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Let Y be a simply connected topological space which has vanishing homotopy 

groups rr,-(Y) for O<i<n, n<i<q, and q<i<r<2q-1, and let K be a 

geometrie complex with subcomplex L and f: Kn , L -> Y be a mapping extensible 

to a map KH' ,~: L ->Y. We discussed the third obstruction to the extension of 

fin [3]. 

It is the purpose of this paper to establish the higher obstruction theorems 

in the general cases by the aid of results of our preceding paper along the line 

of Eilenberg-MacLane [2]. This paper makes full use of the results and ter­

minologies of the preceding paper of the au thor [ 4]. 

1. Preliminary 

Let K and Lare S.Q. complexes, we shall define the standard mapsf:KxL-> 

K Q9 L and g : K Q9 L -> Kx L between the cartesian and the tensor product. First 

map f is defined by 

if dim a = dim -r = r 

where [3 is going round the family of pairs ({3,, [32) such that 

[3,-: Jm; ->Ir, 0 < m,- < r, m, + m2 = r, 

[3,(t,, ... , tm,)= (t,, ... , tm1 , 0, ... , 0), 

[32(tl, "· , tm2) = (1, ··· , 1, t,, ·· · , tm2) , 

namely 8f = po·m2 = F,::,+, .. · F~ and {3~ = m,p, = Fà .. ·Fin,. Second map g is defined by 

if dim a = m,, dim -r = m2 

where a is going round the family of pairs (a,, a 2 ) such that 

a,- : Ir --o. 1m; , r = m, + m2 , 

a,(t,, ... ,tr) =Ct.-, .... ,t,-m,) i, < ... < im1 , 

a2(t,, ... ,tr) = (tj,, ... ,tjm2) j, < ... <jm2 • 

and 

LEMMA 1. 1. lf K and L are S.Q. complexes, then each of the composites fg and 

gf is chain homotopie to the appropriate identity map. 

The proof of this lemma is similar to that of Eilenberg-Zilber theorem [1] 

in the S.S. complexes, and therefore we omit it. 



16 Katuhiko MIZUNO 

Let Y be a topological space and the homotopy groups ni( Y) of Y vanish 

without i=n1 , n2 ,···,nm Cl<n,<n2 <···<nm). Weshalldenote nn/Y) with IIi 

in the following discussion. 

It is well known that any minimal subcomplex M = M( Y) of the total singular 

cubical complex Q( Y) is isomorphic to a Postnikov complex 

Nm = (9(K(IJ1, n,), k', N 2, k 2, N 3 , ···,km-', Nm), 

and there are natural injections 

Mnm C Mnm-l C · • · C Mn2 C Mn1 = M 

where MnJ=M n Qn/ Y) consists of cubes whose faces in dimensions less than 

ni reduce to the base point Yo of Y. We shall denote the Postnikov construction 

of MnJ (l<j<m) as follows; 

N) = K(Jii, nj), 

N)+1 = K(Ili, ni, Jii+l, nj+1 , k)) 

MnJ ~ N"! = (9(N), k), N)+', k}+', ···, k}.-1, Nj) 

where k]=iJ kq is the image of injection homomorphism 

If the Postnikov invariants k', k 2, • • • , km-1 are additive, we shall de fine the 

internai products of S.Q. complexes NP/1=(9(N), JIP+', np+, k5) (l<j~p<m) 

inductively as follows ; 

(cp, i/J) o (if/, cl/) = ( cpoql, </Jo </J') 

for r-cubes (cp, i/J), (r}J', </J') of N)+l, where cpocp' is the internai product of r-cubes 

of Nj defined inductively, and i/Joi/J' is the internai product of r-cubes of 

F(JIP-t-1, np+1 ) defined in (8.1.1) [4], then 

k} [(cpocp')r] = k)(cpr)+k}(cp'r) = .di/J(r) +.t.W(r) = 4(</Joi/J')(r) 

for any (np+l+l)-CUbe r Of Q(JY) 

since k] is additive. Renee (cpocp', i/Joi/J') is also the r-cube of N)H. 

W e note that if klj is not additive, the above definition is meaningless except 

the special case when cp or cp' is trivial. 

