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Let Y be a simply connected topological space which has vanishing homotopy
groups 7;(Y) for 0<i<m n<i<q, and ¢<i<r<2¢g—1, and let K be a
geometric complex with subcomplex L and f:K”. L—Y be a mapping extensible
to a map K9*' /L —Y. We discussed the third obstruction to the extension of
Fin [3].

It is the purpose of this paper to establish the higher obstruction theorems
in the general cases by the aid of results of our preceding paper along the line
of Eilenberg-MacLane [2]. This paper makes full use of the results and ter-
minologies of the preceding paper of the author [4].

1. Preliminary
Let K and L are S.Q. complexes, we shall define the standard maps f: Kx L~
KRXL and g:KXL—KXxL between the cartesian and the tensor product. First
map f is defined by
floxt) = XgpfoRpBs if dime =dimr7 =7
where (8 is going round the family of pairs (B, (8.) such that
Bi:I™—1I", 0 m;<r, m-+m=r,
Bultry = ytm) = (hry s tmys 0,5+, 0),
Bz(tn ,tmz) =(1,-,1, t;, ,tm2> ,
namely 8§ =F"":=F] ,,---F? and B§="1F'=F¢- F, . Second map g is defined by
g(6®1) = 3, P(@)afoxafr if dimo = m,, dimt = m,
where « is going round the family of pairs («;, «,) such that
a;: I["—= 1", r=m+m,,
Wty ot = (i ati) o imy,
y(ty, o te) = (B, s timg) 51 < L my,

and ®(a) = Sgn.(il’ ..................... , r)

1 s dmys J1s s Jmg) ¢
Lemma 1.1. If K and L are S.Q. complexes, then each of the composites fg and
gf is chain homotopic to the épjwropriate identity map.
The proof of this lemma is similar to that of Eilenberg-Zilber theorem [1]
in the S.S. complexes, and therefore we omit it.
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Let Y be a topological space and the homotopy groups 7;(Y ) of Y vanish
without i=n,, #z, -, e (1<2ty<10,< - <tt,,). We shall denote =,;(Y) with Il
in the following discussion.

It is well known that any minimal subcomplex M=M(Y ) of the total singular
cubical complex @Q(Y) is isomorphic to a Postnikov complex

N™ = ®@(K(I*, n,), k', N%, k* N3 -, K™ N™),
and there are natural injections

_ M,, CM,,  C- CM,, CM, =M
where M, ;=MnN @.;(Y) consists of cubes whose faces in dimensions less than

—

n; reduce to the base point y, of Y. We shall denote the Postnikov construction
of M,; (1<j<m) as follows;
N} = K(IIi, nj),
N+ = KU, n;, I, nj4y, k)
My = NY = O (N9, kj, N§*, k¥, - kg7, N
where k%=:i% k? is the image of injection homomorphism
it Hraat (N9 1197 — H7aw P (NY; 9 j<g<m—1.

If the Postnikov invariants k!, k%, ---, k™! are additive, we shall define the
internal products of S.Q. complexes N%"'=®(NY, II?+1, nyrq, k5) Qi< p<im)
inductively as follows ;

($, @) (¢, &) = (@', god”)
for r-cubes (¢, ¢), (¢, ¢*) of N%*, where ¢o¢’ is the internal product of r-cubes
of N7’ defined inductively, and ¢°¢’ is the internal product of 7-cubes of
F(IT**, np,,) defined in (8.1.1) [4], then
2L(bod) 7] = R5(I7) +EI(ST) = dP(7) + 4P’ (1) = A=) (1)
for any (np+i+1)—cube v of Q")
since k7% is additive. Hence (¢o¢’, ¢o¢’) is also the r-cube of N%*.

We note that if k% is not additive, the above definition is meaningless except
the special case when ¢ or ¢’ is trivial.

As we showed previously [4], there is a one to one correspondence between
the semi cubical (S.Q.) mappings 7'=T(#,;, ", %n,) : K— N} and the sequences
(Xpj s Xng) =%;...4(T) of a cocycle x,;€Z"(K; II7) and cochains x,, € C*(K;II")
satisfying

B T (g s Xy ) = 0%, j<7=gq.
We shall call such a sequence x;...q=(%,;, -, %,,) as cocycloid.

Let xj...q=Fnys s Xng)y X.q= 20y, -+, %1,) be two cocyloids, we denote the

sequence (X,;—%nss s Xng—¥ng) @S (Vnj,,¥ny). Then, we have
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Lemma 1.2, If g=j or K, k" are additive, y;..., is also a cocycloid.
Especially, 9,;=0,,9,,=0, then Insra™ Vnppys " s Vng) 1S @ cocycloid if h+1=¢q
or kP, - (k%Y are additive.

