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1. Introduction
Let M be a compact, connected differentiable n-manifold of class C*, with
n>1. Take a non-degenerate function f of class C* on M whose existence is
assured by [2] and [6]. In a neighborhood of a critical point P of f, we choose
coordinates x,, *--, x, so that the symmetric matrix

P
%, 0%s

is diagonal. By the index of the critical point P we mean the number of negative
entries in the diagonal matrix. Let P, (k=1,2,---,#n;) be all the critical points
of index 7 of f. Then f is called canonical if the following properties are
satisfied :

1 FPD) = F(Ph) = - = f(Py) (i=0,,n)
2) Ny < 91 < < 9y

where 7;=f(P1).

In the present paper the existence of a canonical function will be established.
As an application it is proved that a sphere bundle with fibre S and the base
space M can be embedded into the(2xz+ m - 1)-dimensional euclidean space R?*+™+1,

2. Functions and vector fields
The following theorem is proved in [2] and [6].
TueoreMm 2.1. Given any differentiable function f:M— R, and given ¢ >0,

there exists a differentiable function g: M — R such that

(1) g has at most finite critical points,
(2) at each critical point the determinant of the Jacobian matrix

| 2r
0x;0x;
is not 0,
3 PO OISR (AP

for all x in M and for all 1<i<#u, where x; (=1,---,n) is a local coordinates
system in a neighborhood of the critical point.
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Since every differentiable manifold always admits a Riemannian metric we
can introduce a metric ds®’=g;;(x)dx'dx’ into M. In this paper a function of
class C* on M will be referred to simply as a function on M. Let f be a func-
tion on M satisfying the properties (1) and (2) of theorem 2.1. For a regular
point P of f we put f(P)=c. Then the subvariety V. defined by the equation
f(x)=c is a submanifold of M which is called level manifold. Let T%* be the
tangent space of V. at P and T% the tangent space of M at P. Then we have
direct sum

2=T'®Th

where T} is normal to 7% ' with respect to the above Riemannian metric.
Taking the unit vector in 7% whose direction coincides with that of increasing
of f, we have a vector field X on M—> P, where P, (v=1,2,--) are all critical
points of f.

If we take a suitable coordinates, f is represented in a neighborhood of a

critical point as
2,1 f=c—xf— - —af+aiat+ o +aE.

Now we consider a vector field X in a neighborhcod U of a critical point of
f. From (2.1) we easily have

0= (3 s 2 Bl i )

where 7= (x3+ -+ +x2)v2
Let #; be the number of the critical points of index ¢ of f. Then the
following theorem is well known (see [3]):

TueoreMm 2. 1. g.‘) (—1)in;=the Euler number of M.

3. Level manifolds
Lemma 3.1. The level manifold V. defined by f=c is diffeomorphic with

the level manifold V. defined by f=c¢’ if any critical value of f does not exist
in the closed interval [c, ¢’].

Proof. Let x,,-,x, be local coordinates in a neighborhood W of P on V.,
and let X be the vector field induced from f. Write X= > fi (8/0x%). Then f¢
are differentiable functions since X is differentiable. We consider a system of
linear differential equations

3.1) %" = Fl (), ou)), i =1, m,

for the unknown function ¢,(¢), -, ¢,(¢) of one variable {. By a fundamental
existence theorem these equations have a unique set of solutions ¢,(¢;x),--,
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©a(t; %), defined for |#]< e and |#;]<d, which satisfy the initial conditions
0:(0, x) = x;.

The set of curves ¢(¢;x) is then defined on U={(#, -, x,)|x:;|<d} by
o(t:x)=(o.(t; %), -, ¢,(¢t;x)). From the construction, it is obvious that ¢(Z;%)
induce X in U. The uniqueness of these curves ¢(#;x) which induce X is clear
from the fact ¢(¢;x) must satisfy (3.1). It is also clear from (3.1) that any one
of these curves does not intersect the others.

