Q)$$

where $r = (x_1^2 + \dots + x_n^2)^{1/2}$, and δ is a sufficiently small positive number.

Putting

$$ilde{f} = f + g$$

we have

$$\tilde{f}(P_0) = f(P_0) + g(P_0) = f(P_0) + \alpha$$

and

$$\frac{\partial \tilde{f}}{\partial r} = 2r + g'(r) > 0$$
 for $0 < r \leq 2\delta$.

Hence \tilde{f} has the same critical points as f and $\tilde{f}(P_0) < \tilde{f}(P_\mu), \mu \ge 1$.

Now we assume that f satisfies the following conditions.

1) If the index of P_{μ} = the index of P_{ν} and $\mu, \nu \leq k$, then $f(P_{\mu}) = f(P_{\nu})$.

2) If the index of $P_{\mu} <$ the index of P_{ν} and $\mu \leq k$, then $f(P_{\mu}) < f(P_{\nu})$ for all ν .

We shall show that we can modify f so that the critical points are unchangeable and the conditions 1) and 2) are satisfied for P_{μ} , $\mu \leq k+1$.

Let L_{k+1} be the set of all ortho-*f*-arcs stretched into the critical point P_{k+1} . By the remark we may assume that $P_{\mu} \notin L_{k+1}$, $\mu \ge k+1$. By lemma 4.2. L_{k+1} is diffeomorphic with a ball $B^{k'}$, k' = the index of P_{k+1} . Since along an arbitrary ortho*f*-arc the values of *f* increase in a monotone, $V_{c_0} \land L_{k+1}$ is diffeomorphic to $S^{k'}$.

Let Q be an arbitrary point close to L_{k+1} and let Q' be the intersecting point of V_{c_0} and the ortho-*f*-arc passing through Q. Consider on V_{c_0} the metric induced from M. Then on V_{c_0} we can draw the unique geodesic which passes through Q' and is orthogonal to $V_{c_{\cap}}L_{k+1}$. Denote by Q'' the intersecting point of this geodesic and V_{c_0} L_{k+1} and by r(Q) the geodesic distance on V_{c_0} between Q' and Q''. Since $r(Q) \rightarrow 0$ $(Q \rightarrow Q_0 \in L_{k+1} \mid L'_{k+1}$ where L'_{k+1} is the set of all ortho*f*-arcs issuing from the point P_{k+1} , we may consider that $r(Q_0)=0$, $Q_0 \in L_{k+1}$ L'_{k+1} . Then we have, r(Q)=0 if and only if $Q \in L_{k+1} \mid L'_{k+1} \mid P_{k+1}$.

Denote by $L_{k+1}(c)$ the set of all points Q on L_{k+1} , which satisfies $f(P_{k+1}) \ge f(Q) > c$.

a) In the case the index of P_k =the index of P_{k+1} . Define a function g such that

$$\begin{split} g(t) &= 0 \quad \text{for} \quad t \leq f(P_k) - 2\varepsilon , \\ &= f(P_k) - f(P_{k+1}) \quad \text{for} \quad t \geq f(P_{k+1}) - \delta , \\ g'(t) &> -1 \quad \text{for all} \quad t , \end{split}$$

where ε is a sufficiently small positive number so that on $L_{k+1}(c)$, $c=f(P_k)-2\varepsilon$, there is not any critical point except P_{k+1} .

Furthermore define a function h(t) such that

$$h(t) = 1 \quad \text{for} \quad t \leq \delta$$
$$= 0 \quad \text{for} \quad t \geq 2\delta$$

where δ is a small positive number.

Put

$$\tilde{f} = f(Q) + g(f(Q)) h(r(Q))$$

Since $r(P_{k+1})=0$, from 1) and 2) we have

$$\tilde{f}(P_{k+1}) = f(P_{k+1}) + f(P_k) - f(P_{k+1}) = f(P_k)$$

Consider a vector X_Q at Q, which is orthogonal to the level manifold $V_{f(Q)}$ defined by f=f(Q). Then we have

$$egin{aligned} X_Q f &= X_Q f + g'(f)(X_Q f) \, h \ &= X_Q f(1 + g'(f) h) \, . \end{aligned}$$

Since $X_Q f \neq 0$ for $Q \in U(L_{k+1}(c))$ where $U(L_{k+1}(c))$ is a sufficiently small neighborhood of $L_{k+1}(c)$, it follows that

$$X_Q f \neq 0$$
 for $Q \neq P$.