As we showed previously [ 4], the re is a one to one correspondence between 

the semi cubical (S.Q.) mappings T= TCxnJ, · · · , Xnq) : K -> N] and the sequences 

CxnJ• ··· ,Xnq) =xi···q( T) of a cocycle XnJ EZni(K; IIi) and cochains Xnr ECnr(K; Ilr) 

satisfying 

We shall call such a sequence x i···q = CxnJ, · · · , Xnq) as cocycloid. 

Let xi···q=(xn1 , ··• ,Xnq), xj ... q=(x~1 , ··· ,X~q) be two cocyloids, we denote the 

sequence CxnJ-x~J' ··· ,Xnq-X~q) as Cyn1 , ··· ,ynq). Then, we have 
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LEMMA 1.2. If q=j or kj, ··· ,kq-1 are additive, Yj···q is also a cocycloid. 

Especially, Yn;=O, ··· ,ynh=O, then yh+I"''q=Cynh+r' ··· ,Ynq) is a cocycloid if h+l=q 

or kh+ 1 , · · • , kq-1 are additive. 

Proof. If q=j, xj ... q-Xn;• xj ... q-X~jEznj(K;lb), then yj .. ·q -Ynj is also a 

cocycle ( cocycloid). 

If M, .. · , kq-1 are additive, 

OYnr = OXnr-ox~r = k'j-1T(Xj ... ,_1)-kj-1T(X} ... r-1) 
= k'j-1[ T(yj ... r-1) 0 T (x) .. ·r-1)]- k'j-1 T(xj ... r-1) 

= k'j-1 T(n .. r-1) j < r < q 

inductively. 

The latter half is similarly recognized since 

Two mappings T(xj ... q) and T(xj ... q) are homotopie if and only if 

XnJ and x~1 are cohomologous, 

Xnr- xjr- k]- 1 E'j is cohomologous zero for j < r ~ q, 

where Ej: TCxnj, ... , Xnr_ 1 ) ~ T(x~j, ... , x~r-) are some chain homotopies whose 

existence are secured inductive/y. 

As our future convenience, we shaH caH Xj ... q and xj ... q being cohomologous 

if they satisfy the above conditions, and denote x j ... q E znj ... nq(K; N]) and its 

cohomology class xj ... qEHnj ... nq(K; Nj). 

2. r-operations 

Given two s. Q. pairs (K, L;) i =l, 2 and two cocycloids Xj ... q E znj ... nq(K, L1; 

N]), Xk ... r E znk ... nr(K, Lz; ND, we shaH define a chain transformation 

rcxj ... q' Xk ... r): (K, L) ->Nt. 

where Lis the union of the subcomplexes L1, Lz and h=min (j, k), s=max (q, r). 

The map rcxj ... q' Xk ... r) is defined as the composite of the maps displayed in 

the foHowing diagram 

(K, L) 

l e f 
(K, L1) x (K, L2 ) ----> (K, L1)@ (K, Lz) 

g 

l r 
N~. 

lR(xj ... q) @R(xk ... r) 

N)@N~ 

l i()D@ iW,J 
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Here the first map e is the diagonal map. The second map f is the standard 

map of the cartesian into the tensor product. 

The third map is the tensor product of the FD-maps R(Xj···q), RCxk ... r) each 

of which is defined by 

R(Xn5,, ···, Xnt) = T(Xn5 , ···, Xnt)- T(O, ···, 0). 

The fourth map is the tensor product of the inclusion maps; for instance if 

h=j<k, q<r=s 

iGD: N~ ~N~ = Nj = !Y(N'j, k], ···, kj-1, Nj) 

i GD : N~ = N% __,. Nj induced by Mnk C Mnj, 

here it is easily verified that the rnap at first case is meaningless when the 

dimension of cube of K is greater than nH1 while the map at second case has no 

restriction on dimensions, since the image of i OD in above case does not be long 

to N~ in general. 

The fifth map g is the standard map of the tensor into the cartesian product. 

Finally, the map r is given in terms of the internai product in N~ which is 

meaningless if kh, ···, ks-1 is not additive without the special case j< ··· <q<k 
<···<r or k<···<r<j<···<q. 

The final definition may be written as 

/(Xj ... q, Xk···r) = rg[i(mQ9iCmJ[R(xj ... q)Q9R(xk···r)] fe. 