Put V. «={Plc<f(P)<c¢’}. Let YU; be acovering of V. . and write ¢; for
the above e corresponding to U;. By the compactness of V. . we can take
e,=mine; >0 as a common ¢ for all Uj.

J

Now we put

Pk = ¢(Ej;Pk_1> ’ k= 1, 2, Trry
where P, is an arbitrary point of V.. Then it is clear that the curve ¢{¢; p) defined
by
Ot P) = o(t—ck; P) for eb<t<e(k+1)

satisfies (3.1), and hence it has the vector field X|¢ which is the restriction of
X on the curve ¢. From (3.1) we have

a . p))y = S1.0f dxe _ 5 OF AN

ai f(Pt; P)) L@xk i Zé’xk Je(Q(t;p)) = Xf
and hence

FPO—=fB) = Xf = ke

where 7= vain f(P). Since V. » is compact and f(x) >0 for an arbitrary point
eVe, ¢/

x of V. ~, it follows that >0. Taking k& so that k=(c¢’—c)/ey, we have
F(Pp)=c’. Hence ¢(¢;p) can arrive at the point P’ of V. By the correspondence
P—P’, we have a deffeomorphism of V. to V.. Thus the lemma is proved.

Now we shall consider the differences of topological structure between V.
and V. in the case critical points of f exist in V. V..

Lemma 3.2. If these exists only one critical point of f in Ve, e, then the
difference between the Euler number of V. and that of V. is +2 or 0 according
as dim M is odd or even.

Proof. We may suppose without loss of generality that the critical point of
fis x=0 and that f is written as —x}— -+ —22+3,,+ --- +42 in a neighborhood
of x=0. Denote by B(») the ball defined by 3+ - +42<% and put S,=0B(3).
Then V_.~S(y) is written as

—xi— o = Aat  Fal = —e
abt o attadat o tal =1,
or
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A e Fal =3ty
At o Fad = H(—ety).

Hence V_.~S(») is diffeomorphic to Si—1xS?—i~2:
V_e~S(y) = Si—tx Sr—i—7,

Since the set of (x;44,-,%,) for all » is digeomorphic to (#—i)-dimensional
ball which we shall denote by B”~¢, we have

V_e~B(y) = STt X B*~%,
Similarly we have
VenB() = Bi X S*—i 1,

Let g be a function on Si~! which has just one critical point of index 0 and
just one caitical point of index i—1. Let % be a function in R*™¢ given by
h=9}+ --- +3%_; where y is the coordinate system in R*~, Put

F=g+th.

Then F is a function in S X R”™* and it is obvious that F has only two critical
points of index 0 and index 7—1. Take a number ¢ so that ¢> ré)al)_cl g(P). Then
the subset F°¢ of points P€Si—ixXR”~ at which F(P)<c is (ﬁfffeomorphic with
Si—tx B"i, This is shown as follows. For an arbitrary point P€ S, F<c im-
plies »i+ - +9i ,<c—g(P). Hence F°=SixB"i, Let ¢ be a diffeomorphism
of V_¢~B, to F°. Then we have a function F-o which is defined in V_. - B,
and constant on 0(V_.—B,). Obviously F-¢ has two critical points of index 0
and i—1. Now we extend to over V_. and denote it by Fj.

Similarly let g’ be a function on $”¢~! which has only two critical points of
index 0 and index #—¢—1, and let # be a function in R’ such as #'=y{+ --- +3%.
Put

F'=g+n.

Then the subset F’¢ of points P€ RixS?~i at which F/(P) <c is diffeomorphic
with B:xS»~#71, Let ¢’ be a diffeomorphism of V. B, to F’*. We have a function
F’¢’ which is defined in V.- B, and*constant on (V. B,), and which has just
one critical point of index 0 and just one crictical point of index n—7i—1. Since
Vee—(V_¢-By)=Ve—(V:-B,), Fi=const on (V_-B,), and F’¢’=const on
0(Ve~B,). Consequently we can extend F’¢’ to a function F, on V. so that
nr=np where n; or 7 is the number of critical points of index % of F; in V_.—B,
or F, in Ve—B,. From theorem 2.1 we have

the Euler number of V_e =2 (—1)*n,+1+(—1)i1,
the Euler number of Ve =3 (—1)%up+1+(—1)»—i"1,
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Thus the difference between these numbers is (—1)'—(—1)?7i'=(—-1)""
(1—(—=1)*), and the lemma is proved.