In a neighborhood of P we have

$$\tilde{f}(Q) = f(Q) + \text{const}$$

and hence \tilde{f} has the same critical points as f.

b) In the case the index of $P_k < \text{the index of } P_{k+1}$.

Define a function g such that

$$\begin{split} g(t) &= 0 \quad \text{for} \quad t \leq f(P_k) \\ &= f(P_k) - f(P_{k+1}) + 2\varepsilon \quad \text{for} \quad t \geq f(P_{k+1}) - \varepsilon \\ g'(t) &> -1 \end{split}$$

where $f(P_k) + 2\varepsilon = \min_{\mu \ge k+1} f(P_{\mu})$.

Put

$$\hat{f}(Q) = f(Q) + g(f(Q)) h(r(Q))$$
.

Then in the same way as a) we see that \hat{f} satisfies 1) and 2) for $\mu \leq k+1$.

Thus the theorem is proved.

6. Regular embedding

LEMMA 6.1. Let

(6.1)
$$f_i(x_1, \dots, x_n) = 0$$
 $(i = 1, \dots, n+1)$

(f are polynomials) be a set of non-homogeneous equations with indeterminate coefficients and let

(6.2)
$$\overline{f}_i(x_1,\cdots,x_n)=0 \quad (i=1,\cdots,n+1)$$

be the equations obtained from (6.1) by a given specialization of the coefficients in (6.1). Then a necessary condition for the existence of a solution of the equations (6.2) is $T(\bar{a})=0$ where T is a certain polynomial in the indeterminate coefficients $(a_1, a_2, \dots, a_{\nu})$ of f_i and $(\bar{a}_1, \bar{a}_2, \dots, \bar{a}_{\nu})$ is the given specialization of $(a_1, a_2, \dots, a_{\nu})$.

Proof. Make f_i homogeneous by introducing a new indeterminate x_0 and replacing x_k/x_0 for x_k . Then there is a non-zero resultant form for n+1 equations in n+1 unknowns such that

$$T(a_1\cdots a_{\nu}) x_0^{\tau} \equiv \sum_{1}^r A_i(x_0\cdots x_n) f_i(x_0\cdots x_n)$$

for a suitable integer τ , the A_j being polynomials in $x_0 \cdots x_n$ with coefficient $K[a_1, \cdots, a_\nu]$. Here let \bar{x} be one of the solutions of (6.2), and we have

$$T(\bar{a}_1\cdots\bar{a}_\nu)=0.$$

Lemma 6.2. Let

(6.3)
$$f_i(x_1 \cdots x_n) = f_i(y_1 \cdots y_n) \quad (i = 1, \cdots, 2n+1)$$

be a set of non-homogeneous equations with indeterminate coefficients and let

(6.4)
$$\overline{f}_i(x_i\cdots x_n) = \overline{f}_i(y_1\cdots y_n) \quad (i=1,\cdots,2n+1)$$

be the equations obtained from (6.3) by a given specialization of the coefficient in (6.3). Then a necessary condition for the existence of a solution of (6.4) such as $x \neq y$ is $R(\bar{a})=0$ where R is some polynomial in the indeterminate coefficients $(a_1 \cdots a_{\mu})$ of f_i and $(\bar{a}_1 \cdots \bar{a}_{\mu})$ is the specialization of $(a_1 \cdots a_{\mu})$.

Proof. Put

$$y_k = x_k + x'_k \quad (k = 1, \cdots, n)$$

and suppose $x_1' \neq 0$ then we have

$$(f(x+x')-f(x))/x'_1 = 0$$
 $(i = 1, \dots, 2n+1).$

Here we can consider that $x_1 \cdots x_n 1/x'_1 x'_2 \cdots x'_n$ are unknowns. Let R be the resultant form for $(f_i(x+x')-f_i(x))/x'_1$ and from lemma 6.1 we have immediately

 $R(\bar{a})=0.$

Let f'_{ν} , f''_{ν} ($\nu = 1 \cdots m$) be arbitrary differentiable functions on a compact manifold K and $\{U_r\}$ be a covering of K and $w_1^r \cdots w_{\mu}^r$ be local coordinates of U_r . Define $d_K(f', f'')$ as the following:

$$d_{K}(f', f'') = \max_{P \in \mathcal{K}} \left\{ \sum_{\nu} \left| f_{\nu}'(p) - f_{\nu}''(P) + \sum_{\mu, \nu, r} \left| \frac{\partial f_{\nu}'}{\partial w_{\mu}^{r}}(P) - \frac{\partial f_{\nu}''}{\partial w_{\mu}^{r}}(P) \right| \right\}.$$

LEMMA 6.3. If by $y_v = f'_v$ a compact manifold K is regularly embedded into R^m then there exists a positive number such that K is always regularly embedded into R^m by $y_v = f'_v$ only if $d(f', f'') < \eta$.