According to the dimensional restriction which is occured by the inclusion map 

i( ), our maps are meaningless in the case when /(Xj ... q, Xk ... r) operates upon 

the cells wh ose dimensions are larger than min (nj + nr+1, nk + nq+1). 

Since f is natural with respect to R(Xj ... q) and g f ç;;;; identity map, we have 

/(Xj ... q, Xj ... q) = rgf[R(Xj ... q) x R(xj ... q)]e 

ç;;;; i[R(Xj ... q) X R(xj ... q)]e, 

then we have 

LEMMA 2.1. /(Xj ... q,Xj ... q)ç;;;;R(Xj ... q)oR(xj ... q). 

Replacement of Xj ... q or xk···r by a cohomologous cocycloid replace R(xj ... q) 

or R(xk ... r) by a chain homotopie map, therefore the homotopy class of the map 

r(.'l:j ... q, xk···r) depends only on the cohomology classes Xj ... q, xk ... r of Xj ... q, xk ... r 

respectively; this homotopy class will be denoted by r(xj ... q, xk···r). 

Let y E Ht(Nft; G) is a cohomology class. The {-operation Y"' is defined for 

cohomology classes Xj ... q E Hnj· .. nq(K, L1; Nj), Xk···r E Hnk .. ·nr(K, L 2 ; NO, t ~min 

Cnj+nr+1 ,nk+nq+l) by the formula 

Yr(Xj ... q, xk···r) = /(Xj ... q, Xk···r )*y 

it is an element of Ht(K, L; G). 

If j =~ k, q = r, our operation is a natural prolongation of the internai operation 
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y r[2]. If j···q=l, k···r-2, our operation is the same as the r-operation which 

we defined in the previous paper [3]. 

LEMMA 2.2. If y E Hf(N'!.; G) and Xj ... q E Hnj•"nq(K, Ll; N]), Xk .. ·r E Hnk•"nr 

(K, L2 ; ND with t<nj+nk, then Y"!(Xj ... q, xk ... r) is zero. 

Proof. At the distributions C{31, {32 ) of f-map, at least one of dim ({3fa) -nj, 

dim({3~a)-nk is negativesince dim({3fa)+dim({3ta)=t<nj+nk. Thentheresult 

follows from the facts R(Xj ... q) is zero unless dim ({3fa) >nj and R(xk ... r) is zero 

unless dim ({3~a):?.nk. 

We consider next the case where t=nj+nk. The same argument shows that 

r(xj ... q, Xk ... r)d = rg[i(]DQ9iCmJ[R(Xj ... q)(F0'nka)Q<)R(xk ... r)(''jF 1a)] 

And, 

R(Xj ... q)(F0·nka) = Xnj(po·nko) EID = TCnj (Y) 

R(xk ... r) cnjpla) = Xnk(njpla) EJik = TCnk (Y) 

where the left equalities are equalities modulo norms, then we have 

r(Xj ... q, Xk ... r)d = rg([xn/po·nka)J Q<) [Xnk(njF 1o)]) 

where each bracketed element denotes the corresponding cube of N~. 

Now observe that the given cohomology class y E Ht(N;~; G) may be used to 

define a homomorphism 

'-' :II nj Q9 II nk -> G 

according to the formula 

Zj '-' zk = yrg([zj] Q9 [zk]) 

This implies that 

Y'Y(Xj ... q, Xk ... r )a = (Xnj '-' Xnk)a, 

where Xnj '-' Xnk is the eup product of the cocycles Xnj, Xnk relative to the pairing 

just defined. W e have proved 

LEMMA 2.3. If yEHf(N'h;G) and Xj ... qEHnj ... nq(K, Ll;N)), Xk ... rEHnk•"nr 

(K, L2; ND with t=nj+nk> then 

Y'Y(Xj ... q, Xk ... r) = Xnj '-' Xnk 

where the eup product on the right is taken relative to the above pairing determined 

by y. 

We note that if y is a Postnikov invariant k~EHns+l+l(N'/.;IIs+ 1 ) the eup 

product is paired by the Whitehead product 

[rcn/Y), TCnk(Y)]CTCn511 (Y) where nj 1-nk = n 5 _11 1-1. 