4. Ortho-f-arcs

Let 2, be the set of critical points of f on M. Then by (3.1) the trajectories
orthogonal to the level manifolds of f are well-defined in M—£,. These trajec-
tories is celled ortho-f-arcs on M. From now on we suppose that the direction
of trajectories accords with that of increasing of f.

For every critical point P of f we choose coordinates x,,-,%, in a neigh-
borhood Up of P so that

f=co—xt— - —x3+ala+ o +a2.
Furthermore in M we can introduce such a Riemannian metric as ds?= >dx3 in
7
Up. Under the above metric we have

Levma 4.1. In the above neighborhood of a critical point P, denote by L
the set of all ortho-f-arcs stretched into P and by L’ the set of all ortho-f-arcs
issueing out from P. Then L-"P=B and L'~ P=B""i,

Proof. Since
f =2~ o —xitatat o i,
the vector field induced from f is written as

; 0
X = %]ej% o5 r=(a3+ - )

where e;=—1 for 1<j<i; and e¢;=1 for i<j<un Hence every ortho-f-arc

satisfies the differential equations

BHD — cyeuit), 1<,

and the solution of these equations is
x;(t) = cjexpejc(t)

where ¢ is an arbitrary common parameter on all ortho-f-arcs. Therefore if we

put ¢;y1= -+ =¢,=0 and make ¢(¢) — oo, it follows that L~ P={x|x;1,= --- =x,=0}.
Similarly putting ¢;= --- =¢;=0 and making ¢(¢) — —co, we see that L'~ P={x|x,
N ::xZ:O}_

Lemma 4.2, Denote by L! the set of all points which are on the ortho-f-
arcs stretched into the critical point P, and which satisfies f(P)>f(x)>¢, then
L? is diffeomophic with i-dimensional ball BiCC M if and only if there is no
critical point in LZ.
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Proof. Each ortho-f-arc ¢ of L! satisfies the system of linear differential
equations

4.1 Wi Fia ), 0@, i =1

By the fundamental existence theorem the unique set of solutions ¢;(#;x) with
initial conditions ¢;(0, x) =x are differentiable with respect to ¢# and x. For |x|<d
where 6 >0 is sufficiently small, by using lemma 4.1 we have L! Bs;=B‘. Hence
we can uniquely represent x(|x|=>0) by using ¢ and x,,---,x; satisfying
23+ -+ +x2=0. Thus L? is diffeomorphic with a i-dimensional ball.

Remark. Denote by L7 the set of all points x which lie on the ortho-f-
arcs issuing from a critical point @ of index j and satisfy ¢ >f(x)>=f(Q). If L
and L%’ are in a general position, we have

dim (L{~0L%) =i—j—1.

Hence we may suppose that on L there is not any critical point of index 7, 7 >i.

5. Existence of canonical functions
TueoreMm 5.1. There esists a function f with the following properties.
1) For all critical points P} (j=1,2, - n;) of index i and for all 7, 0<i<n
fPY) = f(P}) = - = f(PL),
2) FPY) < f(PY) < - < Sf(PE).

We shall call a function to be canonical if it satisfies 1) and 2) in theorem 5. 1.

Proof. We arrange these critical points in a sequence P, P,, - so that the
index of P,< the index of P.i;. Now we shall prove it by the induction for
#. By certain coordinates in a neighborhood of P, f is written as

f=atad+ -+,

Take a function g which satisfies the following conditions :

1)) gry=a for 0<r<d and g(»r) =0 for »r=20
2) 0<gn<La, g»)>0 and a+f(P,) <gni]fllf(Q)
1S

where 7= (x}+ -+ +12)2, and ¢ is a sufficiently small positive number.

