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I. Introduction

Let M be a compact, connected differentiable /^-manifold of class C ,  with 
/^>1. Take a non-degenerate function /  of class C" on M  whose existence is 
assured by [2] and [6]. In a neighborhood of a critical point P  of / ,  we choose 
coordinates Xi,- -  ,Xn so that the symmetric matrix

d V
dXrdXs

is diagonal. By the index of the critical point P  we mean the number of negative 
entries in the diagonal matrix. Let Pu (k = l , 2 ,  ,rii) be all the critical points 
of index i of / .  Then /  is called canonical if the following properties are 
satisfied:

1) A P D = A P D  = -  =AP^D a  = Ory,n)

2) < ^ n

where y] i =APi ) -
In the present paper the existence of a canonical function will be established. 

As an application it is proved that a sphere bundle with fibre and the base 
space M  can be embedded into the(2;^ + m+l)-dimensional euclidean space

2. Functions and vector fields 

The following theorem is proved in [2] and [6].

T h e o r e m  2.1. Given any differentiable function f : M —>R, and given e>0, 
there exists a differentiable function g : M - ^ R  such that

(1) g  has at most finite critical points,
(2) at each critical point the determinant of the Jacobian matrix

dxidxj

is not 0,
dgjx) __dAx) 

dxi dxi

for all in M and for all l < i ^ n ,  where Xi = ' ,n)  is a local coordinates 
system in a neighborhood of the critical point.



Since every differentiable manifold always admits a Riemannian metric we 
can introduce a metric ds^= gij{x) dx^dx^ into M, In this paper a function of 
class C  on M  will be referred to simply as a function on M, Let /  be a func­
tion on M  satisfying the properties (I) and (2) of theorem 2.1. For a regular 
point P of /  we put f { P ) = c ,  Then the subvariety Vc defined by the equation 
f ( x ) = c  is a submanifold of M  which is called level manifold. Let be the 
tangent space of Vc at P  and Tp the tangent space of M  at P. Then we have 
direct sum

Tl = TT^ © n

where Tp is normal to with respect to the above Riemannian metric.
Taking the unit vector in Tp whose direction coincides with that of increasing 
of / ,  we have a vector field X  on M - Y l P ^  where P  ̂ (v = l, 2, •••) are all critical 
points of / .

If we take a suitable coordinates, /  is represented in a neighborhood of a 
critical point as

(2. 1) f =  c - x f -  ••• - 4  +  4 +1+  ••• + 4 -

Now we consider a vector field Z  in a neighborhood t/ of a critical point of 
/ .  From (2.1) we easily have

XU) = ... a ^ ... 9 )
\ r dxi r dxil \ r dxi+i r  dxn I

where r = ( 4 +  **• +4)^/^.
Let Ui be the number of the critical points of index i of / .  Then the 

following theorem is well known (see [3]):

T h e o r e m  2.1. S  ( —I ) ' ;^^=the Euler number of M,

3. L evel m anifolds

L e m m a  3.1. The level manifold Vc defined by f = c  is diffeomorphic with 
the level manifold Ve' defined by f=c^  if any critical value of /  does not exist 
in the closed interval [_c, c'~\.

Proof, Let x^,-'  ,x^ be local coordinates in a neighborhood W of P  on Ve, 
and let X  be the vector field induced from /. Write X =  I ] /*  {d/dx^). Then / '  
are differentiable functions since X  is differentiable. We consider a system of 
linear differential equations

(3.1) ^  i = I, -  n ,

for the unknown function (fiit),"' of one variable t. By a fundamental
existence theorem these equations have a unique set of solutions <Pi{t \ x), ,

16 Hiroshi Yamasuge



defined for \t\<Ce and \Xi\<Cd, which satisfy the initial conditions

x) = Xi .

The set of curves <p(t;x) is then defined on U = { { x i , , Xn)\xi\<Zd] by 
= y(Pn(t\x)). From the construction, it is obvious that (f{t ]x)

induce X  in U, The uniqueness of these curves cp(t; x) which induce X  is clear 
from the fact <p{t\x) must satisfy (3.1). It is also clear from (3.1) that any one 
of these curves does not intersect the others.