Proof. By the hypothesis there exists $\delta > 0$ as follows.

1)
$$\min_{P \in K, \ Q \in K^{-B\delta(P)}} |f'(P) - f'(Q)| > \eta' > 0$$

where $B_{\delta}(P)$ is a geodesic ball with radius δ having P as its center.

2) For some $s(0 \leq s \leq m - \mu)$

$$\left|\frac{\partial(f_1'\cdots f_{\mu-1}' f_{\mu+s}')}{\partial(w_1^{(o)}\cdots w_{\mu}^{(r)})}\right| > \eta'' > 0$$

where $w_1^{(r)} \cdots w_{\mu}^{(r)}$ are the coordinates of U_r .

From

$$\begin{split} \min_{\substack{P \in \mathcal{K}, \ Q \in \mathcal{K}^{-} B\delta(P)}} & \left| f''(P) - f''(Q) \right| >_{\substack{P \in \mathcal{K}, \ Q \in \mathcal{K}^{-} B\delta(P)}} & \left| f'(P) - f'(Q) \right| \\ & - \max_{\substack{P \in \mathcal{K}}} \left| f'(P) - f''(P) \right| - \max_{\substack{Q \in \mathcal{K}}} \left| f'(Q) - f''(Q) \right| \\ & (\max |f'(P) - f''(P)| + \max |f'(Q) - f''(Q)| \to 0 \quad (\eta \to 0)) \,, \end{split}$$

and

$$\begin{split} \left| \frac{\partial (f_1' \cdots f_{\mu-1}' f_{\mu+s}')}{\partial (w_1 \cdots w_{\mu})} \right| \ge \left| \frac{\partial (f_1' f_{\mu-1}' f_{\mu+s})}{\partial (w \cdots w_{\mu})} \right| \\ - \left| \frac{\partial (f_1' \cdots f_{\mu-1}' f_{\mu+s}')}{\partial (w_1 \cdots w_{\mu})} - \frac{\partial (f_1' \cdots f_{\mu-1}' f_{\mu+s})}{\partial (w_1 \cdots w_{\mu})} \right| \\ \left(\left| \frac{\partial (f_1' \cdots f_{\mu-1}' f_{\mu+s}')}{\partial (w_1 \cdots w_{\mu})} - \frac{\partial (f \cdots f_{\mu+1}' f_{\mu+s}')}{\partial (w_1 \cdots w_{\mu})} \right| \to 0 \quad (\eta \to 0) \right), \end{split}$$

If η is sufficiently small, it follows immediately that

$$\min_{\substack{P \in \mathcal{K}, \ Q \in \mathcal{K}^{-}B\delta(P) \\ \left| \frac{\partial (f_1^{\prime\prime} \cdots f_{\mu-1}^{\prime\prime} f_{\mu+s}^{\prime\prime\prime})}{\partial (w_1 \cdots w_{\mu})} \right| > \frac{\eta^{\prime\prime}}{2}, }$$

Hence the lemma is proved.

7. Regular embedding of level manifold

From now on for the sake of simplicity we write

$$(x_1^k, \cdots, x_i^k) = y^k, \quad (x_{i+1}^k, \cdots, x_n^k) = z^k, (u_1^k, \cdots, u_i^k) = u^k, \quad (v_1^k, \cdots, v_{n-i}^k) = v^k, \sum_{j=1}^k (x_j^k)^2 = (x^k)^2 = (y^k)^2 + (z^k)^2, \sum_{j=1}^i (u_p^k)^2 = (u^k)^2, \quad \sum_{j=1}^{n-i} (v_q^k)^1 = (v^k)^2$$

Choose coordinates x^k in o neighborhood of a critical point P_k of index i so that f is represented as

$$f = -c^k - (y^k)^2 + (z^k)^2$$
.

Here we assume $c^{k}=0$ and $V_{-\varepsilon}$ is written as

$$V_{-arepsilon}|-(y^k)^2+(z^k)^2)=-arepsilon$$
 .