Putting

F=r+g
we have
F(Py) = f(P)+g(Py) = f(Py)+a

and

%J;. =2r+g'(r >0 for 0<r=<25.

Hence 7 has the same critical points as f and F(P,) < F(Pu), u=>1.
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Now we assume that f satisfies the following conditions.

1) If the index of P.=the index of P, and g, v <k, then f(P,.)=f(P,).

2) If the index of P,< the index of P, and u<k, then f(P.)<f(P,) for
all v.

We shall show that we can modify f so that the critical points are unchange-
able and the conditions 1) and 2) are satisfied for P., #<k+1.

Let Ly, be the set of all ortho-f-arcs stretched into the critical point Ppy;.
By the remark we may assume that Pué¢ Lpy,, #=>k+1. By lemma 4.2. L, is
diffeomorphic with a ball B¥, ¥’ =the index of Pj+,. Since along an arbitrary ortho-
f-arc the values of f increase in a monotone, V. ~ L+ is diffeomorphic to S¥,

Let @ be an arbitrary point close to L+, and let @ be the intersecting point
of V. and the ortho-f-arc passing through @. Consider on V. the metric
induced from M. Then on V. we can draw the unique geodesic which passes
through @’ and is orthogonal to V,~Ly+:. Denote by @ the intersecting point
of this geodesic and V., L+, and by »(Q) the geodesic distance on V., between
Q" and @”. Since »(Q)—>0 (@ >Q,€ Ly, Lj.1 where L;,; is the set of all ortho-
f-arcs issuing from the point P.;), we may consider that »(Q,)=0, Q€ Ly
“ Ljs1. Then we have. #»(Q)=0 if and only if @ €Ls+,"~ Lis1~ Pris- :

Denote by Lgp+:(c) the set of all points @ on Lpy,, which satisfies f(Pr+1)
=f(Q) >c.

a) In the case the index of P,=the index of Pj.,.

Define a function g such that

gt) =0 for t<f(Pp)—2e,
= f(Pp)—f(Pr+1) for t=f(Pr+1)—0,
g’(t) >—1 for all ¢,

where ¢ is a sufficiently small positive number so that on Lg+:(¢), c=f(Pp)—2e,
there is not any critical point except Pp+:.
Furthermore define a function 4(#) such that

h(t) =1 for t<90
=0 for t=20

where ¢ is a small positive number.
Put

F=r@+g(f(@)h(r(Q)).
Since #(Pr+1)=0, from 1) and 2) we have
F(Pri1) = f(Prer) + F(Pr)—f(Prss) = f(Pr) .

Consider a vector Xgo at @, which is orthogonal to the level manifold Vs
defined by f=£(Q). Then we have
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Xof = Xof+g'(f)(Xef)h
= Xof(1+g’(Hn) .
Since Xof==0 for Q € U(Lp+:(c)) where U(L,y.(c)) is a sufficiently small neigh-
borhood of L;4.(c), it follows that

Xof=0 for Q=+P.

In a neighborhood of P we have
7(Q) = F(Q)+const,

and hence 7 has the same critical points as f.
b) In the case the index of P,< the index of Ppi;.
Define a function g such that

g#) =0 for ¢t=<f(Py)
= f(PR)—f(Ppr)+2e for = f(Pp)—e
g >-1
where f(Py)+ 2€=“I§221f(PM).
Put
Q) = F(@) +g(F(@) h(r(Q)) .

Then in the same Way‘as a) we see that 7 satisfies 1) and 2) for u<k+1.
Thus the theorem is proved.