Put Vc,c'  =  { P \ c ^ f { P ) < c ' } ,  Let be a covering of Vc,  c and write sj  for 
the above a corresponding to Uj, By the compactness of Vc,e' we can take 
£o=miney>0 as a common e for all Uj,  

j
Now we put

Pk =  (p{^j; P k - i ) , k =  1 , 2 ,  •••,

where Pq is an arbitrary point of Ve- Then it is clear that the curve (p(t; p)  defined 
by

(p{t ;P)  =  (p{ t sk- ,Pk)  for s k ^ t ^ e i . k + 1 )

satisfies (3.1), and hence it has the vector field X \ ^  which is the restriction of 
X  on the curve 0. From (3.1) we have

i - m t ; P ) )  -  2 -  a  : m  -  X /
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and hence

A P k ) - f ( P o )  =  X f ^ k e v

where 7]= min /(P ) . Since Ve e' is compact and / ( ^ ) > 0  for an arbitrary point
P ̂ Ve,

X of Ve,e'y it follows that 7?>0. Taking k so that — we have
f { . P k ) ^ c \  Hence can arrive at the point P' of V, Bythecorrespondence
P ~ > P \  we have a deffeomorphism of Ve to Vc'. Thus the lemma is proved.

Now we shall consider the differences of topological structure between Ve 

and Ve' in the case critical points of /  exist in Ve, Ve'.
L e m m a  3.2. If these exists only one critical point of /  in Ve, e', then the 

difference between the Euler number of Vc and that of Ve' is ±2 or O according 
as dim M  is odd or even.

Proof, We may suppose without loss of generality that the critical point of 
f  is X =  O and that /  is written as —x l— ••• —4  + 4 4 1 + ••• + 4  in a neighborhood 
of X=O. Denote by the ball defined by 4 +  + 4 ^ ‘Ĵ and put Sr, = dB(ig), 
Then F_so5(^) is written as

- 4 -  - 4 + 441+  ••• +4 =  - £

4 +  ••• + 4 + 4+1+  +4 =  ^ ,

or



xl+ • • •  +
4+1+ ••• +4 = K-e + ̂ ) .

Hence F_sr>,S(7?) is diffeomorphic to

Since the set of (xi+i, " - ,x^) for all ^ is digeomorphic to 0-diniensional 
ball which we shall denote by we have

Similarly we have
Vsr^B(Ti) ^  B̂  X

Let ^ be a function on which has just one critical point of index O and 
just one caitical point of index i —1. Let h he a function in given by
h = y l +  ••• + y l - i  where y  is the coordinate system in R^~\ Put

F = g + h .

Then F  is a function in S^~^xR^~  ̂ and it is obvious that F has only two critical 
points of index O and index 1. Take a number c so that max g(P) .  Thenpes*-i
the subset F"" of points P^S^~^xR^~^ at which F ( P ) ^ c  is diffeomorphic with 
Si~'^xB^~\ This is shown as follows. For an arbitrary point F ^ c  im­
plies JVi+ ••• - ^ y i - i ^ c —g{P),  Hence F"" — S^xB^'^K Let be a diffeomorphism 
of V - 2 r B̂r, to F"". Then we have a function F-a which is defined in F_s Br̂  
and constant on d ( V - s —By,). Obviously F -a has two critical points of index O 
and i —1. Now we extend to over F-s and denote it by Fi.

Similarly let g' be a function on which has only two critical points of
index O and index n — i —1, and let ^ be a function in R̂  such as h ' = y i +  ••• +jvf. 
Put

F' =  g ' + h \

Then the subset F'"" of points P^R^xS^~^~^ at which F \ P )  is diffeomorphic 
with xS^“—̂  Let a' be a diffeomorphism of Vs Br, to F'"". We have a function 
F'(^' which is defined in F s and ̂ constant on 6>(Fs Br,), and which has just 
one critical point of index O and just one crictical point of index n —i —1. Since 
F - S - ( F - s —F s - ( F s -^^7,), Fi=Const on (F_s Fr,), and F'a'= cons t  on 
^(Fs^Fy,). Consequently we can extend F^a' to a function F2 on Fs so that 
nk =  nk where nu or Uk is the number of critical points of index k of Fi in V- 2 —Br, 
or F2 in Vs-Brj. From theorem 2.1 we have

the Euler number of F_s = S  ( — l)^nk + l + {  — i y ~ ^ , 
the Euler number of Fs = S  ( —l)^i^^ + l + ( — .
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Thus the difference between these numbers is =
( I —( —1)^), and the lemma is proved.

