On embedding of level manifolds and sphere bundles

By Hiroshi Yamasuge

(Received October 10, 1960)

1. Introduction

Let M be a compact, connected differentiable n-manifold of class C^{∞}, with $n>1$. Take a non-degenerate function f of class C^{∞} on M whose existence is assured by [2] and [6]. In a neighborhood of a critical point P of f, we choose coordinates x_{1}, \cdots, x_{n} so that the symmetric matrix

$$
\left\|\frac{\partial^{2} f}{\partial x_{r} \partial x_{s}}\right\|
$$

is diagonal. By the index of the critical point P we mean the number of negative entries in the diagonal matrix. Let $P_{k}\left(k=1,2, \cdots, n_{i}\right)$ be all the critical points of index i of f. Then f is called canonical if the following properties are satisfied :
1)

$$
f\left(P_{1}^{i}\right)=f\left(P_{2}^{i}\right)=\cdots=f\left(P_{\hat{n}_{i}}^{\prime}\right) \quad(i=0, \cdots, n)
$$

2)

$$
\eta_{0}<\boldsymbol{\eta}_{1}<\cdots<\boldsymbol{\eta}_{n}
$$

where $\eta_{i}=f\left(P_{1}^{z}\right)$.
In the present paper the existence of a canonical function will be established. As an application it is proved that a sphere bundle with fibre S^{m} and the base space M can be embedded into the $(2 n+m+1)$-dimensional euclidean space $R^{2 n+m+1}$.

2. Functions and vector fields

The following theorem is proved in [2] and [6].
Theorem 2.1. Given any differentiable function $f: M \rightarrow R$, and given $\varepsilon>0$, there exists a differentiable function $g: M \rightarrow R$ such that
(1) g has at most finite critical points,
(2) at each critical point the determinant of the Jacobian matrix

$$
\left\|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\|
$$

is not 0 ,

$$
\begin{equation*}
|g(x)-f(x)|<\varepsilon,\left|\frac{\partial g(x)}{\partial x_{i}}-\frac{\partial f(x)}{\partial x_{i}}\right|<\varepsilon \tag{3}
\end{equation*}
$$

for all x in M and for all $1 \leqq i \leqq n$, where $x_{i}(i=1, \cdots, n)$ is a local coordinates system in a neighborhood of the critical point.

Since every differentiable manifold always admits a Riemannian metric we can introduce a metric $d s^{2}=g_{i j}(x) d x^{i} d x^{j}$ into M. In this paper a function of class C^{∞} on M will be referred to simply as a function on M. Let f be a function on M satisfying the properties (1) and (2) of theorem 2.1. For a regular point P of f we put $f(P)=c$. Then the subvariety V_{c} defined by the equation $f(x)=c$ is a submanifold of M which is called level manifold. Let T_{P}^{n-1} be the tangent space of V_{c} at P and T_{P}^{n} the tangent space of M at P. Then we have direct sum

$$
T_{P}^{n}=T_{P}^{n-1} \oplus T_{P}^{1}
$$

where T_{P}^{1} is normal to T_{P}^{n-1} with respect to the above Riemannian metric. Taking the unit vector in T_{P}^{1} whose direction coincides with that of increasing of f, we have a vector field X on $M-\sum P_{\nu}$ where $P_{\nu}(\nu=1,2, \cdots)$ are all critical points of f.

If we take a suitable coordinates, f is represented in a neighborhood of a critical point as

$$
\begin{equation*}
f=c-x_{1}^{2}-\cdots-x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2} . \tag{2,1}
\end{equation*}
$$

Now we consider a vector field X in a neighborhood U of a critical point of f. From (2.1) we easily have

$$
X(x)=-\left(\frac{x_{1}}{r} \frac{\partial}{\partial x_{1}}+\cdots+\frac{x_{i}}{r} \frac{\partial}{\partial x_{i}}\right)+\left(\frac{x_{i+1}}{r} \frac{\partial}{\partial x_{i+1}}+\cdots+\frac{x_{n}}{r} \frac{\partial}{\partial x_{n}}\right)
$$

where $r=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
Let n_{i} be the number of the critical points of index i of f. Then the following theorem is well known (see [3]) :

Theorem 2.1. $\sum_{i=0}^{n}(-1)^{i} n_{i}=$ the Euler number of M.

3. Level manifolds

Lemma 3.1. The level manifold V_{c} defined by $f=c$ is diffeomorphic with the level manifold $V_{c^{\prime}}$ defined by $f=c^{\prime}$ if any critical value of f does not exist in the closed interval $\left[c, c^{\prime}\right]$.

Proof. Let x_{1}, \cdots, x_{n} be local coordinates in a neighborhood W of P on V_{c}, and let X be the vector field induced from f. Write $X=\sum f^{i}\left(\partial / \partial x^{i}\right)$. Then f^{i} are differentiable functions since X is differentiable. We consider a system of linear differential equations

$$
\begin{equation*}
\frac{d \varphi_{i}}{d t}=f_{i}\left(\varphi_{1}(t), \cdots, \varphi_{n}(t)\right), i=1, \cdots n \tag{3.1}
\end{equation*}
$$

for the unknown function $\varphi_{1}(t), \cdots, \varphi_{n}(t)$ of one variable t. By a fundamental existence theorem these equations have a unique set of solutions $\varphi_{1}(t ; x), \cdots$,
$\varphi_{n}(t ; x)$, defined for $|t|<\varepsilon$ and $\left|x_{i}\right|<\delta$, which satisfy the initial conditions

$$
\varphi_{i}(0, x)=x_{i} .
$$

The set of curves $\varphi(t ; x)$ is then defined on $U=\left\{\left(x_{1}, \cdots, x_{n}\right)\left|x_{i}\right|<\delta\right\}$ by $\varphi(t ; x)=\left(\varphi_{1}(t ; x), \cdots, \varphi_{n}(t ; x)\right)$. From the construction, it is obvious that $\varphi(t ; x)$ induce X in U. The uniqueness of these curves $\varphi(t ; x)$ which induce X is clear from the fact $\varphi(t ; x)$ must satisfy (3.1). It is also clear from (3.1) that any one of these curves does not intersect the others.

Put $V_{c, c^{\prime}}=\left\{P \mid c \leqq f(P) \leqq c^{\prime}\right\}$. Let $\cup_{U_{j}}$ be a covering of $V_{c, c}$ and write ε_{j} for the above ε corresponding to U_{j}. By the compactness of $V_{c, c^{\prime}}$ we can take $\varepsilon_{0}=\min _{j} \varepsilon_{j}>0$ as a common ε for all U_{j}.

Now we put

$$
P_{k}=\varphi\left(\varepsilon_{j} ; P_{k-1}\right), \quad k=1,2, \cdots,
$$

where P_{0} is an arbitrary point of V_{c}. Then it is clear that the curve $\psi^{\prime}(t ; p)$ defined by

$$
\psi(t ; P)=\varphi\left(t-\varepsilon k ; P_{k}\right) \quad \text { for } \quad \varepsilon k \leqq t \leqq \varepsilon(k+1)
$$

satisfies (3.1), and hence it has the vector field $X \mid \psi$ which is the restriction of X on the curve ψ. From (3.1) we have

$$
\frac{d}{d t} f(\psi(t ; P))=\sum \frac{\partial f}{\partial x_{k}} \frac{d x_{k}}{d t}=\Sigma \frac{\partial f}{\partial x_{k}} \cdot f_{k}(\psi(t ; p))=X f
$$

and hence

$$
f\left(P_{k}\right)-f\left(P_{0}\right)=\int_{0}^{k \varepsilon} X f \geqq k \varepsilon \eta
$$

where $\eta=\min _{P \in V_{c, c^{\prime}}} f(P)$. Since $V_{c} c^{\prime}$ is compact and $f(x)>0$ for an arbitrary point x of $V_{c, c^{\prime}}$, it follows that $\eta>0$. Taking k so that $k \geqq\left(c^{\prime}-c\right) / \varepsilon \eta$, we have $f\left(P_{k}\right) \geqq c^{\prime}$. Hence $\psi(t ; p)$ can arrive at the point P^{\prime} of V. By the correspondence $P \rightarrow P^{\prime}$, we have a deffeomorphism of V_{c} to $V_{c^{\prime}}$. Thus the lemma is proved.