6. Regular embedding
LemMma 6.1, Let

(6.1) fi(xly"'yxn>:0 (Z':l;;n_]_l)

(f are polynomials) be a set of non-homogeneous equations with indeterminate

coefficients and let
(6.2) Filx, %) =0 (G =1, ,n+1)

be the equations obtained from (6.1) by a given specialization of the coefficients
in (6.1). Then a necessary condition for the existence of a solution of the equa-
tions (6.2) is T(@)=0 where T is a certain polynomial in the indeterminate
coefficients (a,, ., -+, a,) of f; and (&, @, ,a,) is the given specialization of

(ah Az, " ,aV>'

Proof. Make f; homogeneous by introducing a new indeterminate x, and
replacing x./x, for x,. Then there is a non-zero resultant form for »-+1 equations
in #+1 unknowns such that

(@, - @) 15 = 31 Aty -+ ) Filko -+ 1)
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for a suitable integer r, the A; being polynomials in x, - %, with coefficient
Klai,,a,]. Here let X be one of the solutions of (6.2), and we have

T(a, - ay) =0.
LemMa 6.2. Let
(6.3) ity x0) = filyr o 90) G =1,-,2n+1)
be a set of non-homogeneous equations with indeterminate coefficients and let
(6.4) filxi %) = Filyn - 9a) (G =1,-+,2n+1)

be the equations obtained from (6.3) by a given specialization of the coefficient
in (6.3). Then a necessary condition for the existence of a solution of (6.4)
such as x==y is R(a)=0 where R is some polynomial in the indeterminate
coefficients (a@; - @u) of f; and (&, -+ @.) is the specialization of (a; - au).

Proof. Put
.yk:xk"'xl/e (k=133n>

and suppose x7=F0 then we have
(fa+a)—f(x))/x1=0 (G =1, ,2n+1).

Here we can consider that x; ---x, 1/x{ x5 - x}, are unknowns. Let R be the
resultant form for (f;(x+x")—fi(x))/x{ and from lemma 6.1 we have immediately

R(a) =0.

Let f4, 3’ (v=1--m) be arbitrary differentiable functions on a compact
manifold K and {U,} be a covering of K and w7 --- w} be local coordinates of U,.
Define dx(f’, f/) as the following:

dx(f', ) = max (S -1 P+ 3 |28 py -0 (p) |}
PeK v My v, 7 Wy, .

o
ow},

Lemma 6.3. If by y,=f} a compact manifold K is regularly embedded into
R™ then there exists a positive number such that K is always regularly embedded
into R™ by y,=f4’ only if d(f’, f//)<x.

Proof. By the hypothesis there exists 6 >0 as follows.
1 min )lf’(P)—f’(Q)i >7'>0

PeK,QeK—-BS(P

where Bs(P) is a geodesic ball with radius ¢ having P as its center.
2) For some s(0<s<m—u)

a(fif;i—l f}i+s{>77//>0

SO - wd)

where w{” --- w{” are the coordinates of U,.
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From

min lF7(P)=f"(@1>  min L (P)—F (@)}
PeK,QeK-B5(P) PEK, Qe K. ~B§(P)
— max L f(P)—f"(P)| — max |Lf (@) —5"(@)]
(max | f"(P)—f"(P) |+ max|f"(@—f"(@| -0 (3 —>0)),

and
OCSY -+ fila flhs

= | O flea S

a(wl ...w“) a<w .“le‘)
O - fR VLA B  fiea fhas)
OCws -~ wy) W, wy)
DS~ flla Fit) _0CF floa Fire) | B
(’ Fw - wy) a<w1fk--lw$ 0 G 0)>,

If » is sufficiently small, it follows immediately that

min |f/(P)-f"(Q) |>g’ ,

PEK,QeK-BS(P

OUFY! = Fila it |~ 7"
0wy~ wy) 2.

Hence the lemma is proved.

7. Regular embedding of level manifold
From now on for the sake of simplicity we write
(at, o, xh) = 9%, (xha, -, 2h) =2,
(uf,"‘,ulf):uk, (Df:'“,vﬁ—i>:vk,

ST(a) = () = (5924 (M2,

3y = @, b = o

Choose coordinates x* in o neighborhood of a critical point P, of index i so that
f is represented as

f=—ch=(yF)+ ("),
Here we assume ¢*=0 and V_. is written as
Vel = (38 +(2*)?) = —e.