4. Ortho-f-arcs

Let be the set of critical points of /  on M. Then by (3.1) the trajectories 
orthogonal to the level manifolds of /  are well-defined in M —Qq, These trajec­
tories is celled ortho-/-arcs on M. From now on we suppose that the direction 
of trajectories accords with that of increasing of / .

For every critical point P of /  we choose coordinates Xi , - '  ,Xn in a neigh­
borhood Up of P  so that

/ =  Cq- x I - -------4 + 4 + 1 +  ••• + 4 .

Furthermore in M  we can introduce such a Riemannian metric as '^dx)  in
3

Up, Under the above metric we have

L e m m a  4 .1 .  In the above neighborhood of a critical point P, denote by L 
the set of all ortho-/-arcs stretched into P and by U  the set of all ortho-/-arcs 
issueing out from P. Then L  ̂P - B ^  and P —B^~K

Proof, Since

f  =  C o - x l - -----4+ 4+ 1+  + 4 ,

the vector field induced from /  is written as

where e j=  — ! for I ^ j and ej =  l  for Hence every ortho-/-arc
satisfies the differential equations

and the solution of these equations is

Xj ( t )  =  c j e x p e j c ( t )

where t  is an arbitrary common parameter on all ortho-/-arcs. Therefore if we 
put Ci^i= ••• =C^ = Oandmake it follows that L P =  {:r|:r/+i= ••• =Xn = 0}.
Similarly putting Ci= ••• =Ĉ  = O and making we see that L'"- P= {x \x i
=  -  =^.- =  0}.

L e m m a  4.2. Denote by Li the set of all points which are on the ortho-/- 
arcs stretched into the critical point P, and which satisfies / (P ) ^ /( a : ) > c ,  then 
Lc is diffeomophic with ^-dimensional ball B ^ d M  if and only if there is no 
critical point in Li,
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Proof. Each ortho-/-arc <p of Li satisfies the system of linear differential 
equations

(4. 1) i = l . - , n .

By the fundamental existence theorem the unique set of solutions (pi(t; x) with 
initial conditions ŷ(0, x)=x  are differentiable with respect to t and x. For |a;|<^ 
where  ̂>  O is sufficiently small, by using lemma 4.1 we have Li — B\  Hence 
we can uniquely represent by using t and Xi, '",Xi  satisfying
4 +  ^xl  = S. Thus Li is diffeomorphic with a /-dimensional ball.

R e m a r k . Denote by the set of all points w h ic h  l ie  on the ortho-/-
arcs issuing from a critical point Q of index j  and satisfy c ' ^ f ( x ) > f ( Q ) .  If Li 
and dL ĵ  ̂ are in a general position, we have

dim (Lir^dL^vD

Hence we may suppose that on Li there is not any critical point of index y, j  >  i.

5. E xistence of canonical fu n ction s

T h e o r e m  5.1. There esists a function /  with the following properties.
1) For all critical points Pj (y = l, 2, ••• ni) of index i and for all /, O ^ i ^ n

f(Pi )  = f ( P D  = = f i P ^ , ) ,
2) f { P l ) < f { P \ ) <  < f ( P i i ) .

We shall call a function to be canonical if it satisfies I) and 2) in theorem 5.1.

Proof. We arrange these critical points in a sequence Pi, P2 , ••• so that the 
index of P ^ ^  the index of P̂ a+i. Now we shall prove it by the induction for 
/i. By certain coordinates in a neighborhood of Po /  is written as

/  = a + 4 +  ••• + 4 .

Take a function g  which satisfies the following conditions :

1) g{r) = a for O ^   ̂ and g{r) = Q for r~^2d

2) Q ^ g ( r )  g X r ) > 0  and a:+ / ( P o X  min/(Q )
QG M

where r=(xi-h ••• +4)^^^ and 5 is a sufficiently small positive number.
Putting

/  = f + g
we  have

I(Po) = / ( P o ) + g ( P o )  = / ( P o ) + «
and

^  = = 2 r + g ' ( r ) > 0  for 0 < r ^ 2 3 .