Put

$$egin{aligned} G_k(arepsilon) &= \{(y^k, z^k) \,|\, (y^k)^2 = \delta \;, \;\; z^k = 0\} \;, \ H_k(\delta) &= \{(u^k, v^k) \,|\, (u^k)^2 < 1 \;, \;\; (v^k)^2 = \delta^2\} \;, \end{aligned}$$

and identify (u^k, v^k) and (y^k, z^k) by

(7.1)
$$y^{k} = u^{k} (\delta^{2} + \varepsilon/(u^{k})^{2})^{1/2}$$
$$z^{k} = |u^{k}| v^{k} \quad (|u^{k}|^{2} = (u^{k})^{2}).$$

 $\mathbf{24}$

Then from $(V_{-\epsilon} - \sum_k G_k(\epsilon))^{-} \sum_k H_k(\delta)$ we have a manifold denoted as

$$V_{-\varepsilon,\delta} = (V_{-\varepsilon} - \sum_{k} G_k) \bigcup_{\sigma_{\varepsilon}} \sum H_k(\delta)$$

where σ_{ε} represents the identifying (7.1).

LEMMA 7.1.
$$(V_{-\varepsilon} - \sum_{k} G_{k}(\varepsilon)) \bigcup_{\sigma_{\varepsilon}} \sum H_{k}(\delta) \simeq (V_{-\varepsilon'} - \sum G_{k}(\varepsilon')) \bigcup_{\sigma_{\varepsilon'}} \sum H_{k}(\delta).$$

Proof. It is sufficient for the purpose to prove the lemma when $|\varepsilon - \varepsilon'|$ is sufficiently small. If we correspond $(u^k, v^k) \in V_{-\varepsilon, \delta}$ to $(u^k, v^k) \in V_{-\varepsilon', \delta}$, from (7.1) it induces the correspondence between $(V_{-\varepsilon} - \sum G_k(\varepsilon)) \quad B_k(2\delta^2 + \varepsilon)^{1/2}$ and $(V_{-\varepsilon'} - \sum G_k(\varepsilon')) \quad B_k(2\delta^2 + \varepsilon')^{1/2}$ such as

(7.2)
$$\begin{aligned} x'^{k} &= x^{k} + h^{k}(\varepsilon, \varepsilon', x^{k}) \quad (x \in \sigma_{\varepsilon} H_{k}(\delta), x' \in \sigma_{\varepsilon'} H_{k}(\delta)), \\ h^{k}, \ \partial h^{k}_{j} / \partial x^{k}_{l} \to 0 \quad (|\varepsilon - \varepsilon'| \to 0) \end{aligned}$$

where $h^k = (h_1^k, \dots, h_n^k)$. On the other hand at every point $x \in V_{-\varepsilon} - \sum \overline{B}_k (\delta^2/2 + \varepsilon)^{1/2}$ $(G_k(\varepsilon) \subset B_k (\delta^2/2 + \varepsilon)^{1/2})$ we draw the geodesic orthogonal to $V_{-\varepsilon}$. Let x' be the intersecting point of the geodesic and $V_{-\varepsilon'}$. Then the correspondence $x \to x'$ is written in $B_k (2\delta^2 + \varepsilon')^{1/2}$ as

(7.3)
$$\begin{aligned} x'^{k} &= x^{k} + g^{k}(\varepsilon, \varepsilon', x^{k}), \\ g^{k}, \, \partial g^{k}_{j} / \partial x^{k}_{l} \to 0 \quad (|\varepsilon - \varepsilon'| \to 0), \end{aligned}$$

where $g_k = (g_1^k, \dots, g_n^k)$. Define a function $\varphi(x^k)$ such as

$$arphi(\pmb{x^k}) = \left\{egin{array}{cc} 0 & (\pmb{x^k})^2 \geqq 2\delta^2 + {f arepsilon} \ 1 & (\pmb{x^k})^2 \leqq \delta^2/2 + {f arepsilon} \end{array}
ight.$$

Let r(a, b) be the geodesic distance (with respect to the metric on $V_{-\varepsilon'}$ induced from M) on $V_{-\varepsilon'}$ between a and b $(a, b \in V_{-\varepsilon'})$. Moreover let x''^k be the point on the geodesic passing through $x^k + g^k$ and $x^k + h^k$ $(x^k + g^k, x^k + h^k \in V_{-\varepsilon'})$, which satisfies

$$\frac{d(\mathbf{x}^{k}+\mathbf{g}^{k}, \mathbf{x}^{\prime\prime k})}{d(\mathbf{x}^{k}+\mathbf{g}^{k}, \mathbf{x}^{k}+h^{k})} = \varphi(\mathbf{x}^{k})$$

where x''^k is between $x^k + g^k$ and $x^k + h^k$ on the geodesic. Then we have immediately