Put

Gr(e) = {(y% 20) [ (9% =0, 2k =0},

Hy(0) = {(uF, v®) | (u®)? <1, (*)* =7}, B
and identify (%, v*) and (3%, 2%) by
(7.1 YR = uk(0%+e/(uk)2)?

gk = Juklok (Juk|? = (u*)?).



On embedding of level manifolds and sphere bundles 25
Then from (V—g'_; Gk(e))L};ij(é‘) we have a manifold denoted as
Voes = (V—s_; Gr) U 2 Hi(6)
o

where o, represents the identifying (7.1).

Lemma 7.1 (V—s‘“; Gr(e)) U X Hp)d) = (Voo —21Gr(e)) U 20 Hi(0) .

oo

Proof. It is sufficient for the purpose to prove the lemma when [e—¢’| is
sufficiently small. If we correspond (u* v*)€V_es to (u* v¥)€V_y 5, from
(7.1) it induces the correspondence between (V_.—>)Gr(e)) Bi(20*+¢)*? and
(V_e—31Gr(e")) Bp(26%+¢)Y? such as

(7.2) x'F = xk+hE(e, &, x%) (x€ 0. Hy(0), &' € oo Hy(0)),
hE, Ont/0x% — 0 (|e—e’| —0)

where k%= (k%, -, k). On the other hand at every point x € V_.—3 B,(8?/2+¢)Y?
(Grle) T Br(6%/2+¢)?) we draw the geodesic orthogonal to V_.. Let x” be the
intersecting point of the geodesic and V_,.. Then the correspondence x-—x’ is
written in Br(20*+¢)%% as

(7.3) 2k = gkt gkle, ¢, xF),
gk, 0gh/0xf >0 (Je—¢'|—0),

where g, = (gf, -, gb).
Define a function ¢(x*) such as

0 (xk)2=>28+¢,

kY —
(") {1<ﬂyg¥m+a

Let 7(a, b) be the geodesic distance (with respect to the metric on V_, induced
from M) on V_. between ¢ and b (a,b€V_). Moreover let x”* be the point
on the geodesic passing through x*+ g* and x*+74* (x%+ gk, x*+h*€ V_.), which
satisfies

where 1% is between x*+g% and x*+74* on the geodesic. Then we have
immediately

(7.4) x)'h = xf+ g+ (k) (R —gh)
where ¢%=0 for (x*%)2>20?+¢ and ¢i=1 (x%)2<6*/2+e. Now we define the cor-
respondence between Vs and V_. ;s as follows.

V_e, s (uF, v%) — (uk, %) € V_g 5
Ve~ (Bi(20%+ )2~ By(0°/2+¢)"/2) 3 x*
—>xREV .
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From (7.2), (7.3) and (7.4) this correspondence is 1—1 when |¢'—¢]| is sufficiently
small and it induces V_¢ s=V_¢,s.

Lemma. 7 2. e == V_e,s.
Proof. From lemma 7.1 it is sufficient to prove Ve s2==V_¢ ; for small
¢’>0. An arbitrary point x*€ Vers2~ Bp(20°+¢0%)"2 is written as
(7.5) yE=uko ((u*)2<L1),
2k = Z)k( (uk>2+5/>1/z ((vk)z — 52) .
Hence from (7.1) the correspondence V523 x=(y(u,v), 2(u,v)) —x"=(u,v)
€ V_e,5 is written in Br(202+6%¢")/2— B,(8%/2+¢ 0°)/2 as
X = xF+hE(e, xp) ,
h, OB:/0xF =0 (& —0).
Define a function ¢(x*) such as

0 (#%)2=0(1+¢e)2

vlat) = {1 ()2 < 33+,

and by the same way as that in the proof of lemma 7.1 we easily Vesz=V_¢ 5.

TueoreMm 7.1. If a level manifold V., in M” is regularly embedded into
R#+i71 and in V. ~ there exists no other critical point than index ¢, then V- can
be regularly embedded into R"*.