Hence 7 has the same critical points as /  and 7(PoX7(P/x), ^ l .
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Now we assume that /  satisfies the following conditions.
1) If the index of Fp, = the index of and then /(P]a) =/(Pv).
2) If the index of P/x< the index of Pv and then /(PjuXZ(Pv) for 

all V.
We shall show that we can modify /  so that the critical points are unchange­

able and the conditions I) and 2) are satisfied for P^,
Let Lk̂ -l be the set of all ortho-/-arcs stretched into the critical point Pk^i. 

By the remark we may assume that P^^Lki-i, + By lemma 4.2. Lk^i is 
diffeomorphic with a ball , ^"=the index of P^+i. Since along an arbitrary ortho- 
/-arc the values of /  increase in a monotone, Vcoo^^-i-i is diffeomorphic to S '̂, 

Let Q be an arbitrary point close to L^+i and let Q' be the intersecting point 
of VCq and the ortho-/-arc passing through Q, Consider on Vcq the metric 
induced from M. Then on Vcq we can draw the unique geodesic which passes 
through Q' and is orthogonal to Vcr^Lk^i- Denote by Q'' the intersecting point 
of this geodesic and Vcq Lk+i and by r(Q) the geodesic distance on between 
Q' and Since r(Q )—>0 (Q->Oo^^^+i Li+i where is the set of all ortho- 
/-arcs issuing from the point P̂ ^+i), we may consider that t{Qq)= 0 ,  Qq^Lk î 

Lk+i- Then we have. r(Q )=0 if and only if QeLk+i^ LUi  Pk  ̂i- 
Denote by L^+i(c) the set of all points Q on Lk^i, which satisfies /(P^+i)

a) In the case the index of P^ = the index of P^+i.
Define a function g  such that

^ ( O = O  for t < f { P k ) - 2 e ,
=  A P k ) - f i P k ^ i )  for t ^ f i P k ,  

for all t ,

where e is a sufficiently small positive number so that on L^+i(c), c=f{Pk)  — 2e, 
there is not any critical point except P̂ +̂i.

Furthermore define a function h(t) such that

hit) = I for t £^ d  
= O for t ^ 2 d

where  ̂ is a small positive number.
Put

7=/(0) + ̂ (/(0))«KQ)).

Since r(P^+i)=0, from I) and 2) we have

f  (Pk^i )  = f ( P k + i ) + f  ( P k ) - Z ( P k ^ i )  = Z ( P k ) -

Consider a vector X q  at Q, which is orthogonal to the level manifold 7/cq) 
defined by Z = Z ( Q ) -  Then we have
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X Q f = X Q f + g ' ( . f ) ( X Q f ) h  
= Z Q /( i+ ^ r ' ( / ) « .

Since Z©/4=0 for Q € C/(Lft+i(c)) where f/(I*+i(c)) is a sufficiently small neigh­
borhood of Z,*+i(c), it follows that

Z q/ 4=0 for Q 4= P .

In a neighborhood of P  we have

?{Q)  = /(© ) + const,

and hence 7 has the same critical points as / .
b) In the case the index of Pk-Cfhe index of Pk+i- 
Define a function g  such that

^(O = O for t < f i P k )
=  A P k ) - f (Pk-^i)+ 2e for t ^ f i . P k ^ , ) - e  

g \ t ) > - l

where /(P * )+ 2s= m in/(P^).

Put
h Q )  = A Q ) + g { A Q ) ) K r { Q ) ) .

Then in the same way as a) we see that /  satisfies I) and 2) for fx^ki -1 .
Thus the theorem is proved.

6. R e g u la r  e m b e d d iu g

L e m m a  6 .1. L e t

(6.1) f i ( x u  ••• = O  (f = I, ••• ,;  ̂+ l)

( /  are polynomials) be a set of non-homogeneous equations with indeterminate 
coefficients and let

(6.2) f i i x u  ••• = O (/ = I, ••• ,;^-f-l)

be the equations obtained from (6.1) by a given specialization of the coefficients 
in (6.1). Thenanecessaryconditionfor the existence of a solution of the equa­
tions (6.2) is T(^)=O where T is a certain polynomial in the indeterminate 
coefficients («1, of fi  and («i, a^,-" is the given specialization of
( « 1 , CC2 , c iv ) .

Proof, Make fi  homogeneous by introducing a new indeterminate Xq and 
replacing Xu/ xq for Xk. Then there is a non-zero resultant form for n-\-l equations 
in ;̂  + l  unknowns such that

7(^1 a D  X l t]Ai(Xo Xn)fi{Xo " ' X n )
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for a suitable integer r, the A j  being polynomials in with coefficient
K[_ai, ••• ,a-J]. Here let X be one of the solutions of (6. 2), and we have

= 0 .