Now we shall consider the differences of topological structure between V_{c} and $V_{c^{\prime}}$ in the case critical points of f exist in $V_{c}, V_{c^{\prime}}$.

Lemma 3.2. If these exists only one critical point of f in $V_{c, c^{\prime}}$, then the difference between the Euler number of V_{c} and that of $V_{c^{\prime}}$ is ± 2 or 0 according as $\operatorname{dim} M$ is odd or even.

Proof. We may suppose without loss of generality that the critical point of f is $x=0$ and that f is written as $-x_{1}^{2}-\cdots-x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2}$ in a neighborhood of $x=0$. Denote by $B(\eta)$ the ball defined by $x_{1}^{2}+\cdots+x_{n}^{2} \leqq \eta$ and put $S_{\eta}=\partial B(\eta)$. Then $V_{-\varepsilon \cap} S(\eta)$ is written as

$$
\begin{aligned}
-x_{1}^{2}-\cdots-x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2} & =-\varepsilon \\
x_{1}^{2}+\cdots+x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2} & =\eta,
\end{aligned}
$$

or

$$
\begin{aligned}
& x_{1}^{2}+\cdots+x_{i}^{2}=\frac{1}{2}(\varepsilon+\eta) \\
& x_{i+1}^{2}+\cdots+x_{n}^{2}=\frac{1}{2}(-\varepsilon+\eta) .
\end{aligned}
$$

Hence $V_{-\varepsilon \cap} S(\eta)$ is diffeomorphic to $S^{i-1} \times S^{n-i-l}$:

$$
V_{-\varepsilon} \cap S(\eta) \simeq S^{i-1} \times S^{n-i-r} .
$$

Since the set of $\left(x_{i+1}, \cdots, x_{n}\right)$ for all η is digeomorphic to ($n-i$)-dimensional ball which we shall denote by B^{n-i}, we have

$$
V_{-\varepsilon} \cap B(\eta) \simeq S^{i-1} \times B^{n-i} .
$$

Similarly we have

$$
V_{\varepsilon} \cap B(\eta) \simeq B^{i} \times S^{n-i-1}
$$

Let g be a function on S^{i-1} which has just one critical point of index 0 and just one caitical point of index $i-1$. Let h be a function in R^{n-i} given by $h=y_{i}^{2}+\cdots+y_{n-i}^{2}$ where y is the coordinate system in R^{n-i}. Put

$$
F=g+h .
$$

Then F is a function in $S^{i-1} \times R^{n-1}$ and it is obvious that F has only two critical points of index 0 and index $i-1$. Take a number c so that $c>\max _{P \in S^{2}-1} g(P)$. Then the subset F^{c} of points $P \in S^{i-1} \times R^{n-i}$ at which $F(P) \leqq c$ is diffeomorphic with $S^{i-1} \times B^{n-i}$. This is shown as follows. For an arbitrary point $P \in S^{i-1}, F \leqq c$ implies $y_{1}^{2}+\cdots+y_{n-i}^{2} \leqq c-g(P)$. Hence $F^{c} \simeq S^{i} \times B^{n-i}$. Let σ be a diffeomorphism of $V_{-\varepsilon \cap} B_{\eta}$ to F^{c}. Then we have a function $F \cdot \sigma$ which is defined in $V_{-\varepsilon}-B_{\eta}$ and constant on $\partial\left(V_{-\varepsilon}-B_{\eta}\right)$. Obviously $F \cdot \sigma$ has two critical points of index 0 and $i-1$. Now we extend to over $V_{-\varepsilon}$ and denote it by F_{1}.

Similarly let g^{\prime} be a function on S^{n-i-1} which has only two critical points of index 0 and index $n-i-1$, and let h be a function in R^{i} such as $h^{\prime}=y_{1}^{2}+\cdots+y_{i}^{2}$. Put

$$
F^{\prime}=g^{\prime}+h^{\prime} .
$$

Then the subset $F^{\prime c}$ of points $P \in R^{i} \times S^{n-i-1}$ at which $F^{\prime}(P) \leqq c$ is diffeomorphic with $B^{i} \times S^{n-i-1}$. Let σ^{\prime} be a diffeomorphism of $V_{\varepsilon} \quad B_{\eta}$ to $F^{\prime c}$. We have a function $F^{\prime} \sigma^{\prime}$ which is defined in $\left.V_{\varepsilon}\right\urcorner B_{\eta}$ and constant on $\partial\left(\begin{array}{ll}V_{\varepsilon} & B_{\eta}\end{array}\right)$, and which has just one critical point of index 0 and just one crictical point of index $n-i-1$. Since $V_{-\varepsilon}-\left(V_{-\varepsilon}-B_{\eta}\right) \simeq V_{\varepsilon}-\left(V_{\varepsilon}-B_{\eta}\right), \quad F_{1}=$ const on $\left(V_{-\varepsilon}-B_{\eta}\right)$, and $F^{\prime} \sigma^{\prime}=$ const on $\partial\left(V_{\varepsilon}-B_{n}\right)$. Consequently we can extend $F^{\prime} \sigma^{\prime}$ to a function F_{2} on V_{ε} so that $n_{k}=\bar{n}_{k}$ where n_{k} or \bar{n}_{k} is the number of critical points of index k of F_{1} in $V_{-\varepsilon}-B_{n}$ or F_{2} in $V_{\varepsilon}-B_{\eta}$. From theorem 2.1 we have

> the Euler number of $V_{-\varepsilon}=\sum(-1)^{k} n_{k}+1+(-1)^{i-1}$, the Euler number of $V_{\varepsilon}=\sum(-1)^{k} \bar{n}_{k}+1+(-1)^{n-i-1}$.

Thus the difference between these numbers is $(-1)^{i-1}-(-1)^{n-i-1}=(-1)^{i-1}$ $\left(1-(-1)^{n}\right)$, and the lemma is proved.

4. Ortho-f-arcs

Let Ω_{0} be the set of critical points of f on M. Then by (3.1) the trajectories orthogonal to the level manifolds of f are well-defined in $M-\Omega_{0}$. These trajectories is celled ortho- f-arcs on M. From now on we suppose that the direction of trajectories accords with that of increasing of f.

For every critical point P of f we choose coordinates x_{1}, \cdots, x_{n} in a neighborhood U_{P} of P so that

$$
f=c_{0}-x_{1}^{2}-\cdots-x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2} .
$$

Furthermore in M we can introduce such a Riemannian metric as $d s^{2}=\sum_{J} d x_{j}^{2}$ in U_{P}. Under the above metric we have

Lemma 4.1. In the above neighborhood of a critical point P, denote by L the set of all ortho- f-arcs stretched into P and by L^{\prime} the set of all ortho- f-arcs issueing out from P. Then $L \cup P \simeq B^{i}$ and $L^{\prime} \cup P \simeq B^{n-i}$.

Proof. Since

$$
f=c_{0}-x_{1}^{2}-\cdots-x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2},
$$

the vector field induced from f is written as

$$
X=\sum_{j} \varepsilon_{j} \frac{x_{i}}{r} \frac{\partial}{\partial x_{j}}, \quad r=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
$$

where $\varepsilon_{j}=-1$ for $1 \leqq j \leqq i$ and $\varepsilon_{j}=1$ for $i<j \leqq n$. Hence every ortho- f-arc satisfies the differential equations

$$
\frac{d x_{j}(t)}{d t}=c(t) \varepsilon_{j} x_{j}(t), \quad 1 \leqq j \leqq n
$$

and the solution of these equations is

$$
x_{j}(t)=c_{j} \exp \varepsilon_{j} c(t)
$$

where t is an arbitrary common parameter on all ortho-f-arcs. Therefore if we put $c_{i+1}=\cdots=c_{n}=0$ and make $c(t) \rightarrow \infty$, it follows that $L \cup P=\left\{x \mid x_{i+1}=\cdots=x_{n}=0\right\}$. Similarly putting $c_{1}=\cdots=c_{i}=0$ and making $c(t) \rightarrow-\infty$, we see that $L^{\prime} \backslash P=\left\{x \mid x_{1}\right.$ $\left.=\cdots=x_{i}=0\right\}$.