(7.4)
$$x_{j'}^{\prime k} = x_{j}^{k} + g_{j}^{k} + \psi_{j}^{k}(x^{k})(k_{j}^{k} - g_{j}^{k})$$

where $\psi_j^k = 0$ for $(x^k)^2 \ge 2\delta^2 + \varepsilon$ and $\psi_j^k = 1$ $(x^k)^2 \le \delta^2/2 + \varepsilon$. Now we define the correspondence between $V_{\varepsilon,\delta}$ and $V_{-\varepsilon',\delta}$ as follows.

$$V_{-\varepsilon,\delta} \ni (u^k, v^k) \to (u^k, v^k) \in V_{-\varepsilon',\delta}$$
$$V_{-\varepsilon} \cap (B_k(2\delta^2 + \varepsilon)^{1/2} - \overline{B}_k(\delta^2/2 + \varepsilon)^{1/2}) \ni x^k$$
$$\to x''^k \in V_{-\varepsilon'}.$$

From (7.2), (7.3) and (7.4) this correspondence is 1-1 when $|\varepsilon'-\varepsilon|$ is sufficiently small and it induces $V_{-\varepsilon,\delta} \simeq V_{-\varepsilon',\delta}$.

Lemma. 7, 2. $V_{\varepsilon} \simeq V_{-\varepsilon, \delta}$.

Proof. From lemma 7.1 it is sufficient to prove $V_{\varepsilon',\delta^2} \simeq V_{-\varepsilon',\delta}$ for small $\varepsilon' > 0$. An arbitrary point $x^k \in V_{\varepsilon'\delta^2} \cap \overline{B}_k(2\delta^2 + \varepsilon'\delta^2)^{1/2}$ is written as

(7.5)
$$y^k = u^k \delta$$
 $((u^k)^2 \leq 1)$,
 $z^k = v^k ((u^k)^2 + \varepsilon')^{1/2}$ $((v^k)^2 = \delta^2)$

Hence from (7.1) the correspondence $V_{\varepsilon'\delta^2} \ni x = (y(u, v), z(u, v)) \rightarrow x' = (u, v)$ $\in V_{-\varepsilon',\delta}$ is written in $B_k(2\delta^2 + \delta^2\varepsilon')^{1/2} - \overline{B}_k(\delta^2/2 + \varepsilon'\delta^2)^{1/2}$ as

$$\begin{aligned} x'_k &= x^k + h^k(\varepsilon', x_k) , \\ h, \partial h_j^k / \partial x_l^k &\to 0 \quad (\varepsilon' \to 0) \end{aligned}$$

Define a function $\varphi(x^k)$ such as

$$arphi(\mathbf{x}^k) = egin{cases} 0 & (\mathbf{x}^k)^2 \geq \delta(1\!+\!arepsilon')^{1/2} \ 1 & (\mathbf{x}^k)^2 \leq \delta(rac{1}{2}\!+\!arepsilon')^{1/2} \ , \end{cases}$$

and by the same way as that in the proof of lemma 7.1 we easily $V_{\varepsilon'\delta^2} \simeq V_{-\varepsilon',\delta}$.

THEOREM 7.1. If a level manifold V_c in M^n is regularly embedded into R^{n+i-1} and in $V_{c,c'}$ there exists no other critical point than index *i*, then $V_{c'}$ can be regularly embedded into R^{n+i} .

Proof. By the way similar to the proof of the theorem (5.1) we may suppose that for all critical points P_k $(k=1, 2, \cdots)$ $f(P_k)=0$. Hence we have $V_{\varepsilon} \simeq V_c$ and $V_{-\varepsilon} \simeq V_{c'}$. Put

(7.6)
$$y_k = \alpha^k ((\beta^k)^2 + \varepsilon)^{1/2} \quad (\alpha^k)^2 = 1$$
$$z^k = \beta^k \qquad (\beta^k)^2 < 1$$
where
$$\alpha^k = (\alpha_1^k \cdots \alpha_k^k) \quad \text{and} \quad \beta^k = (\beta_1^k \cdots \beta_{n-i}^k).$$

Then (7.6) induces $-y^2 + z^2 = -\varepsilon$.