L e m m a  6. 2. L e t

(6. 3) f i {x, - 'Xn)  = M y i ' - y n )  d  = I r "  , 2n+l )

be a set of non-homogeneous equations with indeterminate coefficients and let

(6. 4) f i i x i  Xn) =  f i ( y i  " ' yn)  {i =  I, •••

be the equations obtained from (6. 3) by a given specialization of the coefficient 
in (6. 3). Then a necessary condition for the existence of a solution of (6. 4) 
such as X ^ y  is R { a ) = 0  where R is some polynomial in the indeterminate 
coefficients (<̂ i ••• a^) of f i  and (<5i ••• â j.) is the specialization of (̂ ?i •••

Proof, Put
yk = xk+x'k (k =  I, •••,/«) 

and suppose x i ^ O  then we have

( f ( x + x ^ ) - f ( x ) ) / x {  = O (/ = I, -  ,2/2 + 1).

Here we can consider that X i - - X n  1/xl x ^ Xn are unknowns. Let R be the 
resultant form for ( f i ( x  + xO—fi( x ) ) / x i  and from lemma 6.1 we have immediately

R(a) = 0 .

Let / v , / v '  (î  = l -- -m) be arbitrary differentiable functions on a compact 
manifold K  and {Ur} be a covering of K  and wl'" wl be local coordinates of Ur- 
Define d K i f \  f ' )  as the following:

dKif', /") = m a x j s  l/^(i>)-/v"(P)+ S  (^) I
P g E  I v  M-, V, ̂  ow]̂  owjl •

L e m m a  6. 3. If by y v= fv  a compact manifold K  is regularly embedded into 
R"̂  ̂ then there exists a positive number such that K  is always regularly embedded 
into R^  by y v = f V  only if d { f \  f ' ' )<y] .

Proof, By the hypothesis there exists ^ > 0  as follows.

1 )  m i n  I Z ^ ( P ) - / ^ ( Q )  I  > ^ ^ > 0
P g K, q g s - ^SC P )

where B^{P) is a geodesic ball with radius d having P  as its center.
2) For some

^ ( . f l  fy^—I fji^+s ! \  ^ / /  \  A

where are the coordinates of Ur-
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From

min \ f " ( . P ) - r { Q ) \ >  min \ f \ P ) - f ' i . Q ) \
PGE, PGE, QSE-j5SCP)

-  max I f ' { P ) - f ' \ P )  I -  max I/ ' (Q )- /" (Q )  I
P e K  <2SK

( max ir (P )  - /" ( P )  I + maxl/'CQ)- /" (Q )  1 - 0  (  ̂ -  O)) ,
and

^  9 (/ i / ^ i / , i + . )
d(Wi-- -Wi j . )  d ( w - - - w ^ )

Qi f i '  - f ' U  Q{ f {  -  / ; - !  /;!+ .)
diwi-'-Wij.) diwi-'-Wy.)

9 ( / r  - / / ^ l  /A+s) Q i f - f ' y ^ l f ' A . ' )  
Qiwi-'-w^') d iwi -"w^)

If 7? is sufficiently small, it follows immediately that

O (if->0)

min i r ( P ) - / " ( Q ) |> | -
P G K y Q G K - B S C F : )  I  ,

Qj f i '  - f '^ i  /^ '+ J
0(Wi ••• »n) > 2 •

Hence the lemma is proved.

7. R egular em bedding of le v e l m anifold

From now on for the sake of simplicity we write

ixi ,  ••• , 4 )  =  y ’‘ , (4+1,  ••• , 4 )  =  2 * ,
iul ,  ••• ,Mt) = M*,  ivl ,  ••• =  » * ,

S (4 )^  = (4)^ = (y )^+ (^^ )^

S ( m|)^ = (m̂ )% S(t^§)* = (t'")^/,=1

Choose coordinates in o neighborhood of a critical point Pu of index i so that 
/  is represented as

/ =  - c ' ^ - i y ’̂ y+i z '^y .