Lemma 4.2. Denote by L_{c}^{i} the set of all points which are on the ortho- f arcs stretched into the critical point P, and which satisfies $f(P) \geqq f(x)>c$, then L_{c}^{i} is diffeomophic with i-dimensional ball $B^{i} \subset M$ if and only if there is no critical point in L_{c}^{i}.

Proof. Each ortho-f-arc φ of L_{c}^{i} satisfies the system of linear differential equations

$$
\begin{equation*}
\frac{d \varphi_{i}}{d t}=f_{j}\left(\varphi_{1}(t), \cdots, \varphi_{n}(t)\right), \quad i=1, \cdots, n \tag{4.1}
\end{equation*}
$$

By the fundamental existence theorem the unique set of solutions $\varphi_{i}(t ; x)$ with initial conditions $\varphi_{j}(0, x)=x$ are differentiable with respect to t and x. For $|x|<\delta$ where $\delta>0$ is sufficiently small, by using lemma 4.1 we have $L_{c}^{i} \quad B_{\delta} \simeq B^{i}$. Hence we can uniquely represent $x(|x| \geqq \delta)$ by using t and x_{1}, \cdots, x_{i} satisfying $x_{1}^{2}+\cdots+x_{n}^{2}=\delta$. Thus L_{c}^{i} is diffeomorphic with a i-dimensional ball.

Remark. Denote by $L_{c}^{\prime n-j}$ the set of all points x which lie on the ortho-farcs issuing from a critical point Q of index j and satisfy $c^{\prime}>f(x) \geq f(Q)$. If L_{c}^{i} and ∂L_{c}^{n-j} are in a general position, we have

$$
\operatorname{dim}\left(L_{c}^{i} \cap \partial L_{c}^{n-j}\right)=i-j-1 .
$$

Hence we may suppose that on L_{c}^{i} there is not any critical point of index $j, j \geqq i$.

5. Existence of canonical functions

Theorem 5.1. There esists a function f with the following properties.

1) For all critical points $P_{j}^{i}\left(j=1,2, \cdots n_{i}\right)$ of index i and for all $i, 0 \leqq i \leqq n$
2)

$$
\begin{aligned}
& f\left(P_{1}^{i}\right)=f\left(P_{2}^{i}\right)=\cdots=f\left(P_{n_{i}}^{i}\right), \\
& f\left(P_{1}^{0}\right)<f\left(P_{1}^{1}\right)<\cdots<f\left(P_{n_{i}}^{i}\right) .
\end{aligned}
$$

We shall call a function to be canonical if it satisfies 1) and 2) in theorem 5.1.
Proof. We arrange these critical points in a sequence P_{1}, P_{2}, \cdots so that the index of $P_{\mu} \leqq$ the index of $P_{\mu+1}$. Now we shall prove it by the induction for μ. By certain coordinates in a neighborhood of $P_{0} f$ is written as

$$
f=a+x_{1}^{2}+\cdots+x_{n}^{2} .
$$

Take a function g which satisfies the following conditions:

1) $g(r)=\alpha$ for $0 \leqq r \leqq \delta$ and $g(r)=0$ for $r \geqq 2 \delta$
2) $\quad 0 \leqq g(r) \leqq \alpha, \quad g^{\prime}(r)>0$ and $\alpha+f\left(P_{0}\right)<\min _{Q \in \mathbb{M}} f(Q)$
where $r=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$, and δ is a sufficiently small positive number.
Putting

$$
\tilde{f}=f+g
$$

we have

$$
\tilde{f}\left(P_{0}\right)=f\left(P_{0}\right)+g\left(P_{0}\right)=f\left(P_{0}\right)+\alpha
$$

and

$$
\frac{\partial \tilde{f}}{\partial r}=2 r+g^{\prime}(r)>0 \quad \text { for } \quad 0<r \leqq 2 \grave{o}
$$

Hence \tilde{f} has the same critical points as f and $\tilde{f}\left(P_{0}\right)<\tilde{f}\left(P_{\mu}\right), \mu \geqq 1$.

Now we assume that f satisfies the following conditions.

1) If the index of $P_{\mu}=$ the index of P_{ν} and $\mu, \nu \leqq k$, then $f\left(P_{\mu}\right)=f\left(P_{\nu}\right)$.
2) If the index of $P_{\mu}<$ the index of P_{ν} and $\mu \leqq k$, then $f\left(P_{\mu}\right)<f\left(P_{\nu}\right)$ for all ν.

We shall show that we can modify f so that the critical points are unchangeable and the conditions 1) and 2) are satisfied for $P_{\mu}, \mu \leqq k+1$.

Let L_{k+1} be the set of all ortho- f-arcs stretched into the critical point P_{k+1}. By the remark we may assume that $P_{\mu} \notin L_{k+1}, \mu \geqq k+1$. By lemma 4.2. L_{k+1} is diffeomorphic with a ball $B^{k^{\prime}}, k^{\prime}=$ the index of P_{k+1}. Since along an arbitrary ortho-f-arc the values of f increase in a monotone, $V_{c_{0} \cap} L_{k+1}$ is diffeomorphic to $S^{k^{\prime}}$.

Let Q be an arbitrary point close to L_{k+1} and let Q^{\prime} be the intersecting point of $V_{c_{0}}$ and the ortho- f-arc passing through Q. Consider on $V_{c_{0}}$ the metric induced from M. Then on $V_{c_{0}}$ we can draw the unique geodesic which passes through Q^{\prime} and is orthogonal to $V_{c \cap} L_{k+1}$. Denote by $Q^{\prime \prime}$ the intersecting point of this geodesic and $V_{c_{0}} L_{k+1}$ and by $r(Q)$ the geodesic distance on $V_{c_{0}}$ between Q^{\prime} and $Q^{\prime \prime}$. Since $r(Q) \rightarrow 0\left(Q \rightarrow Q_{0} \in L_{k+1}^{\prime} \quad L_{k+1}^{\prime}\right.$ where L_{k+1}^{\prime} is the set of all ortho-f-arcs issuing from the point P_{k+1}, we may consider that $r\left(Q_{0}\right)=0, Q_{0} \in L_{k+1}$ ${ }^{`} L_{k+1}^{\prime}$. Then we have. $r(Q)=0$ if and only if $Q \in L_{k+1} L_{k+1}^{\prime} \cdot P_{k+1}$.

Denote by $L_{k+1}(c)$ the set of all points Q on L_{k+1}, which satisfies $f\left(P_{k+1}\right)$ $\geq f(Q)>c$.
a) In the case the index of $P_{k}=$ the index of P_{k+1}.

Define a function g such that

$$
\begin{aligned}
g(t) & =0 \text { for } t \leqq f\left(P_{k}\right)-2 \varepsilon, \\
& =f\left(P_{k}\right)-f\left(P_{k+1}\right) \text { for } t \geqq f\left(P_{k+1}\right)-\hat{0}, \\
g^{\prime}(t) & >-1 \text { for all } t,
\end{aligned}
$$

where ε is a sufficiently small positive number so that on $L_{k+1}(c), c=f\left(P_{k}\right)-2 \varepsilon$, there is not any critical point except P_{k+1}.