Proof. If g=j, X5...q=1%py, %5...q=2x0; €Z"(K; Il7), then y;...,=y,; is also a
cocycle (cocycloid).

If ki, .-, k7" are additive, ‘

0V, = 0%p,— 0%, = ES T (Xj.ccom) =R T (¥eiry)
=k LT (9iera)o T (&5ep) 1= B T (Kfrmy)
=k T (Yjrry) i<r<gq
inductively.
The latter half is similarly recognized since

OVunyy = 0%y, —0%0y, = Ky T(Xjors) —RST (x5...h4) = 0.
Two mappings T(x;...,) and T(#}...,) are homotopic if and only if
Xn; and xp; ave cohomologous,
Xn,—%5,— kT Ej is cohomologous zero for j<_r<gq,
where E5:T Xy, Xn,_ ) =T Xpj, X, ) are some chain homotopies whose
existence are secured inductively.
As our future convenience, we shall call x;..., and x}..., being cohomologous

if they satisfy the above conditions, and denote x;..,€Z%"¢(K; N} and its
cohomology class x;..., € H"/"4(K; N¥).

2. 7-operations
Given two S.Q. pairs (K, L;) i=1,2 and two cocycloids xj...q€ Z"%"(K, L,;
Dy Xpo..r EZ""7(K, L,; N}), we shall define a chain transformation
7(%j...qy Xpoor) 1 (K, L) — N3,
where L is the union of the subcomplexes L,, L, and Z=min (j, k), s=max (g, 7).
The map 7(%j...q, X%...r) is defined as the composite of the maps displayed in
the following diagram

(K, L)
| e
(K, L)% (K, L) f—> (K, L) K (K, L)
lR(m...,,) @ R(%p...r)
NiQN%
. Liw wian
NixNj «——— Ni®N;
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Here the first map ¢ is the diagonal map. The second map f is the standard
map of the cartesian into the tensor product.

The third map is the tensor product of the FD-maps R(xj.--q), R(%g...r) €ach
of which is defined by

R(xngy ey Zny) = T (g, 5 20,)— T (0, -+, 0).

The fourth map is the tensor product of the inclusion maps; for instance if

h=7<k, q<r=s

i) 1 N> Ni= N5 = QN3 B, , b5, N3)

t(%#) : Nt = Nji — Nj induced by M,,C M,;,
here it is easily verified that the map at first case is meaningless when the
dimension of cube of K is greater than #4,; while the map at second case has no
restriction on dimensions, since the image of /() in above case does not belong
to N3 in general.

The fifth map g is the standard map of the tensor into the cartesian product.
Finally, the map 7 is given in terms of the internal product in N§ which is
meaningless if k%, ---, k°' is not additive without the special case j<(---<{¢< k
Lo <Zroor k<l <r<lj< g

The final definition may be written as
T(Xjoogs Xpor) = 78LHEGDREGH LR (... ) QR (%) ] fe .

According to the dimensional restriction which is occured by the inclusion map
i( ), our maps are meaningless in the case when 7(xj...q, Xp...r) Operates upon
the cells whose dimensions are larger than min (#;+#,., #z+1g.).

Since f is natural with respect to R(xj...,) and g f==identity map, we have

T(Xjooqs Xjooq) = T8 FLR(%j...a) X R(%}...q) Je
= 7[R(%j...e) X R(x}...0) 1e,

then we have

Lemma 2.1, 7(Xj...q, 85...0) = R(Xj...q) o R(x}...q).

Replacement of xj..., or x,..., by a cohomologous cocycloid replace R(x;...q)
or R(xg...,) by a chain homotopic map, therefore the homotopy class of the map
7(%j...q» Xk...») depends only on the cohomology classes xj...q, Xg...r Of Xj...q, Xp...r
respectively ; this homotopy class will be denoted by 7(xj...s, Xp...,).

Let y € H!(N3j; G) is a cohomology class. The 7-operation yy is defined for
cohomology classes xj...,€H" "(K,L; N}), Xp.... € H*""7(K, L,; N%), t<min
(M5 +np4y Mp+ng,,) by the formula

Yr(Xjeoigy Xpoor) = 7(Xjorngy Xpop)¥y

it is an element of H*!(K, L; G).
If j=k, ¢q=7, our operation is a natural prolongation of the internal operation
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yt[2]. If j---g=1, k--r=2, our operation is the same as the 7-operation which
we defined in the previous paper [3].

Lemma 2.2. If y€H!(N;; G) and xj..,€H" " (K,L; N}, xp.... € H* """
(K, Ly; N©) with t<nj+ngp, then yy(Xj...q, Xp...r) IS 2evo.