Let F be a regular embedding map of $V_{-\varepsilon}$ into \mathbb{R}^{n+i-1} . Then for $B_k((2+\varepsilon)^{1/2})$ $F(V_{-\varepsilon})$ is represented by (α^k, β^k) as

$$X^k=F^k(lpha^k,eta^k)$$
 , $F^k=(F_1^k,\cdots,F_{n+i-1}^k)$,

where $X^k = (X_1^k \cdots X_{n+i-1}^k)$ is the coordinates of R^{n+i-1} . Define maps $f^k(u, v)$ from $0 < |u^k| < 1$, $|v^k| \leq 1$ into R^{n+i} as the following:

$$f^k(u^k,v^k) = (F^k(u^k/|u^k|, \ |u^k|v^k) \,, \ \exp{(1/((u^k)^2-1))} \ |u^k| < 1.$$

To simplify the notations for a while we abbreviate index k. From

$$f(u, v) = f(u', v')$$
 (|u|, |u'| < 1)

we have

$$|u| = u'/|u'|$$
, $|u|v = |u'|v'$, $|u| = |u'|$

and hence we have

$$u = u'$$
, $v = v'$.

Put

$$\alpha_1 = \frac{u_1}{|u|}, \cdots, \alpha_i = \frac{u_i}{|u|}, \quad \beta_1 = v_1, \cdots, \beta_{n-i} = v_{n-i}$$

If $u_t \neq 0$ $(1 \leq t \leq i)$ we can use $|u|, \alpha_1, \dots, \hat{\alpha}_t, \dots, \alpha_i, \beta_1, \dots, \beta_{n-i}$ as local coordinates in $\{(u, v) | u^2 < 1, v^2 \leq 1\}$. Then we see

$$\frac{\partial(f_1\cdots f_{n-1}\ f_{n+s-1}\ f_{n+i})}{\partial(\alpha_1\cdots\hat\alpha_t\ \cdots\ \alpha_i\ \beta_1\cdots\beta_{n-i}|u|)}=-\frac{2|u|}{(u^2-1)^2}e^{\frac{1}{u^2-1}}\frac{\partial(F_1\cdots F_{n-1}\ F_{n+s-1})}{\partial(\alpha_1\cdots\hat\alpha_t\ \cdots\ \alpha_i\ \beta_1\cdots\beta_{n-i})}.$$

Hence the Jacobian of the right hand is not zero for some s. Thus by f the set $K = \{u, v\} \mid \frac{1}{3} \leq |u| < 1$, $|v| \leq 1\}$ is regularly embedded into R^{n+i} , and hence for K there exists γ in lemma 6.3.

Let $h_{\nu}(u, v)$ be polynomials and put

$$f(u, v) = f(u, v) + \varphi(u)(h(u, v) - f(u, v))$$
$$(h = (h_1 \cdots h_{n+i}))$$

where

$$\varphi(u) = 1 \quad |u| \leq \frac{1}{3}$$
$$= 0 \quad |u| \geq \frac{2}{3}.$$

Now consider the equations

(7.9)
$$\frac{\partial (h_1 \cdots h_{n-1} \ h_{n+s-1})}{\partial (u_1 \cdots u_i \ v_1 \cdots v_{n-i})} = 0 \quad (s = 1, \cdots, i+1)$$

with unknowns u_1, \dots, u_i . By lemma 1 there exist polynomials h_{ν} such that $d_K(\overline{f}, f) < \eta$ and (7.9) has no solution. Hence for a given $u|u| \leq \frac{1}{3}$ there exist s = s(u) and $\delta(u)$

$$\frac{\partial(h_1\cdots h_{n-1}\ h_{n+s-1})}{\partial(u_1\cdots u_i\ v_1\cdots v_{n-i})} \neq 0 \quad \text{for} \quad |v| \leq \delta(u) \,.$$

Put $\delta = \min_{\substack{|u| \leq \frac{1}{3} \\ |u| \geq \delta}} \delta(u)$ and we easily see $\delta > 0$. Furthermore from lemma (6.2) we can take h_{ν} so that the equations $h_{\nu}(u, 0) = h_{\nu}(u', 0)$ ($\nu = 1, \dots, n+i; i < n$) have no solution and $\min_{\substack{u,|u-u'| > \delta \\ u,|u-u'| > \delta}} |h(u, 0) - h(u', 0)| > 0$. Hence if v, v' is sufficiently small we also have $\min_{\substack{u,|u-u'| > \delta \\ u,|u-u'| > \delta}} |h(u, v) - h(u', v')| > 0$. Hence by $h \{(u, v) | |u| \leq \frac{1}{3}, |v| = \delta\}$ is regularly embedded where δ is sufficiently small.