Furthermore define a function $h(t)$ such that

$$
\begin{aligned}
h(t) & =1 \text { for } t \leqq \delta \\
& =0 \text { for } t \geqq 2 \delta
\end{aligned}
$$

where δ is a small positive number.
Put

$$
\tilde{f}=f(Q)+g(f(Q)) h(r(Q)) .
$$

Since $r\left(P_{k+1}\right)=0$, from 1) and 2) we have

$$
\tilde{f}\left(P_{k+1}\right)=f\left(P_{k+1}\right)+f\left(P_{k}\right)-f\left(P_{k+1}\right)=f\left(P_{k}\right) .
$$

Consider a vector X_{Q} at Q, which is orthogonal to the level manifold $V_{f(Q)}$ defined by $f=f(Q)$. Then we have

$$
\begin{aligned}
X_{Q} f & =X_{Q} f+g^{\prime}(f)\left(X_{Q} f\right) h \\
& =X_{Q} f\left(1+g^{\prime}(f) h\right) .
\end{aligned}
$$

Since $X_{Q} f \neq 0$ for $Q \in U\left(L_{k+1}(c)\right)$ where $U\left(L_{k+1}(c)\right)$ is a sufficiently small neighborhood of $L_{k+1}(c)$, it follows that

$$
X_{Q} f \neq 0 \text { for } Q \neq P .
$$

In a neighborhood of P we have

$$
\tilde{f}(Q)=f(Q)+\text { const },
$$

and hence \tilde{f} has the same critical points as f.
b) In the case the index of $P_{k}<$ the index of P_{k+1}.

Define a function g such that

$$
\begin{aligned}
g(t) & =0 \text { for } t \leqq f\left(P_{k}\right) \\
& =f\left(P_{k}\right)-f\left(P_{k+1}\right)+2 \varepsilon \text { for } t \geqq f\left(P_{k+1}\right)-\varepsilon \\
g^{\prime}(t) & >-1
\end{aligned}
$$

where $f\left(P_{k}\right)+2 \varepsilon=\min _{\mu \geqq k+1} f\left(P_{\mu}\right)$.
Put

$$
\hat{f}(Q)=f(Q)+g(f(Q)) h(r(Q)) .
$$

Then in the same way as a) we see that \hat{f} satisfies 1) and 2) for $\mu \leqq k+1$.
Thus the theorem is proved.

6. Regular embedding

Lemma 6.1. Let

$$
\begin{equation*}
f_{i}\left(x_{1}, \cdots, x_{n}\right)=0 \quad(i=1, \cdots, n+1) \tag{6.1}
\end{equation*}
$$

(f are polynomials) be a set of non-homogeneous equations with indeterminate coefficients and let

$$
\begin{equation*}
\bar{f}_{i}\left(x_{1}, \cdots, x_{n}\right)=0 \quad(i=1, \cdots, n+1) \tag{6.2}
\end{equation*}
$$

be the equations obtained from (6.1) by a given specialization of the coefficients in (6.1). Then a necessary condition for the existence of a solution of the equations (6.2) is $T(\bar{a})=0$ where T is a certain polynomial in the indeterminate coefficients ($a_{1}, a_{2}, \cdots, a_{\nu}$) of f_{i} and ($\bar{a}_{1}, \bar{a}_{2}, \cdots, \bar{a}_{\nu}$) is the given specialization of $\left(a_{1}, a_{2}, \cdots, a_{\nu}\right)$.

Proof. Make f_{i} homogeneous by introducing a new indeterminate x_{0} and replacing x_{k} / x_{0} for x_{k}. Then there is a non-zero resultant form for $n+1$ equations in $n+1$ unknowns such that

$$
T\left(a_{1} \cdots a_{\nu}\right) x_{0}^{\tau} \equiv \sum_{1}^{r} A_{i}\left(x_{0} \cdots x_{n}\right) f_{i}\left(x_{0} \cdots x_{n}\right)
$$

for a suitable integer τ, the A_{j} being polynomials in $x_{0} \cdots x_{n}$ with coefficient $K\left[a_{1}, \cdots, a_{\nu}\right]$. Here let \bar{x} be one of the solutions of (6.2), and we have

$$
T\left(\bar{a}_{1} \cdots \bar{a}_{\nu}\right)=0 .
$$

Lemma 6.2. Let

$$
\begin{equation*}
f_{i}\left(x_{1} \cdots x_{n}\right)=f_{i}\left(y_{1} \cdots y_{n}\right) \quad(i=1, \cdots, 2 n+1) \tag{6.3}
\end{equation*}
$$

be a set of non-homogeneous equations with indeterminate coefficients and let

$$
\begin{equation*}
\bar{f}_{i}\left(x_{i} \cdots x_{n}\right)=\bar{f}_{i}\left(y_{1} \cdots y_{n}\right) \quad(i=1, \cdots, 2 n+1) \tag{6.4}
\end{equation*}
$$

be the equations obtained from (6.3) by a given specialization of the coefficient in (6.3). Then a necessary condition for the existence of a solution of (6.4) such as $x \neq y$ is $R(\bar{a})=0$ where R is some polynomial in the indeterminate coefficients ($a_{1} \cdots a_{\mu}$) of f_{i} and ($\bar{a}_{1} \cdots \bar{a}_{\mu}$) is the specialization of ($a_{1} \cdots a_{\mu}$).

Proof. Put

$$
y_{k}=x_{k}+x_{k}^{\prime} \quad(k=1, \cdots, n)
$$

and suppose $x_{1}^{\prime} \neq 0$ then we have

$$
\left(f\left(x+x^{\prime}\right)-f(x)\right) / x_{1}^{\prime}=0 \quad(i=1, \cdots, 2 n+1) .
$$

Here we can consider that $x_{1} \cdots x_{n} 1 / x_{1}^{\prime} x_{2}^{\prime} \cdots x_{n}^{\prime}$ are unknowns. Let R be the resultant form for $\left(f_{i}\left(x+x^{\prime}\right)-f_{i}(x)\right) / x_{1}^{\prime}$ and from lemma 6.1 we have immediately

$$
R(\bar{a})=0 .
$$

Let $f_{\nu}^{\prime}, f_{\nu^{\prime}}^{\prime}(\nu=1 \cdots m)$ be arbitrary differentiable functions on a compact manifold K and $\left\{U_{r}\right\}$ be a covering of K and $w_{1}^{r} \cdots w_{\mu}^{r}$ be local coordinates of U_{r}. Define $d_{K}\left(f^{\prime}, f^{\prime \prime}\right)$ as the following:

$$
d_{K}\left(f^{\prime}, f^{\prime \prime}\right)=\max _{P \in K}\left\{\left.\sum_{\nu}\left|f_{\nu}^{\prime}(p)-f_{\nu}^{\prime \prime}(P)+\sum_{\mu, \nu, r}\right| \frac{\partial f_{\nu}^{\prime}}{\partial w_{\mu}^{p}}(P)-\frac{\partial f_{\nu}^{\prime \prime}}{\partial w_{\mu}^{r}}(P) \right\rvert\,\right\} .
$$

Lemma 6.3. If by $y_{\nu}=f_{\nu}^{\prime}$ a compact manifold K is regularly embedded into R^{m} then there exists a positive number such that K is always regularly embedded into R^{m} by $y_{\nu}=f_{\nu}^{\prime \prime}$ only if $d\left(f^{\prime}, f^{\prime \prime}\right)<\eta$.

Proof. By the hypothesis there exists $\delta>0$ as follows.
1)

$$
\min _{P \in K,, Q \in K-B \delta(P)}\left|f^{\prime}(P)-f^{\prime}(Q)\right|>\eta^{\prime}>0
$$

where $B_{\delta}(P)$ is a geodesic ball with radius δ having P as its center.
2) For some $s(0 \leqq s \leqq m-\mu)$

$$
\left|\frac{\partial\left(f_{1}^{\prime} \cdots f_{\mu-1}^{\prime} f_{\mu+s}^{\prime}\right.}{\partial\left(w_{1}^{(o)} \cdots w_{\mu}^{(\prime)}\right)}\right|>\eta^{\prime \prime}>0
$$

where $w_{1}^{(r)} \cdots w_{L^{(r)}}^{(a r e}$ the coordinates of U_{r}.