Here we assume c*=0 and F -s is written as

F _ , |- ( / )H (2 ^ )^ )  = - £ .
Put

G;i(e) = {(y,2 '=)l(y)^ = 5, 2̂  = 0},
HkiS) = { i u \  V̂ ) I iu>‘y  <  I ,  i v ’̂ y =  S^),

and identify iu^,v^) and iy^,z^) by 

(7.1) /  = uKs^^tiiu'^yyi^
Ẑ = \û \v̂  i\u’‘\̂  = iu'^y) .



Then from (F-E-SG feCs))^S we have a manifold denoted as
k k

F-., 6 = (F-.-SGfe) UEFfe(<5)
* CTs

where (Se represents the identifying (7.1).

L e m m a  7.1. (F -.-2 G fe (e )) U S  H f e ) 5 ) ( F - . ' - S  Gfe(sO) U 2i/^(5 ).
* (Tg CTg'

Froo/. It is sufficient for the purpose to prove the lemma when |£-e'| is 
sufficiently small. If we correspond («*, w*) 6 F-e,s to («*,«;*)€  F-e', §, from
(7.1) it induces the correspondence between (F -s -U G *(s )) BkiZŜ  + ̂ Y'’̂ and 
(F-e '-SG fe(£0 ) Bki28  ̂+ e')y  ̂ such as

(7.2) = + e'.A:*) {x^o.Hkid), x'e<^,'Hk(S)), 
h\dhl/dxl->0 ( I S -e'1 - 0 )

where h’̂ =(hi, ••• ,A^). On the other hand at every point x (l F-e —S -B*(^V2 + s)'̂  ̂
(Gfc(£)c5ft(5^/2 + s)̂ /̂ ) we draw the geodesic orthogonal to V s .  Let x' be the 
intersecting point of the geodesic and F-e'. Then the correspondence x-^x' is 
written in 5^(25^+ s')'/" as

(7.3) x'>̂  = x’‘ + gKe,e',x’̂ ),
g\dg'^/dxl^O ( l e - e ' l - > 0 ) ,

where gk = (g l, ■■■ ,gn).
Define a function (fix’’) such as

, fo  (^^ )"^2aH s,
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(x*)" ^  572+s.

Let r{a, b) be the geodesic distance (with respect to the metric on F-e' induced 
from M ) on F-e' between a and b ia ,b^Vs ').  Moreover let x"^ be the point 
on the geodesic passing through x’’ + g'  ̂ and x'‘^W‘ + :r* + A* € F-eO, which 
satisfies

jix ^ g ^ ^ x ::^ _  ^ 
d(x^^g^, ^ ĥ )

where x'^̂  is between x̂  + g  ̂ and x -̂ ĥ̂  on the geodesic. Then we have 
immediately

(7.4) = x ]^ g )^ f , {x ^ ) (k ) -g ] )

where ^j = O for (x^y^2d‘̂ ^e and (p] = l  (x^y^d'^/2 + e. Now we define the cor­
respondence between Fg, s and F-g',a as follows.

F-s, S 3 (w^ (^^ € F_ĝ , S
F-g  ̂{Bk(2d  ̂+ £)V2-5,(^V2 + £)V2) 3 X̂



From (7.2), (7.3) and (7.4) this correspondence is I —I when |e '-e | is sufficiently 
small and it induces s ~  6 •

Lemma. 7> 2. Ve — F_s, s •

Proof. From lemma 7.1 it is sufficient to prove Vz\ 52 — V-^', s for small 
e '> 0 . An arbitrary point x’‘ ^Vz'a^r\Bhi2Si‘ + e'd'^)y‘̂ is written as

(7.5) yk =  uH ((« ^ )^ < 1 ) ,
z>̂  =  V K i W ^ y ( ( ^ , * ) 2  ^2) _

Hence from (7.1) the correspondence Vs'i‘i^ x = {y {u ,v ) ,  z{.u ,v))-^x' =  {u,v) 
CF-E',8 is written in Bki2S^ + SH 'y/^-Bk{8y2+B' a s

x'k =  x'̂  +  h' îe', Xk) , 
h ,dh]/dx\-*0 ( s ' - O ) .