Now we shall show that $\{(u, v) | |u| < 1, |v| = \delta\}$ is regularly embedded by $\overline{f}(u, v)$ into \mathbb{R}^{n+i} . It is clear for $|u| \leq \frac{1}{3}$ or $\frac{2}{3} \leq |u| < 1$ from $\overline{f} = h$ or $\overline{f} = f$. It is

clear for $\frac{1}{3} \leq |u| \leq \frac{2}{3}$ by lemma 6.3 since $d_{K'}(f, \overline{f}) \leq \eta$ where $K' = \{(u, v) | \frac{1}{3} \leq u \leq \frac{2}{3}, |v| = \delta\} \subset K$. Hence it is proved.

Now consider $V_{-\varepsilon,\delta}$ and from (7.1) and (7.6) we have

$$u^{k}(x^{k}) = |z^{k}|y^{k}/|\delta y^{k}|, \ v^{k}(x^{k}) = \delta z^{k}/|z^{k}|$$

and

$$lpha^k(x^k)=y^k/\left|y^k
ight|$$
 , $\ eta^k(x^k)=z^k$

which induce

(7.10)
$$\alpha^{k}(x^{k}) = u^{k}(x^{k})/|u^{k}(x^{k})|, \quad \beta^{k}(x^{k}) = |u^{k}(x^{k})|v(x^{k})|.$$

Define a map of $V_{-\varepsilon,\delta}$ into \mathbb{R}^{n+i} as follows:

$$\begin{split} V_{-\varepsilon,\delta} &- \sum_{k} \{u^{k}, v^{k}\} \ |u^{k}| < 1, \ |v^{k}| = \delta\} \ni x^{k} \to (F(x^{k}), 0) \\ V_{-\varepsilon,\delta} &\sum_{k} \left\{ \{u^{k}, v^{k}\} \ \frac{2}{3} < |u^{k}| < 1, \ |v^{k}| = \delta \right\} \ni x^{k} \\ &\to (F(x^{k}), \ \exp 1/|u^{k}(x^{k})|^{2} - 1) \\ &\sum_{k} \{(u^{k}, v^{k})| \ |u^{k}| < 1, \ |v^{k}| = \delta\} \ni (u^{k}, v^{k}) \to \overline{f}(u^{k}, v^{k}). \end{split}$$

Since for $\frac{2}{3} < |u^k| < 1$ from (7.7), (7.8) and (7.10) it follows that

$$\begin{split} \overline{f}(u^k(x^k), v^k(x^k)) &= f(u^k(x^k), v^k(x^k) \\ &= (F(u^k(x^k)/|u^k(x^k)|, |u^k(x)|v^k(x)), \exp 1/(|u^k(x^k)|^2 - 1)) \\ &= (F(\alpha^k(x^k), \beta^k(x^k)), \exp 1/(|u^k(x^k)|^2 - 1)) \\ &= (F(x^k), \exp 1/(|u^k(x)|^2 - 1)) \end{split}$$

the above definition is well defined.

It has already been proved that the above map embeds $V_{-\varepsilon \ \delta} - \sum_{k} \{(u^{k}, v^{k})|_{\frac{2}{3}} < |u^{k}| < 1, |v^{k}| = \delta\}$ and every $\{(u^{k}, v^{k})||u^{k}| < 1, |v^{k}| = \delta\}$ into \mathbb{R}^{n+i} . It is necessary to show that the image of $\{(u^{k}, v^{k})||u^{k}| < \frac{2}{3}, |v^{k}| = \delta\}$ and the image of $\{(u^{l}, v^{l})||u^{k}| < \frac{2}{3}, |v^{k}| = \delta\}$ and the image of $\{(u^{l}, v^{l})||u^{k}| < \frac{2}{3}, |v^{k}| = \delta\}$ hove no intersection if $k \neq l$.

From (7.8) we have

$$\begin{aligned} |\bar{f}(u^{k}, v^{k}) - \bar{f}^{l}(u^{l}, v^{l})| \ge |f^{k}(u^{k}, v^{k}) - f^{l}(u^{l}, v^{l})| - \eta^{k} - \eta^{l} \\ \eta^{k} = |f^{k}(u^{k}, v^{k}) - h^{k}(u^{k}, v^{k})| \quad \text{and} \\ \eta^{l} = |f^{l}(u^{l}, v^{l}) - h^{l}(u^{l}, v^{l})|. \end{aligned}$$

Since there exists r > 0 such as

$$|f^k(u^k, v^k) - f^l(u^l, v^l)| \ge r$$
 for all k, l $(k \neq l)$

if we take h^k, h^l so that $|f^k - h^k| < \frac{r}{4}$ and $|f^l - h^l| < \frac{r}{4}$ we have

$$|\overline{f}^{k}(u^{k},v^{k})-\overline{f}^{l}(u^{l},v^{l})| \geq \frac{r}{2}.$$

Furthermore it is clear that $(V_{-\varepsilon \ \delta} - \sum \{(u^k, v^k) | \frac{2}{3} < |u^k| < |, |v^k| = \delta\}) \cap \{(u^l, v^l) | \frac{2}{3} < |u^l| < |, |v^l| = \delta\} = \phi$. Hence the theorem is proved.