From

$$
\begin{aligned}
\min _{P \in K, Q \in K-B \delta(P)}\left|f^{\prime \prime}(P)-f^{\prime \prime}(Q)\right|>\sum_{P \in K,} \min _{Q \in K-B \delta(P)}\left|f^{\prime}(P)-f^{\prime}(Q)\right| \\
\quad-\max _{P \in K}\left|f^{\prime}(P)-f^{\prime \prime}(P)\right|-\max _{Q \in K}\left|f^{\prime}(Q)-f^{\prime \prime}(Q)\right| \\
\left(\max \left|f^{\prime}(P)-f^{\prime \prime}(P)\right|+\max \left|f^{\prime}(Q)-f^{\prime \prime}(Q)\right| \rightarrow 0 \quad(\eta \rightarrow 0)\right),
\end{aligned}
$$

and

$$
\begin{gathered}
\left|\frac{\partial\left(f_{1}^{\prime \prime} \cdots f_{\mu-1}^{\prime \prime} f_{\mu+s}^{\prime \prime}\right)}{\partial\left(w_{1} \cdots w_{\mu}\right)}\right| \geq\left|\frac{\partial\left(f_{1}^{\prime} f_{\mu-1}^{\prime} f_{\mu+s}^{\prime}\right)}{\partial\left(w \cdots w_{\mu}\right)}\right| \\
-\left|\frac{\partial\left(f_{1}^{\prime \prime} \cdots f_{\mu-1}^{\prime \prime} \ell f_{\mu+s}^{\prime \prime}\right)}{\partial\left(w_{1} \cdots w_{\mu}\right)}-\frac{\partial\left(f_{1}^{\prime} \cdots f_{\mu-1}^{\prime} f_{\mu+s}^{\prime}\right)}{\partial\left(w_{1} \cdots w_{\mu}\right)}\right| \\
\left(\left|\frac{\partial\left(f_{1}^{\prime \prime} \cdots f_{\mu-1}^{\prime \prime} f_{\mu+s}^{\prime \prime}\right)}{\partial\left(w_{1} \cdots w_{\mu}\right)}-\frac{\partial\left(f \cdots f_{\mu+1}^{\prime} f_{\mu+s}^{\prime \prime}\right)}{\partial\left(w_{1} \cdots w_{\mu}\right)}\right| \rightarrow 0 \quad(\eta \rightarrow 0)\right),
\end{gathered}
$$

If η is sufficiently small, it follows immediately that

$$
\begin{gathered}
\min _{P \in K, Q \in K-B \delta(P)}\left|f^{\prime}(P)-f^{\prime \prime}(Q)\right|>\frac{\eta^{\prime}}{2}, \\
\left|\frac{\partial\left(f_{1}^{\prime \prime} \cdots f_{\mu-1}^{\prime \prime} f_{\mu+s}^{\prime \prime}\right)}{\partial\left(w_{1} \cdots w_{\mu}\right)}\right|>\frac{\eta^{\prime \prime}}{2} .
\end{gathered}
$$

Hence the lemma is proved.

7. Regular embedding of level manifold

From now on for the sake of simplicity we write

$$
\begin{aligned}
\left(x_{1}^{k}, \cdots, x_{i}^{k}\right) & =y^{k}, \quad\left(x_{i+1}^{k}, \cdots, x_{n}^{k}\right)=z^{k}, \\
\left(u_{1}^{k}, \cdots, u_{i}^{k}\right) & =u^{k}, \quad\left(v_{1}^{k}, \cdots, v_{n-i}^{k}\right)=v^{k}, \\
\sum_{j=1}^{k}\left(x_{j}^{k}\right)^{2} & =\left(x^{k}\right)^{2}=\left(y^{k}\right)^{2}+\left(z^{k}\right)^{2}, \\
\sum_{p=1}^{i}\left(u_{p}^{k}\right)^{2} & =\left(u^{k}\right)^{2}, \sum_{b=1}^{n-i}\left(v_{\square}^{k}\right)^{1}=\left(v^{k}\right)^{2}
\end{aligned}
$$

Choose coordinates x^{k} in o neighborhood of a critical point P_{k} of index i so that f is represented as

$$
f=-c^{k}-\left(y^{k}\right)^{2}+\left(z^{k}\right)^{2} .
$$

Here we assume $c^{k}=0$ and $V_{-\varepsilon}$ is written as

$$
\left.V_{-\varepsilon} \mid-\left(y^{k}\right)^{2}+\left(z^{k}\right)^{2}\right)=-\varepsilon .
$$

Put

$$
\begin{array}{ll}
G_{k}(\varepsilon)=\left\{\left(y^{k}, z^{k}\right) \mid\left(y^{k}\right)^{2} \delta,\right. & \left.z^{k}=0\right\}, \\
H_{k}(\delta)=\left\{\left(u^{k}, v^{k}\right) \mid\left(u^{k}\right)^{2}<1,\right. & \left.\left(v^{k}\right)^{2}=\delta^{2}\right\},
\end{array}
$$

and identify (u^{k}, v^{k}) and (y^{k}, z^{k}) by

$$
\begin{align*}
& y^{k}=u^{k}\left(\delta^{2}+\varepsilon /\left(u^{k}\right)^{2}\right)^{1 / 2} \tag{7.1}\\
& z^{k}=\left|u^{k}\right| v^{k} \quad\left(\left|u^{k}\right|^{2}=\left(u^{k}\right)^{2}\right) .
\end{align*}
$$

Then from $\left(V_{-\varepsilon}-\sum_{k} G_{k}(\varepsilon)\right)^{\llcorner } \sum_{k} H_{k}(\delta)$ we have a manifold denoted as

$$
V_{-\varepsilon, \delta}=\left(V_{-\varepsilon}-\sum_{k} G_{k}\right) \bigcup_{\sigma_{\varepsilon}} \sum H_{k}(\delta)
$$

where $\sigma_{\mathrm{\varepsilon}}$ represents the identifying (7.1).
Lemma 7.1. $\left.\left.\left(V_{-\varepsilon}-\sum_{k} G_{k}(\varepsilon)\right) \bigcup_{\sigma \varepsilon} \sum H_{k}\right) \grave{\delta}\right) \simeq\left(V_{-\varepsilon^{\prime}}-\sum G_{k}\left(\varepsilon^{\prime}\right)\right) \underset{\sigma \varepsilon^{\prime}}{\bigcup} \sum H_{k}(\delta)$.
Proof. It is sufficient for the purpose to prove the lemma when $\left|\varepsilon-\varepsilon^{\prime}\right|$ is sufficiently small. If we correspond $\left(u^{k}, v^{k}\right) \in V_{-\varepsilon, \delta}$ to $\left(u^{k}, v^{k}\right) \in V_{-\varepsilon^{\prime}, \delta}$, from (7.1) it induces the correspondence between $\left(V_{-\varepsilon}-\sum G_{k}(\varepsilon)\right) \quad B_{k}\left(2 \delta^{2}+\varepsilon\right)^{1 / 2}$ and $\left(V_{-\varepsilon^{\prime}}-\sum G_{k}\left(\varepsilon^{\prime}\right)\right) \quad B_{k}\left(2 \delta^{2}+\varepsilon^{\prime}\right)^{1 / 2}$ such as

$$
\begin{align*}
& x^{\prime k}=x^{k}+h^{k}\left(\varepsilon, \varepsilon^{\prime}, x^{k}\right) \quad\left(x \in \sigma_{\varepsilon} H_{k}(\delta), x^{\prime} \in \sigma_{\varepsilon^{\prime}} H_{k}(\delta)\right), \tag{7.2}\\
& h^{k}, \partial h_{j}^{k} / \partial x_{l}^{k} \rightarrow 0 \quad\left(\left|\varepsilon-\varepsilon^{\prime}\right| \rightarrow 0\right)
\end{align*}
$$

where $h^{k}=\left(h_{1}^{k}, \cdots, h_{n}^{k}\right)$. On the other hand at every point $x \in V_{-\varepsilon}-\sum \bar{B}_{k}\left(\delta^{2} / 2+\varepsilon\right)^{1 / 2}$ $\left(G_{k}(\varepsilon) \subset B_{k}\left(\partial^{2} / 2+\varepsilon\right)^{1 / 2}\right)$ we draw the geodesic orthogonal to $V_{-\varepsilon}$. Let x^{\prime} be the intersecting point of the geodesic and $V_{-\varepsilon^{\prime}}$. Then the correspondence $x \rightarrow x^{\prime}$ is written in $B_{k}\left(2 \delta^{2}+\varepsilon^{\prime}\right)^{1 / 2}$ as

$$
\begin{align*}
& x^{\prime k}=x^{k}+g^{k}\left(\varepsilon, \varepsilon^{\prime}, x^{k}\right), \tag{7.3}\\
& g^{k}, \partial g_{j}^{n} / \partial x_{i}^{k} \rightarrow 0 \quad\left(\left|\varepsilon-\varepsilon^{\prime}\right| \rightarrow 0\right),
\end{align*}
$$

where $g_{k}=\left(g_{1}^{k}, \cdots, g_{n}^{k}\right)$.
Define a function $\varphi\left(x^{k}\right)$ such as

$$
\varphi\left(x^{k}\right)= \begin{cases}0 & \left(x^{k}\right)^{2} \geqq 2 \delta^{2}+\varepsilon \\ 1 & \left(x^{k}\right)^{2} \leqq \delta^{2} / 2+\varepsilon\end{cases}
$$