Define a function ¥>(x*) such as

(^^)^ii5(l + eOV̂
I i  ix '^ y ^ s ih + s 'y /^

and by the same way as that In the proof of lemma 7.1 we easily Vs'8̂ — V-s',8-

T h eo rem  7.1. If a level manifold Vc in is regularly embedded into 
^n+i~i there exists no other critical point than index then Vc' can
be regularly embedded into

Proof, By the way similar to the proof of the theorem (5.1) we may sup­
pose that for all critical points Pk (k = l,2 , •••) /(P ^) =  O. Hence we have V s-V c  
and V -S^V e'. Put

(7.6) yk =  aK{^^y-^e)y^ =  I

where a\) and /3̂  =  (l3f ,

Then (7.6) induces —/  + 0  ̂=  —e.
Let F  be a regular embedding map of V-s into Then for Bk((2+e)y^)

F{V -s) is represented by (o;^,/3̂ ) as

0^), F ^ =  { F i r -  , F L i - i ),
where Z^ =  (Z i ••• Zw+«-i) is the coordinates of Define maps f^ (u ,v) from
0 < |z /^ l< l ,  |z ;^ |< l into R^^  ̂ as the following:

f^{u^,v^) =  (F^{u^/\u^\, \u^\v^), exp (l/((^/^)^ —I)) \u ^ \< il.

To simplify the notations for a while we abbreviate index k. From

A u , v ) = f ( u \ v )  ( U | , U ' | < 1 )
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we have
u / \ u \  =  U / \ u \  , \ u \ v  =  W \ v '  , \u\  =  \u' \  

and hence we have
U =  u '  , V =  v ' .

Put

y =  p n - i  =  V n - i  •

If ( 1 ^ X 0  we can use \ u \ ,  ^at r "  ,o^i, f t , ,/3 -̂  ̂ as local coordi­
nates in{{u,v)\u^c^l, v‘̂ ^ 1 ) .  Then we see

I
/ l  fn^-s-^ fn ^ i)  _  2\u\  U^~l d (F i ' "  Fn -I F n + s-i)

d(oCi ••• at ••• a;,- f t  ••• ^n-i\u\) ••• ••• Ui f t  f t _ / ) .

Hence the Jacobian of the right hand is not zero for some 5. Thus by /  the 
set K = { u , v ) \ l ^ \ u \ < C l ,  |z ;|^ l}  is regularly embedded into and hence for
K  there exists t] in lemma 6. 3.

Let h y ( u , v )  be polynomials and put

f { u ,  v )  =  f { u ,  v )  ^  < p { u ) ( h { u ,  v ) - f ( u ,  v ) )

( h = ( h - h n  + i))
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where

(p(u) =  1 \u\

=  O

Now consider the equations

(7.9) h n - l  h „ ^ s - , l  I q  (s =  l , - , i  +  l )

d y u i  ••• U i Vi ••• V n - i )  .

with unknowns Ui,--,Ui. By lemma I there exist polynomials h-̂  such that 
dK(f, f)<^V and (7.9) has no solution. Hence for a given u \u \^ i )  there exist 
s =  s(u) and d(u)

d ( h i ' "  hn- i  h n ^ s - i )  
d { U i  ••• U i Vi ••• V n - i )

H=O for I I ^  d{u) .

Put 3=  min 3{u) and we easily see ^>0 . Furthermore from lemma (6.2) we

can take so that the equations h^{u,Q)=hy{,u\Q) (v =  l, ••• , + / ; i<Cn) have 
no solution and min |A(e/, 0) —/?(m', 0) 1>0. Hence if v,v' is sufficiently small

u,\u — u'\'^d
we also have min \h{u,v) — h{u\v')\^0. Hence by h {(u,v)\ \u\^iy

u,\u — u'\'^d
is regularly embedded where 3 is sufficiently small.

Now we shall show that {{u,v)\\u\<CX bl is regularly embedded by 
f {u ,v )  into It is clear for \ u \ < l  or from f = h  or / = / .  It is



clear for by lemma 6.3 since dK K fyA ^ V  where K' = { (u ,v )\ i< u
I z; I Hence it is proved.

Now consider F_s, 8 and from (7.1) and (7. 6) we have

uKx^) = \ẑ \ŷ /\dyf̂ \ , vKx^) =
and

= ŷ /\ŷ \ ,
which induce

(7.10) a^{x^) =  u^{x^)/\uKx^) \ , = \u {̂x )̂\v{x )̂ .