Proof. At the distributions (i, 8,) of f-map, at least one of dim (Bfe)—n;,
dim (B§0¢) —n, is negative since dim (8¥¢) +dim (8F¢) =< nj+n,. Then the result
follows from the facts R(xj...,) is zero unless dim (Bfo) =>n; and R(xg...,) is zero
unless dim (8§0) =ns.

We consider next the case where t=#u;+#n;,. The same argument shows that

7(Kjeogs Frwr)o = 78LICHRIGR) ILR(%j...o) (FO"0) QR(%...r ) ("IF o) ]
And,
R(%j...q)(F""kg) = x5, ;(F*"g) €ll7 = m,; (Y)
R(xp...r) ("F'0) = %, ("iF*6) €lI* = m,, (V)
where the left equalities are equalities modulo norms, then we have
T(Xjeocqs Xkr )6 = 78 ([Hn;(F*"0)]1 Q [0, ("IF ") ])
where each bracketed element denotes the corresponding cube of Nj.

Now observe that the given cohomology class y € H!(Nj; G) may be used to
define a homomorphism

—:Il,;QRM,, -G
according to the formula
zj— 2, = y78([27]1 QD [2: 1) 2j €l yj, 2, €11 ,,.
This implies that
Yy(Xj.oq, Xpor)0 = (Xpj ~ Xnp)0,

where %,; - %,, is the cup product of the cocycles x,;, x,, relative to the pairing
just defined. We have proved

Lemma 23. If ye€H!(N};G) and xj..,€H" "1 (K, L,; N3, xp..., € H* " "r
(K, L;; N%) with t=n;+ny, then

Yy(Xjurigy Xpoor) = Xpj ~ Xy,

where the cup product on the right is taken relative to the above paiving determined
by y.

We note that if y is a Postnikov invariant ki€ H"s+1*(Nj; II*1) the cup
product is paired by the Whitehead product

[0 (Y ), Tnf (Y1 mag, (V) where njtmp = ney,+1.
Let y € H'(N§; G) and x;..., € H*"¢(K, L; N}), and we shall denote R(x;...,)*y

by yyxj..., in the following discussion, it is also a natural prolongation of the
internal operation y [ 2].
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If %jqg=Xnjs " Xnps npyys " s ¥ng) Where x,;=0, -+, x4, =0, then
R(xj...q) = T0, -, 0, %y, s 5 Zng) — T (0, -+, 0)
= LD XiGu DILT O, -+, 0) X R(Fnsaq) le
= 7gliDRAGa DILT O, -+, ORQR(Fns1...q) 1S

Hence we have
Lemma 24. If y€H'(NY; G) and Xpiy...q € H*+1""2(K, L ; N3,1) then
yrgliDiGa DILTO, -, OQR(Xp4s...0) 1 fe = [iGr D¥UTrn11...q-

3. Obstruction theorems

Let K be a geometric complex. We shall be interested in continuous maps
f:K—Y. Such a map induces a cubical map K—Q(Y ) which is also denoted by
f. Conversely, every cubical map K—~@Q(Y ) arises in this fashion form a unique
continuous map K—Y. The map f is called minimal if it maps K into M. In
the theory of the minimal complex we shall assume without loss of generality
that the maps K—Y are minimal.

Therefore, a map f: K"1i—Y determines a cochain a,,(f) € C"(K; II') which
is a cocyle if and only if f admits an extension f;: K”2—Y. This extension f;
presents an obstruction cocyle ¢"2*'( f;) € Z":" (K ; II?) which is represented by

"2t fy) = k}T(dnl(f))—6<bzfz)
where b, is a basic cochain of C"2(M; II?) determined by setting
b0 = d(Eko, o) for any n,-cube of M,

we shall denote b.f, by a,,(f). This obstruction is zero if and only if the map
f» admits an extension f;: K”:—Y, and presents a third obstruction cocycle

¢ (f3) = BT (an,(f)s an,(f))—0(bsfs)
and so on.

If f:K"—Y admits an extension f’'=f;..: K"+ —Y, there is a cocycloid
@i ()= (an,(f)s @n,( '), ...y an,(f)) €Z™ ™ (K; Ni) and presents an obstruc-
tion cocycle

" () = BT (ay..;(f)—0(an;,,(f)).