Let y E H 1(Nj; G) and Xj ... q EHnj"·nq(K, L; Nj), and we shall denote R(Xj ... q)*.lJ 

by Y'Y Xj ... q in the following discussion, it is also a natural prolongation of the 

internai operation y r [2]. 
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If Xjoo.q= (Xnj, ··· Xnh, Xnh+l, 000 
, Xnq) where Xnj=O, oo• , Xnh=O, then 

R(Xjoo.q) = T(O, oo• , 0, Xnh+l, 00
' , Xnq)- T(O, oo• , 0) 

= r[i0]) Xi(L-1 J)][T(O, oo•, 0) XR(XMloo•q)]e 

~ 7g[i0])Q9i(7,.,_1 J)][T(O, oo·, 0)Q9R(xh+loo·q)]fe. 

Renee we have 

LEMMA 2.4. If y E H 1(Nj; G) and Xh+loooq E Hnh+loo•nq(K, L; N'/.+1) then 

Y7g[i0})Q9i('f.+l })][T(O, oo•, 0)Q9R(Xh+loo•q)]fe = [i(i+l })*y].yXh+loo•q. 

3. Obstruction theorems 

Let K be a geometrie complex. W e shall be interested in continuons maps 

f: K~Y. Such a map induces a cubical map K~Q(Y) which is also denoted by 

f. Conversely, every cubical map K->Q( Y) arises in this fashion form a unique 

continuo us map K ~Y. The map f is called minimal if it maps K into M. In 

the theory of the minimal complex we shall assume without loss of generality 

that the maps K ~Y are minimal. 

Therefore, a map f: Knl-> Y determines a cochain an1(/) E cn1(K; !Jl) which 

is a cocyle if and only if f admits an extension / 2 : Knz-> Y. This extension / 2 

presents an obstruction cocyle cnz+1(/2 ) E znz+1(K; II 2 ) which is represented by 

cnz+1Cfz) = k}T(an1Cf))-iJ(bzfz) 

where b2 is a basic cochain of cnz(M; li2 ) determined by setting 

b2a = d(ktw, a) for any n2-cube of M, 

we shall denote bzfz by an2(f). This obstruction is zero if and only if the map 

f 2 admits an extension / 3 : Kn3~ Y, and presents a third obstruction cocycle 

Cn3+1(f3) = krT(anlCf), anzCf))-iJ(bz/3) 

and so on. 
If f: Kn1~ Y admits an extension F = fi~-1: Kni+l~ Y, there is a cocycloid 

a 1.ooi(F)=(an1CF), an/F), ... , an;CF)) EZnloo•ni (K; ND and presents an obstruc­

tion cocycle 

cni+1+1(f') = k{T(a1.ooi(f'))-iJ(ani+l(F)). 

Let f, g: Kni+l L-> Y be two maps which agree on L. Then they induce a 

cocycloid a1oo.i(f, g) E znl·oonz(K, L; NO in which an/f, g) =an/!) -an/g), 1 <j 

< i, if kt, ... , ki-l are additive. In general, if f and g agree on Knh L they 

induce a cocycloid ah+loo·i(f, g) EZnhHoo·ni(K, L; N~+1) if kh+l, ... , ki-l are additive. 

We shall denote in the following the cohomology class of cnj-1- 1 (/), cni+l(g), 

al···i (/), aloo•i (g), aloo·i ( f, g), 000 as znj+l (/), znj-P (g), aloo•i (/), aloo·i (g), aloo·i 

(/, g), 000 respectively. 

In the following we assume that the Postnikov invariants k 1 , k 2, .•. , ki are 
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additive. 

THEOREM 3.1. Let /, g: KniLJL---7 Y be two maps which agree on L and which 

are extensible to Kni+ILJL, then 

zni+I+ 1 (f)-zni+t+ 1(g) = kf.ya1 ... ;(/, g) + 
kf.y(a1 ••• ;(f, g), a1 ... ;(g)), 

where the last term vanishes if n;+I + 1 <2n,. 

Proof. zn;+,+I(f)-zn;+,+1(g) is representable by cochain 

cni+t+l(f)-cni+1+1(g) = kfT(a, ... ;(f))-lJ(an;+1(f)) 

- kf T(a, ... ;( g)) + lJ(an;+1 (g) ). 