Let $r(a, b)$ be the geodesic distance (with respect to the metric on $V_{-\varepsilon^{\prime}}$ induced from M) on $V_{-\varepsilon^{\prime}}$ between a and $b \quad\left(a, b \in V_{-\varepsilon^{\prime}}\right)$. Moreover let $x^{\prime \prime k}$ be the point on the geodesic passing through $x^{k}+g^{k}$ and $x^{k}+h^{k}\left(x^{k}+g^{k}, x^{k}+h^{k} \in V_{-\varepsilon^{\prime}}\right)$, which satisfies

$$
\frac{d\left(x^{k}+g^{k}, x^{\prime \prime k}\right)}{d\left(x^{k}+g^{k}, x^{k}+h^{k}\right)}=\varphi\left(x^{k}\right)
$$

where $x^{\prime \prime k}$ is between $x^{k}+g^{k}$ and $x^{k}+h^{k}$ on the geodesic. Then we have immediately

$$
\begin{equation*}
x_{j}^{\prime \prime k}=x_{j}^{k}+g_{j}^{k}+\psi_{j}^{k}\left(x^{k}\right)\left(k_{j}^{k}-g_{j}^{k}\right) \tag{7.4}
\end{equation*}
$$

where $\psi_{j}^{k}=0$ for $\left(x^{k}\right)^{2} \geqq 2 \delta^{2}+\varepsilon$ and $\psi_{j}^{k}=1\left(x^{k}\right)^{2} \leqq \delta^{2} / 2+\varepsilon$. Now we define the correspondence between $V_{\varepsilon, \delta}$ and $V_{-\varepsilon^{\prime}, \delta}$ as follows.

$$
\begin{gathered}
V_{-\varepsilon, \delta} \ni\left(u^{k}, v^{k}\right) \rightarrow\left(u^{k}, v^{k}\right) \in V_{-\varepsilon^{\prime}, \delta} \\
V_{-\varepsilon} \frown\left(B_{k}\left(2 \delta^{2}+\varepsilon\right)^{1 / 2}-\bar{B}_{k}\left(\delta^{2} / 2+\varepsilon\right)^{1 / 2}\right) \ni x^{k} \\
\rightarrow x^{\prime / k} \in V_{-\varepsilon^{\prime}} .
\end{gathered}
$$

From (7.2), (7.3) and (7.4) this correspondence is $1-1$ when $\left|\varepsilon^{\prime}-\varepsilon\right|$ is sufficiently small and it induces $V_{-\varepsilon, \delta} \simeq V_{-\varepsilon^{\prime}, \delta}$.

Lemma. 7, 2.

$$
V_{\varepsilon} \simeq V_{-\varepsilon, \delta} .
$$

Proof. From lemma 7.1 it is sufficient to prove $V_{\varepsilon^{\prime}, \delta^{2}} \simeq V_{-\varepsilon^{\prime}, \delta}$ for small $\varepsilon^{\prime}>0$. An arbitrary point $x^{k} \in V_{\varepsilon^{\prime}} \delta^{2} \cap \bar{B}_{k}\left(2 \delta^{2}+\varepsilon^{\prime} \delta^{2}\right)^{1 / 2}$ is written as

$$
\begin{align*}
& y^{k}=u^{k} \delta \quad\left(\left(u^{k}\right)^{2} \leqq 1\right), \tag{7.5}\\
& z^{k}=v^{k}\left(\left(u^{k}\right)^{2}+\varepsilon^{\prime}\right)^{1 / 2} \quad\left(\left(v^{k}\right)^{2}=\delta^{2}\right) .
\end{align*}
$$

Hence from (7.1) the correspondence $V_{z^{\prime} \delta^{2} \ni x=(y(u, v), z(u, v)) \rightarrow x^{\prime}=(u, v), ~(u)}$ $\in V_{-\varepsilon^{\prime}, \delta}$ is written in $B_{k}\left(2 \tilde{\delta}^{2}+\delta^{2} \varepsilon^{\prime}\right)^{1 / 2}-\bar{B}_{k}\left(\delta^{2} / 2+\varepsilon^{\prime} \delta^{2}\right)^{1 / 2}$ as

$$
\begin{aligned}
& x_{k}^{\prime}=x^{k}+h^{k}\left(\varepsilon^{\prime}, x_{k}\right), \\
& h, \partial h_{j}^{k} / \partial x_{i}^{k} \rightarrow 0 \quad\left(\varepsilon^{\prime} \rightarrow 0\right) .
\end{aligned}
$$

Define a function $\varphi\left(x^{k}\right)$ such as

$$
\varphi\left(x^{k}\right)= \begin{cases}0 & \left(x^{k}\right)^{2} \geqq \delta\left(1+\varepsilon^{\prime}\right)^{1 / 2} \\ 1 & \left(x^{k}\right)^{2} \leqq \delta\left(\frac{1}{2}+\varepsilon^{\prime}\right)^{1 / 2},\end{cases}
$$

and by the same way as that in the proof of lemma 7.1 we easily $V_{\varepsilon^{\prime} \delta^{2}} \simeq V_{-\varepsilon^{\prime}, \delta}$.
Theorem 7.1. If a level manifold V_{c} in M^{n} is regularly embedded into R^{n+i-1} and in $V_{c, c^{\prime}}$ there exists no other critical point than index i, then $V_{c^{\prime}}$ can be regularly embedded into R^{n+i}.

Proof. By the way similar to the proof of the theorem (5.1) we may suppose that for all critical points $P_{k}(k=1,2, \cdots) f\left(P_{k}\right)=0$. Hence we have $V_{\varepsilon} \simeq V_{c}$ and $V_{-\varepsilon} \simeq V_{c^{\prime}}$. Put

$$
\begin{array}{ll}
y_{k}=\alpha^{k}\left(\left(\beta^{k}\right)^{2}+\varepsilon\right)^{1 / 2} & \left(\alpha^{k}\right)^{2}=1 \tag{7.6}\\
z^{k}=\beta^{k} & \left(\beta^{k}\right)^{2}<1
\end{array}
$$

where $\quad \alpha^{k}=\left(\alpha_{1}^{k} \cdots \alpha_{i}^{k}\right)$ and $\beta^{k}=\left(\beta_{1}^{k} \cdots \beta_{n-i}^{k}\right)$.
Then (7.6) induces $-y^{2}+z^{2}=-\varepsilon$.
Let F be a regular embedding map of $V_{-\varepsilon}$ into R^{n+i-1}. Then for $B_{k}\left((2+\varepsilon)^{1 / 2}\right)$ $F\left(V_{-\varepsilon}\right)$ is represented by (α^{k}, β^{k}) as

$$
X^{k}=F^{k}\left(\alpha^{k}, \beta^{k}\right), \quad F^{k}=\left(F_{1}^{k}, \cdots, F_{n+i-1}^{k}\right),
$$

where $X^{k}=\left(X_{1}^{k} \cdots X_{n+i-1}^{k}\right)$ is the coordinates of R^{n+i-1}. Define maps $f^{k}(u, v)$ from $0<\left|u^{k}\right|<1,\left|v^{k}\right| \leqq 1$ into R^{n+i} as the following:

$$
f^{k}\left(u^{k}, v^{k}\right)=\left(F^{k}\left(u^{k} /\left|u^{k}\right|,\left|u^{k}\right| v^{k}\right), \quad \exp \left(1 /\left(\left(u^{k}\right)^{2}-1\right)\right) \quad\left|u^{k}\right|<1 .\right.
$$