Define a map of F -s ,s into as follows:

U ^ K l ,  \v̂ \ = d}3x^ -^ (F(x^ ),  0)

F _ e . s o S { v ,2 ;^ )  f  < | « "| < 1 ,  =8\^x>^

ll{(.u\v>‘)\ |#1<1, =5}9(m*, z; )̂.

Since for § < U ^ | < 1  from (7.7), (7.8) and (7.10) it follows that

f{u^{x^)y v^(x^)) = f{u^(x^), z;̂ (jr̂ )
=  {F(u^{x^)/\u^{x^)\, , exp 1/(1 ^^(^^) 1^-1))
=  {F(a (̂^x )̂ , & {̂x )̂) , expl/(lz^^(jr^)l"-l))
=  (F(^^), e x p l / ( k " ( ^ ) r - D )

the above definition is well defined.
It has already been proved that the above map embeds F-s s ~ S { (^ ^ ,  v̂ )\%

k

<|^^^|<1, |z;̂ | =^ } and every {(^^^ z;̂ ) I I w^|<l, \v^\=d} into Itisnecessary
to show that the image of {{u ,̂ v )̂\\u^\<Ci, ]z;^l=^} and the image of {{u ,̂v )̂\ 
U ^ K f , Iz;̂ I =(5} hove no intersection if ^4=/.

From (7. 8) we have

\f(u^y V )̂—fKu\  ẐO l^ l/^ (^ ^  V̂ )—fKu\ V̂ ) I —7]̂  —7]̂  
ŷ k ^  v^)—h (̂u ,̂ V̂ ) I and
yji Z =  \f\u\ v̂ ) — hKu\ ẐOl •

Since there exists r > 0  such as

V )̂- fK u \  Ẑo I >   ̂ for all k , l  (^ H= /)

if we take hĴ , V so that \f^—h^\<C  ̂ and we have4 4

Furthermore it is clear that (F-s s - S  {(«*, «̂ *) I § < ! « * ! < i, k*| = 5 } ) ^ { ( m', I i  

<Z\u‘ \<C\, Hence the theorem is proved.
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Let / be a cononical function as in theorem 5.1. If it is obvious
that Vc\f=c  is diffeomorphic with spheres and Vc is regularly embedded into 
Hence by using theorem 7.1 and the induction we have immediately

C o r o l l a r y .  Let / be a canonical function as in theorem 5.1. Then V e l f  = c  

(Vi<Cc<Cigz+i) is regularly embedded into

8. Embedding of sphere bundles

Let C be a sphere bundle consisting of [£*, M, tt], where tt is a map from E  

onto and whose fibre and group are S"* and where is the m-dimensional 
orthogonal group. Consider (m + l)-plane Ep such as E plD7z~^{P)r^P. Let  ̂ be 
the map E P P. Then we have (m + l)-plane bundle C = [^, M, rf] associated with 
C and we can consider that E ZD E, Introduce a Riemannian metric into C and 
denote byr(Q, Tr(Q)) the geodesic distance on ErccQ̂  between Q and Tr(Q).

Let / be a function of M  which satisfies I) and 2) in theorem 5.1. Put

/(Q) = / «Q ))+ r^ (Q , Tr(Q)).

Then / has the same critical points as /. Denote all the critical points of index 

i by P l  (^ = 1, 2, •••)• Then we can choose coordinates in a neighborhood
of Pf so that

f  =  a ^ - ( x i y --------(4 )^-h(4+i)H  -  + (4 )^

+ ( y i )  + ••• +(ym+iY •

Hence / has the index i at P\. Since f ( P l ) = f ( P k ) y  / satisfies I ) and 2) in 
theorem 5.1. Putting

c>m ax/ (P )
P e M

we have c'^y^n- Since the maximum index of the critical points of / in
in fly by using corollary of theorem 7.1 we see that Te\f=c  is regularly embedded
into

For an arbitrary point Q ^ E  we have Q^E^cq^, On E^cq^ we consider ortho- 
flE^ccQraYC tcq passing through Q  and T r (Q )  where f\EjccQ  ̂ is the restriction of / 
on E^cq). Since on icq there exists a unique point Q' such as

rKQ\ T r ( Q ) )  =  c - / ( tt( Q ) )  >  O ,

by Q - > Q" we get the 1-1 correspondence between E  and Vc , which induce E - V e -  

Hence we have

T h e o r e m  8.1. A  sphere bundle with fibre group and base space 
can be regularly embedded in
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