Since f and g coïncide on L, it follows that an;+1 ( f)- an;+, ( g) = (j'fi-giif)b;+1 is 

zero on L ; this yields the cohomology 

However, 

T(a1 ... ;(f))- T(a, ... ;(g)) = T(a, ... ;(f, g)) + T(a, ... ;(f, g) +a, ... ;(g)) 

- T(a1 ... ;(f, g))- T(a1 ••• ;(g)) 

= R(a, ... ;(f, g)) + R(a1 ... ;(f, g) +a1 ... ;(g)) 

-· R(a1 ... ;(f, g))- R(a, ... ;( g)) 

= R(a, ... ;(f, g)) + R(a1 ... ;(f, g)) aR(a, ... ;(g)) 

then our result follows from Lemma 2.1. and Lemma 2.2., since n;+I + 1 < n, + n;+I. 

THEOREM 3.2. Let f, g: Kn; JL---7Y be two maps which agree on Kn1UL and 

which are extensible ta Kn;+'UL and n;+I+1<2n2 , then 

where the last term vanishes if n;+> + 1 < n1 + nz. 

This theorem is a special case of the next theorem. 

THEOREM 3.3. Let f, g: KnïLJL-> Y be two maps which agree on K"hLJL and 

which are extensible to Kn;-rl U L and n;+> + 1 <2nh+l, then 

where the last term vanishes if n;+1+1<n,+nh+l· 

Proof. zni+!+1(f)-zni+!+l(g) is representable by a cochain 

cni-w' 1( f) --en;+, +1 ( g) = ki[ T(a1 ... ;(f)) -- T (a1 .•• ;( g)) ]- lJ[an;+I (/)- an;_1 ,( g)] 

where an;+1 ( /) -an;+J g) is zero on L. And 

TCa~ ... ,.(f)) = r[iCN) xiG+, f)][T(al···hCf)) x T(ah+l· .. ,.(f))]e, 

th en 
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T(a, ... ;(f))- T(a, ... ;(g)) 

= r[i(N) Xi(t,., DJ[ T(a, ... h(/)) x [ T(ah+l···i(f)) 

- T(ah+I-··i(g))]]e 

=' rg[i(N) (>9 i(t,., DJ[ T(a, ... h(f)) Q9 [ T(ah+l···i(f)) 

- T(ah+, ... ;(g))]]fe 

in dimensions <2nh+I• since a, ... h(f)=a, ... h(g) in our case. 

Now, as FD-maps: K--" x J~~+1F(lfi, ni) 

T(ah+I···i(f))- T(ah+I···i(g)) 

= R(ah+l ... ;(f, g) )+ R(ah+l···i(f, g) )oR(ah+1 ... ;(g)) 

and 

R(ah+l· .. ;(f; g) )oR(ah+I···i(g)) 

= r[R(ah+I···i(f, g)) x R(ah+l···i( g)) ]e 

=' rg[R(ah+I···ïCf, g)) Q9 R(ah+l···i(g) )]fe 

th en 

in dimensions less then 2nh+I . 

Renee, 

CnÎ+l +1 ( f)- CnÏ+l +le g) 

~ kirg[i(N) Q9 i(flrl-, D ][[R(a, ... h(f)) + T(O, ... , 0)] Q9 R(ah+I···i(f, g)) ]fe 

= kiMYah+l···i(f, g) +kf..t(a, ... h(f), ah+I···i(f, g)) 

by Lemma 2.4. if n;+' + 1 <2nh+l. The rest of the theorem is due to Lemma 2.2. 

Combining Lemma 2.3. and the above theorems, we can get varions formulas. 

Namely, we have 

CoROLLARY 3.4. 1) If n;+1 + 1 =2n1 in Theorem 3. 1., then 

zni+I+1(f)-zni+I+1 (g) = k{..;a1 ••• ;(f, g) +an1(f, g) '-' an1(g) 

2) If ni+l + 1 = n, + n2 in Theorem 3. 2., then 

zni+I+1(f) -zn;H+1(g) = kha2···i(f, g) +an,(f) '-' an2 Cf, g) 

3) If n;+t+1=n,+nh+t in Theorem 3.3., then 
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