28

Let f be a cononical function as in theorem 5.1. If $\gamma_0 < c < \varepsilon_1$ it is obvious that $V_c | f = c$ is diffeomorphic with spheres and V_c is regularly embedded into \mathbb{R}^n . Hence by using theorem 7.1 and the induction we have immediately

COROLLARY. Let f be a canonical function as in theorem 5.1. Then $V_c|f=c$ $(\eta_i < c < \eta_{i+1})$ is regularly embedded into R^{n+i} .

8. Embedding of sphere bundles

Let ζ be a sphere bundle consisting of $[E, M, \pi]$, where π is a map from Eonto M^n and whose fibre and group are S^m and O^m where O^m is the *m*-dimensional orthogonal group. Consider (m+1)-plane \overline{E}_p such as $\overline{E}_p \supset \pi^{-1}(P) \bigcap P$. Let $\overline{\pi}$ be the map $\overline{E}_p \rightarrow P$. Then we have (m+1)-plane bundle $\zeta = [\overline{E}, M, \overline{\pi}]$ associated with ζ and we can consider that $\overline{E} \supset M^{\smile}E$. Introduce a Riemannian metric into ζ and denote by $\Upsilon(Q, \pi(Q))$ the geodesic distance on $\overline{E}_{\pi(Q)}$ between Q and $\pi(Q)$.

Let f be a function of M which satisfies 1) and 2) in theorem 5.1. Put

$$f(Q) = f(\pi(Q)) + r^2(\mathbf{Q}, \pi(Q))$$
.

Then f has the same critical points as f. Denote all the critical points of index i by P_k^i $(k=1, 2, \cdots)$. Then we can choose coordinates (x^k, y^k) in a neighborhood of P_k^i so that

$$\overline{f} = a^k - (x_1^k)^2 - \dots - (x_i^k)^2 + (x_{i+1}^k)^2 + \dots + (x_n^k)^2 + (y_1^k) + \dots + (y_{m+1}^k)^2.$$

Hence \overline{f} has the index *i* at P_k^i . Since $\overline{f}(P_k^i) = f(P_k^i)$, \overline{f} satisfies 1) and 2) in theorem 5.1. Putting

$$c > \max_{P \in M} \overline{f}(P)$$

we have $c > \eta_n$. Since the maximum index of the critical points of \overline{f} in \overline{E}^{n+m+1} in *n*, by using corollary of theorem 7.1 we see that $T_c | \overline{f} = c$ is regularly embedded into R^{2n+m+1} .

For an arbitrary point $Q \in E$ we have $Q \in \overline{E}_{\pi(Q)}$. On $\overline{E}_{\pi(Q)}$ we consider ortho $f|\overline{E}_{\pi(Q)}$ -arc κ_Q passing through Q and $\pi(Q)$ where $f|\overline{E}_{\pi(Q)}$ is the restriction of fon $\overline{E}_{\pi(Q)}$. Since on κ_Q there exists a unique point Q' such as

$$r^2(Q', \pi(Q)) = c - f(\pi(Q)) > 0$$
 ,

by $Q \rightarrow Q'$ we get the 1-1 correspondence between E and V_c , which induce $E \simeq V_c$. Hence we have

THEOREM 8.1. A sphere bundle with fibre S^m , group O^m and base space M^n can be regularly embedded in \mathbb{R}^{2n+m+1} .

Hiroshi YAMASUGE

References

- [1] M. Morse, The existence of polar non-degenerate functions on differentiable manifolds. Ann. of Math., 71 (1960).
- [2] ——, The existence of non-degenerate functions on a differentiable manifold. Annali di mathematica, 44 (1960).
- [3] H. Seifert, Variationsrechnung im Grossen.
- [4] H. Whitney, Differentiable manifolds. Annals of math., 37 (1936).
- [5] _____, The self intersections of a smooth *n*-manifold in 2n-space. Annals of math., 45 (1944).
- [6] R. Thom, Les singularites des applications differentiables (Strasbourg).