To simplify the notations for a while we abbreviate index k. From

$$
f(u, v)=f\left(u^{\prime}, v^{\prime}\right) \quad\left(|u|,\left|u^{\prime}\right|<1\right)
$$

we have

$$
u /|u|=u^{\prime} /\left|u^{\prime}\right|, \quad|u| v=\left|u^{\prime}\right| v^{\prime}, \quad|u|=\left|u^{\prime}\right|
$$

and hence we have

$$
u=u^{\prime}, \quad v=v^{\prime} .
$$

Put

$$
\alpha_{1}=\frac{u_{1}}{|u|}, \cdots, \alpha_{i}=\frac{u_{i}}{|u|}, \quad \beta_{1}=v_{1}, \cdots, \beta_{n-i}=v_{n-i} .
$$

If $u_{t} \neq 0(1 \leqq t \leqq i)$ we can use $|u|, \alpha_{1}, \cdots, \hat{\alpha}_{t}, \cdots, \alpha_{i}, \beta_{1}, \cdots, \beta_{n-i}$ as local coordinates in $\left\{(u, v) \mid u^{2}<1, v^{2} \leqq 1\right\}$. Then we see

$$
\frac{\partial\left(f_{1} \cdots f_{n-1} f_{n+s-1} f_{n+i}\right)}{\partial\left(\alpha_{1} \cdots \hat{\alpha}_{t} \cdots \alpha_{i} \beta_{1} \cdots \beta_{n-i}|u|\right)}=-\frac{2|u|}{\left(u^{2}-1\right)^{2}}{ }^{\frac{1}{u^{2}-1}} \frac{\partial\left(F_{1} \cdots F_{n-1} F_{n+s-1}\right)}{\partial\left(\alpha_{1} \cdots \hat{\alpha}_{t} \cdots \alpha_{i} \beta_{1} \cdots \beta_{n-i}\right)} .
$$

Hence the Jacobian of the right hand is not zero for some s. Thus by f the set $K=\{u, v)\left|\frac{1}{3} \leqq|u|<1,|v| \leqq 1\right\}$ is regularly embedded into R^{n+i}, and hence for K there exists η in lemma 6.3.

Let $h_{\nu}(u, v)$ be polynomials and put

$$
\begin{gathered}
\bar{f}(u, v)=f(u, v)+\varphi(u)(h(u, v)-f(u, v)) \\
\left(h=\left(h_{1} \cdots h_{n+i}\right)\right)
\end{gathered}
$$

where

$$
\begin{aligned}
\varphi(u) & =1 & & |u| \leqq \frac{1}{3} \\
& =0 & & |u| \geqq \frac{2}{3} .
\end{aligned}
$$

Now consider the equations

$$
\begin{equation*}
\left.\frac{\partial\left(h_{1} \cdots h_{n-1} h_{n+s-1}\right)}{\partial\left(u_{1} \cdots u_{i} v_{1} \cdots v_{n-i}\right)_{v=0}}\right]_{=0}=0 \quad(s=1, \cdots, i+1) \tag{7.9}
\end{equation*}
$$

with unknowns u_{1}, \cdots, u_{i}. By lemma 1 there exist polynomials h_{ν} such that $d_{K}(\bar{f}, f)<\eta$ and (7.9) has no solution. Hence for a given $\left.u|u| \leqq \frac{1}{3}\right)$ there exist $s=s(u)$ and $\delta(u)$

$$
\frac{\partial\left(h_{1} \cdots h_{n-1} h_{n+s-1}\right)}{\partial\left(u_{1} \cdots u_{i} v_{1} \cdots v_{n-i}\right)} \neq 0 \quad \text { for } \quad|v| \leqq \delta(u) .
$$

Put $\delta=\min _{|u| \leqq \frac{1}{3}} \delta(u)$ and we easily see $\delta>0$. Furthermore from lemma (6.2) we can take h_{ν} so that the equations $h_{\nu}(u, 0)=h_{\nu}\left(u^{\prime}, 0\right)(\nu=1, \cdots, n+i ; i<n)$ have no solution and $\min _{u,\left|u-u^{\prime}\right|>\delta}\left|h(u, 0)-h\left(u^{\prime}, 0\right)\right|>0$. Hence if v, v^{\prime} is sufficiently small we also have $\min _{u,\left|u-u^{\prime}\right|>\delta}\left|h(u, v)-h\left(u^{\prime}, v^{\prime}\right)\right|>0$. Hence by $h\left\{(u, v)\left||u| \leqq \frac{1}{3},|v|=\delta\right\}\right.$ is regularly embedded where δ is sufficiently small.

Now we shall show that $\{(u, v)||u|<1,|v|=\delta\}$ is regularly embedded by $\bar{f}(u, v)$ into R^{n+i}. It is clear for $|u| \leqq \frac{1}{3}$ or $\frac{2}{3} \leqq|u|<1$ from $\bar{f}=h$ or $\bar{f}=f$. It is
clear for $\frac{1}{3} \leqq|u| \leqq \frac{2}{3}$ by lemma 6.3 since $d_{K^{\prime}}(f, \bar{f}) \leqq \eta$ where $K^{\prime}=\left\{(u, v) \left\lvert\, \frac{1}{3} \leqq u \leqq \frac{2}{3}\right.\right.$, $|v|=\delta\} \subset K$. Hence it is proved.

Now consider $V_{-\varepsilon, \delta}$ and from (7.1) and (7.6) we have

$$
u^{k}\left(x^{k}\right)=\left|z^{k}\right| y^{k} /\left|\delta y^{k}\right|, \quad v^{k}\left(x^{k}\right)=\delta z^{k} /\left|z^{k}\right|
$$

and

$$
\alpha^{k}\left(x^{k}\right)=y^{k} /\left|y^{k}\right|, \quad \beta^{k}\left(x^{k}\right)=z^{k}
$$

which induce

$$
\begin{equation*}
\alpha^{k}\left(x^{k}\right)=u^{k}\left(x^{k}\right) /\left|u^{k}\left(x^{k}\right)\right|, \quad \beta^{k}\left(x^{k}\right)=\left|u^{k}\left(x^{k}\right)\right| v\left(x^{k}\right) . \tag{7.10}
\end{equation*}
$$

Define a map of $V_{-\varepsilon, \delta}$ into R^{n+i} as follows:

$$
\begin{aligned}
& \left.V_{-\varepsilon, \delta}-\sum_{k}\left\{u^{k}, v^{k}\right)\left|u^{k}\right|<1,\left|v^{k}\right|=\delta\right\} \ni x^{k} \rightarrow\left(F\left(x^{k}\right), 0\right) \\
& V_{-\varepsilon, \delta} \cap \sum_{k}\left\{\left\{u^{k}, v^{k}\right) \frac{2}{3}<\left|u^{k}\right|<1,\left|v^{k}\right|=\delta\right\} \ni x^{k} \\
& \rightarrow\left(F\left(x^{k}\right), \exp 1 /\left|u^{k}\left(x^{k}\right)\right|^{2}-1\right) \\
& \sum\left\{\left(u^{k}, v^{k}\right)\left|\left|u^{k}\right|<1,\left|v^{k}\right|=\delta\right\} \ni\left(u^{k}, v^{k}\right) \rightarrow \bar{f}\left(u^{k}, v^{k}\right) .\right.
\end{aligned}
$$