Proof. By the way similar to the proof of the theorem (5.1) we may sup-
pose that for all critical points P, (k=1, 2, ) f(Pr)=0. Hence we have V.=V,
and V_e=V. Put

(7.6) ye = ak((BF)+e)2 (k) =1
zk = Bk (BF? <1
where ak = (af--af) and BF= (B} BE).

Then (7.6) induces —j*+22=—=.
Let F be a regular embedding map of V_. into R**:~', Then for B.((2+¢)¥?)
F(V_.) is represented by (a*, %) as

Xk = Fk(‘xk: Bk> ’ Fk = (Ff» o nyH»i—l) ’

where X*=(X} -+ Xk,;,1) is the coordinates of R**i~, Define maps f*(u, ») from
0<|uk|<1, |v*]<1 into R”*i as the following:

Sr(uk, vF) = (F*(u*/|uk|, |u*|o®), exp (1/((wF)*—1)) |uk|<1.
To simplify the notations for a while we abbreviate index k. From

fCu,v) = f,v) (lul, |o'| <D
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we have
w/lul =/, lulv="|ulv, |ul =|d|

and hence we have

Put
U = Ui — e - .
al ]u| ’ ,CZ, Iu‘ ’ Bl Ul, ’ﬁn—z Un—z
If u;=F0 (1<¢<i) we can use |ul|, ay, -, &, ,a, B, ,Bn: as local coordi-
nates in{(u, v)|#*< 1, *<1}. Then we see
1
a(fl "’fn—] fn+s—1 Sn+i) - 2|u| u*—1 O(F, - Fpy Frpis—1)

0l e a; By Baglul)  @—17° Bl By Bui) -
Hence the Jacobian of the right hand is not zero for some s. Thus by f the
set K={u,v)| < |u|<1, |v|<1} is regularly embedded into R”*{, and hence for
K there exists 7 in lemma 6. 3.

Let %,(u,v) be polynomials and put

FQu, 0) = fu, v)+ o(u) (h(u, v)—f(u, v))
(h = (hy hatd))

where
o) =1 lul <3
—0 Jul=%
Now consider the equations
a(hl ~ has hn+s—1) _ _ R
(7.9) s v1~--vn_,~>v]*0 (s=1,-,i+1)

=0

with unknowns u,,--,u;. By lemma 1 there exist polynomials %, such that
dx(f, f)<7% and (7.9) has no solution. Hence for a given u|u|<3%) there exist
s=s(u) and 0(u)

O - hus hnts—1) () for o] < 6(u).
Oty s V1 Vn—ys)

Put 6:‘m21 d(u) and we easily see 6 >0. Furthermore from lemma (6.2) we
ul=3%

can take /%, so that the equations 4,(u, 0)=h,(u’,0) (v=1,---,n+i; i<n) have
no solution and | min‘> |A(u, 0)—h(u’, 0)]>0. Hence if v, v is sufficiently small
u, |\ u—u'|>3d
we also have \ rnin‘> [ h(u, v)—h(u',v")| >0. Hence by & {(u,v)||ul<3, |v| =0}
u,\u—u'|>d
is regularly embedded where ¢ is sufficiently small.

Now we shall show that {(«,v)||u|<1, |v] =0} is regularly embedded by
f(u,v) into R*+i. Tt is clear for |u|<% or 3<|u|<1 from f=h or f=f. It is
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clear for 3<|u|<% by lemma 6.3 since dx'(f, f) <% where K'={(u,v)|3<u <3,
|lv]| =0} K. Hence it is proved.

Now consider V_g s and from (7.1) and (7.6) we have

uk(xk) = |2k|yk/[Gy%|, vk(xF) = G2k/ |2
and
ak(xk) = yk/|yk|, Br(xk) = 2k

which induce
(7.10) ak(xk) = uk(a®)/|uk(xF)|, BE(x*) = |uk(x*)|v(xF) .