Let f,g: K"+ L—Y be two maps which agree on L. Then they induce a
cocycloid a;...;(f, &) €Z™ " "(K, L; N}) in which a,;(f, g8)=an;(f)—an;(g), 17
<i, if k% ..., k" are additive. In general, if f and g agree on K™ L they
induce a cocycloid @nys...;(f, &) € Z™"+1 " (K, L; N;+,) if kP, ..., k'™ are additive.
We shall denote in the following the cohomology class of ¢™+(f), ¢"+i(g),
Wi (), a1..;(2), @i (f,8)y... as 2zMTL(f), 2+ (g), a...;(f), ay...; (), ay...;
(f, ), ... respectively.

In the following we assume that the Postnikov invariants k!, k2, ..., ki are
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additive.
Tueorem 3.1. Let f,g: K" JL—Y be two maps which agree on L and which
are extensible to K" UL, then
2t f) —z"at(g) = klya...;(f, )+
kli.'Y(aln-i(f’ g)) aln'i(g)),
where the last term vanishes if n;,+1<2n,.
Proof. z"i+1™(f)—z"+n*(g) is representable by cochain
() = i g) = BT (@i £)) = 8(ans, ()
—kT(a...(g)+0(an,, (g).
Since f and g coincide on L, it follows that @y, ,(f) —an;, (&) =(f#—g%)b;., is
zero on L; this yields the cohomology
et f) — i (@) ~R[ T (ar...;( f)) — T (as...;(g))].

However,

T(ay...(f))—T(ar..;(8) = T(a....(f, ©))+T(ar..(f, &) +a...; (&)
—T(a...(f,8)—T(ar...;,(g))
= R(a,....(f, &)+ R(a,...;.( f, &)+ a,....(g))
—R(ay...;.(f, 8))—R(a...:(g))
= R(a,....(f, 8)) +R(a,...;,( f, g))°R(a....,(g))
then our result follows from Lemma 2.1. and Lemma 2.2., since #n;,,+1<n;, +n,,,.
TueoreEMm 3.2. Let f,g: K" JL—-Y be two maps which agree on K"\UL and
which are extensible to K" UL and ni,+1<2n,, then
Z”i+1(f)—«z”i+1(g) = kgvaz---i(f: g)+k]f.'Y(an1(f)’ az-ui(f; g));
where the last term vanishes if n;,+1<n+n,.
This theorem is a special case of the next theorem.
TueoreMm 3.3. Let f,g: K"UJL—Y be two maps which agree on K™\JL and
which are extensible to K" UL and n;,+1<2np,,, then
2t () — 2" (g) = Kyt (f, &) T Eiv(ar..w(f), @psrei(F, €)),
where the last tevm vanishes if ni+1<ny+npy.

Proof. z"i++'(f)—z"+"(g) is representable by a cochain
My — it (g) = B[ T(ay...;(f))— T(a....(g)1—0lan; (f)—an;, ()]
where an; (f)—an, (g) is zero on L. And

T(ar..;(f)) =D XiGr DILT (@l £ X T (@psa...s(F)) e,
then
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T(a....(f))—T(a..;:(&)
=D XiGa DILT (@ I XLT @his(F))
— T (ap+1...:(8))1le
=7gli() RiG DILT (a1..4( ) QLT (@pss...i{ )
—T(aps...:(g))11fe
in dimensions < 2#n,,, since a....(f)=a,...,(g) in our case.
Now, as FD-maps : K— X ;i1 F(II7, nj)

T(ansr..i(f))— T (@nya...i(8))
= R(api1....(f, &)+ R(api1...;( [, &) )oR(ap+1...;(&))

and
R(anys...;.(f; &))oR(rsa...:(&))
= 1LR(anss...;(f, 8)) X R(anss...:(g)) e
=71g[R(an1...i( £, 8)) Q R(anys...;(g))]fe
then

T(ansr...;(f))—T(api1...i(8)) = Rlapys...;.( f, &)
in dimensions less then 2u+,.
Hence,

it f) — cinti( g)
~kirgli(3) K iGu DILR(@..a( )+ T, ... , TR Ranys...:(f> £)) ] fe
= kipvansa.i(fo &) +Eiv(ar..a( ), aps..i(F, €))

by Lemma 2.4. if n;,,+1<2#n5,;. The rest of the theorem is due to Lemma 2.2.

Combining Lemma 2.3. and the above theorems, we can get various formulas.
Namely, we have

CoroLLARY 34. 1) If n;+i+1=2n in Theorem 3.1., then
" (f) = 2" (g) = klyay..;(f, @) tan(f, &) — an(g)
2) If nyy+1=wn+n, in Theorem 3.2., then
2"ia N f) = 2"in N g) = kiyas..;(f, &) +an () — an(f, &)
3) If nyp+1=mn+np. in Theovem 3.3., then
Zhintt(f) —z2"nt(g) = Kjyman i(f, &)t an(f) — an, (f, 2).
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