Since for $\frac{2}{3}<\left|u^{k}\right|<1$ from (7.7), (7.8) and (7.10) it follows that

$$
\begin{aligned}
\bar{f}\left(u^{k}\left(x^{k}\right), v^{k}\left(x^{k}\right)\right) & =f\left(u^{k}\left(x^{k}\right), v^{k}\left(x^{k}\right)\right. \\
& =\left(F\left(u^{k}\left(x^{k}\right) /\left|u^{k}\left(x^{k}\right)\right|,\left|u^{k}(x)\right| v^{k}(x)\right), \exp 1 /\left(\left|u^{k}\left(x^{k}\right)\right|^{2}-1\right)\right) \\
& =\left(F\left(\alpha^{k}\left(x^{k}\right), \beta^{k}\left(x^{k}\right)\right), \exp 1 /\left(\left|u^{k}\left(x^{k}\right)\right|^{2}-1\right)\right) \\
& =\left(F\left(x^{k}\right), \exp 1 /\left(\left|u^{k}(x)\right|^{2}-1\right)\right)
\end{aligned}
$$

the above definition is well defined.
It has already been proved that the above map embeds $V_{-\varepsilon} \delta^{-} \sum_{k}\left\{\left.\left(u^{k}, v^{k}\right)\right|_{\frac{2}{3}}\right.$ $\left.<\left|u^{k}\right|<1,\left|v^{k}\right|=\delta\right\}$ and every $\left\{\left(u^{k}, v^{k}\right)\left|\left|u^{k}\right|<1,\left|v^{k}\right|=\delta\right\}\right.$ into R^{n+i}. It is necessary to show that the image of $\left\{\left(u^{k}, v^{k}\right)\left|\left|u^{k}\right|<\frac{2}{3},\left|v^{k}\right|=\delta\right\}\right.$ and the image of $\left\{\left(u^{l}, v^{l}\right) \mid\right.$ $\left.\left|u^{l}\right|<\frac{2}{3},\left|v^{v}\right|=\delta\right\}$ hove no intersection if $k \neq l$.

From (7.8) we have

$$
\begin{aligned}
& \left|\bar{f}\left(u^{k}, v^{k}\right)-\bar{f}^{l}\left(u^{l}, v^{l}\right)\right| \geqq\left|f^{k}\left(u^{k}, v^{k}\right)-f^{l}\left(u^{l}, v^{l}\right)\right|-\eta^{k}-\eta^{l} \\
& \eta^{k}=\left|f^{k}\left(u^{k}, v^{k}\right)-h^{k}\left(u^{k}, v^{k}\right)\right| \text { and } \\
& \eta^{l}=\left|f^{l}\left(u^{l}, v^{l}\right)-h^{l}\left(u^{l}, v^{l}\right)\right| .
\end{aligned}
$$

Since there exists $r>0$ such as

$$
\left|f^{k}\left(u^{k}, v^{k}\right)-f^{l}\left(u^{l}, v^{l}\right)\right|>r \text { for all } k, l \quad(k \neq l)
$$

if we take h^{k}, h^{l} so that $\left|f^{k}-h^{k}\right|<\frac{r}{4}$ and $\left|f^{l}-h^{l}\right|<\frac{r}{4}$ we have

$$
\left|\bar{f}^{k}\left(u^{k}, v^{k}\right)-\bar{f}^{l}\left(u^{l}, v^{l}\right)\right|>\frac{r}{2} .
$$

Furthermore it is clear that $\left(V_{-\varepsilon}-\sum\left\{\left(u^{k}, v^{k}\right)\left|\frac{2}{3}<\left|u^{k}\right|<\left|,\left|v^{k}\right|=\delta\right\}\right) \cap\left\{\left(u^{l}, v^{l}\right) \left\lvert\, \frac{2}{3}\right.\right.\right.\right.$ $<\left|u^{l}\right|<\left|,\left|v^{l}\right|=\delta\right\}=\phi$. Hence the theorem is proved.

Let f be a cononical function as in theorem 5.1. If $\eta_{0}<c<\varepsilon_{1}$ it is obvious that $V_{c} \mid f=c$ is diffeomorphic with spheres and V_{c} is regularly embedded into R^{n}. Hence by using theorem 7.1 and the induction we have immediately

Corollary. Let f be a canonical function as in theorem 5.1. Then $V_{c} \mid f=c$ ($\boldsymbol{\eta}_{i}<c<\boldsymbol{\eta}_{i+1}$) is regularly embedded into R^{n+i}.

8. Embedding of sphere bundles

Let ζ be a sphere bundle consisting of $[E, M, \pi]$, where π is a map from E onto M^{n} and whose fibre and group are S^{m} and O^{m} where O^{m} is the m-dimensional orthogonal group. Consider ($m+1$)-plane \bar{E}_{p} such as $\bar{E}_{p} \supset \pi^{-1}(P) \cap P$. Let $\bar{\pi}$ be the map $\bar{E}_{p} \rightarrow P$. Then we have ($m+1$)-plane bundle $\zeta=[\bar{E}, M, \bar{\pi}]$ associated with ζ and we can consider that $\bar{E} \supset M \cup E$. Introduce a Riemannian metric into ζ and denote $\operatorname{by} r(Q, \pi(Q))$ the geodesic distance on $\bar{E}_{\pi(Q)}$ between Q and $\pi(Q)$.

Let f be a function of M which satisfies 1) and 2) in theorem 5.1. Put

$$
\bar{f}(Q)=f(\pi(Q))+r^{2}(Q, \pi(Q)) .
$$

Then f has the same critical points as f. Denote all the critical points of index i by $P_{k}^{i}(k=1,2, \cdots)$. Then we can choose coordinates (x^{k}, y^{k}) in a neighborhood of P_{k}^{i} so that

$$
\begin{gathered}
\bar{f}=a^{k}-\left(x_{1}^{k}\right)^{2}-\cdots-\left(x_{i}^{k}\right)^{2}+\left(x_{i+1}^{k}\right)^{2}+\cdots+\left(x_{n}^{k}\right)^{2} \\
\\
+\left(y_{1}^{k}\right)+\cdots+\left(y_{m+1}^{k}\right)^{2} .
\end{gathered}
$$

Hence \bar{f} has the index i at P_{k}^{i}. Since $\bar{f}\left(P_{k}^{i}\right)=f\left(P_{k}^{i}\right), \bar{f}$ satisfies 1) and 2) in theorem 5.1. Putting

$$
c>\max _{P \in \mathbb{M}} \bar{f}(P)
$$

we have $c>\eta_{n}$. Since the maximum index of the critical points of \bar{f} in \bar{E}^{n+m+1} in n, by using corollary of theorem 7.1 we see that $T_{c} \mid \bar{f}=c$ is regularly embedded into $R^{2 n+m+1}$.

For an arbitrary point $Q \in E$ we have $Q \in \bar{E}_{\pi(Q)}$. On $\bar{E}_{\pi(Q)}$ we consider ortho$f \mid \bar{E}_{\pi(Q)}$-arc κ_{Q} passing through Q and $\pi(Q)$ where $f \mid \bar{E}_{\pi(Q)}$ is the restriction of f on $\bar{E}_{\pi(Q)}$. Since on κ_{Q} there exists a unique point Q^{\prime} such as

$$
r^{2}\left(Q^{\prime}, \pi(Q)\right)=c-f(\pi(Q))>0
$$

by $Q \rightarrow Q^{\prime}$ we get the $1-1$ correspondence between E and V_{c}, which induce $E \simeq V_{c}$. Hence we have

Theorem 8.1. A sphere bundle with fibre S^{m}, group O^{m} and base space M^{n} can be regularly embedded in $R^{2 n+m+1}$.

References

[1] M. Morse, The existence of polar non-degenerate functions on differentiable manifolds. Ann. of Math., 71 (1960).
[2] -, The existence of non-degenerate functions on a differentiable manifold. Annali di mathematica, 44 (1960).
[3] H. Seifert, Variationsrechnung im Grossen.
[4] H. Whitney, Differentiable manifolds. Annals of math., 37 (1936).
[5] , The self intersections of a smooth n-manifold in $2 n$-space. Annals of math., 45 (1944).
[6] R. Thom, Les singularites des applications differentiables (Strasbourg).