Define a map of V_. ; into R**¢ as follows:

V—e,s—kE{uk,vk> luk| <1, |0¥| = 0} 3 2% — (F(x*), 0)

Vor,sm Sk 09 5 <t <1, o8] = o) 520
k
— (F(x*%), exp 1/ |u*(x*)|*—1)
SI{Cuk, v9)| |uk| <1, |0k = 8} (uk, v*) — F(uk, v%).
Since for 3<|u*|<1 from (7.7), (7.8) and (7.10) it follows that
F(uk(xk), vB(x%)) = F(uk(x*) , v*(x*)
= (F(uk(x®)/|uk(x®)], |uk(2)|0v*(x)), exp 1/(|u*(x*¥)[*~1))
= (F(ak(z*) , BE(x*)), exp 1/(|u*(x%)|?—1))
= (F(«%), exp 1/(|u*(x)]*—1))
the above definition is well defined.

It has already been proved that the above map embeds V_. 5—§ {(uk, v*)|3
<|u*|< 1, |v*]| =06} and every {(u*, v*)||u*|<1, |v*| =0} into R”*i. It is necessary
to show that the image of {(u*, v*)||u*|< %, |v¥| =0} and the image of {(u? v%)|
{ut|< %, |v*]| =0} hove no intersection if k=:=/.

From (7.8) we have

| f Cuk, ) — Fut, 07) | = fr(u, v%) — FHut, ) | — gk —nt
7k = | fE(uk, v*) —h*(u®, v*)| and
7t = |fu’, o) R (u?, vh)] .

Since there exists » >0 such as

| FECu®, %) —fF1(u?, v)| >r for all k1 (k==1)

if we take #%, h* so that ]fk—hk|<£ and 1f’—h’|<% we have
|F Rt oF) —Frut, 00| >

Furthermore it is clear that (V_g s—> {(u%, v*)|3<|u®|<|, |0%|=0}) ~{(u?, v")]|3
<|u*|<|, |v?| =06}=¢. Hence the theorem is proved.
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Let f be a cononical function as in theorem 5.1. If %,<c<e it is obvious
that V.|f=c is diffeomorphic with spheres and V. is regularly embedded into R”.
Hence by using theorem 7.1 and the induction we have immediately

CoroLLARY. Let f be a canonical function as in theorem 5.1. Then V.|f=c
(9;<<c<7i+1) is regularly embedded into R”*i,

8. Embedding of sphere bundles

Let ¢ be a sphere bundle consisting of [E, M, =], where = is a map from E
onto M" and whose fibre and group are S™ and O” where O™ is the m-dimensional
orthogonal group. Consider (m+1)-plane E, such as E,Dn'(P)~P. Let 7 be
the map E, —P. Then we have (m+1)-plane bundle ¢=[E, M, 7] associated with
¢ and we can consider that EOMYE. Introduce a Riemannian metric into ¢ and
denote by (@, #(Q)) the geodesic distance on E.g, between @ and n(Q).

Let f be a function of M which satisfies 1) and 2) in theorem 5.1. Put

F@Q = f@(@)+(Q, n(Q)) .

Then f has the same critical points as f. Denote all the critical points of index
i by Pj (k=1,2,--). Then we can choose coordinates (x*, y*) in a neighborhood
of P} so that
F=ar—= ()= o — (b (ah)?+ o+ (ah)?
FD+ o+ (Phe)?s

Hence f has the index ¢ at Pj. Since f(P)=f(P)), f satisfies 1) and 2) in
theorem 5.1. Putting

¢ >max f(P)
PecMu

we have ¢>7,. Since the maximum index of the critical points of f in E#+m+!
in », by using corollary of theorem 7.1 we see that T.|f=c is regularly embedded
into R##+m+1

For an arbitrary point Q € E we have Q€ Exo>. On E .o, we consider ortho-
FlExe>arc kg passing through @ and n(Q) where f|E.o> is the restriction of f
on E.q). Since on ko there exists a unique point @ such as

(@, n(Q) = c—f(=(@)) >0,

by @ —Q we get the 1-1 correspondence between E and V., which induce E=V,.
Hence we have

TaEOREM 8.1. A sphere bundle with fibre S”, group O™ and base space M”
can be regularly embedded in R*#*m+,
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