The structure of rings whose quotient rings are primitive rings with minimal one sided ideals

By Manabu Harada

(Received October 22, 1959)
Recently A. W. Goldie [2] has proved that the quotient ring of a prime ring with some ascending chain condition is a simple ring with minimal condition. In this note we shall show that we can obtain the properties of a ring whose quotient ring is a primitive ring with minimal one sided ideals (P.M.I.), which are analogous to those of a prime ring in [2]. The following example shows that there exists such a ring.

Let I be the ring of rational integers. Let R_{n} be a sub-ring of matrix ring with infinite degree over the ring of rational numbers such that

$$
\left(\begin{array}{llll}
\left(a_{i j}\right) & & & \\
& 2 m_{1} & & \\
& & 2 m_{2} & \\
& & \ddots
\end{array}\right) m_{i} \in I, \quad\left(a_{i j}\right) \in I_{n} .
$$

Let $R=\bigcup_{n} R_{n}$, then if an element a of R is not zero divisor, a is the following form :

$$
a=\left(\begin{array}{lllll}
\left(a_{i j}\right) & & & & \\
& 2 m_{1} & & \\
& & 2 m_{2} & \\
& & \ddots
\end{array}\right) \quad\left|a_{i j}\right| \neq 0, \quad m_{i} \neq 0 .
$$

Hence the right (and left) quotient ring of R is $Q=\cup Q_{n}$:

$$
Q_{n}=\left(\begin{array}{cccc}
\left(a_{i j}\right) & & & \\
& m_{1} & \\
& & m_{2} & \\
& & \ddots
\end{array}\right) \quad\left(a_{i j}\right) \in Q_{n} \text { and } m_{i} \in Q^{\prime},
$$

where Q^{\prime} is the ring of rational numbers, and Q is P.M.I. .
In this note there are many statements which overlap [2], but we shall repeat those for the sake of completeness.

1. Preliminaries.

Let R be a ring with the right and left quotient ring Q and we shall call non zero divisor elements regular elements. We shall denote one sided ideals of R by Roman and ones of Q by German.

We have the following statements.
(1) If $c_{1}, c_{2}, \cdots, c_{n}$ are regular elements of R, then there exist regular elements $d_{1}, d_{2}, \cdots, d_{n}$ and c such that

$$
c_{i}^{-1}=d_{i} c^{-1} .
$$

We can prove this by the induction with respect to n, cf. Asano [1], and [2] Lemma 4.2.
(2) If A is a right, left and two sided ideal respectively, then $A Q, Q A$ and $Q A Q$ consist of $a c^{-1}, c^{-1} a$ and $d^{-1} a c^{-1}, a \in A$ and $c, d \in R$, respectively.

Cf. [2] Lemma 4.3.
(3) Let \mathfrak{r} be a non zero right ideal of Q, then $\mathfrak{r}_{\cap} R \neq(0)$.

Let S be a sub-set of Q. We shall define the following annihilators.

$$
\begin{aligned}
& S_{r}=\{x \mid \in R, \quad S x=(0)\}, \\
& S_{r}^{*}=\{x \mid \in Q, \quad S x=(0)\} \text { and } \\
& \tilde{S}=\{a \mid \in R, \text { there exists a regular element } b \text { in } R \text { such that } \\
& \left.\qquad \quad b^{-1} a \in S\right\} \cup\left(S_{\cap} R\right) .
\end{aligned}
$$

(4) Let \mathfrak{r} be a right ideal of Q, then

$$
\mathfrak{r}=\left(\mathfrak{r}_{\cap} R\right) Q .
$$

It is clear $\mathfrak{r} \supseteq\left(\mathfrak{r}_{\cap} R\right) Q$. If $x \in \mathfrak{r}$ then $x=a c^{-1} a, c \in R$ and $a=x c \in \mathfrak{r}_{\cap} R$ Hence $x \in\left(\mathfrak{r}_{\cap} R\right) Q$.

$$
\begin{equation*}
S_{r}=S_{r^{*}} \cap R \quad \text { and } \quad S_{r^{*}}=S_{r} Q \tag{5}
\end{equation*}
$$

It is clear that $S_{r} * \supseteqq S_{r} Q$. If $a \in S_{r} *$ and $a=b c^{-1}, b, c \in R$, then (0) $=S a=S b c^{-1}$ hence $b \in S_{r}$.

We have clearly

$$
\begin{equation*}
S_{r} *=(\tilde{\mathbf{S}})_{r} * \quad \text { and } \quad(\tilde{\mathbf{S}})_{r}=S_{r} * \cap R . \tag{6}
\end{equation*}
$$

Let \mathfrak{I} be a left ideal of Q, then

$$
\begin{equation*}
\left(\mathfrak{l}_{\cap} R\right)_{r}=\mathfrak{l}_{r} *_{\cap} R . \tag{7}
\end{equation*}
$$

By the definition $\tilde{\mathfrak{f}}=\mathfrak{l}_{\cap} R$ and by (6) we have $\left(\mathfrak{l}_{\cap} R\right)_{r}=\tilde{\mathfrak{l}}_{r}=\mathfrak{l}_{r}{ }^{*} \cap R$.
(8) Let I_{r} be a maximal annihilator in R, then $I_{r} Q$ is so in Q.

Let $\mathfrak{r}_{r} *$ be a maximal annihilator in Q, then $\mathfrak{r}_{r} * \cap R$ is so in R.
It is clear that $I_{r} Q$ is an annihilator. If there exists an annihilator $\mathfrak{I}_{r} *$ such that $\mathfrak{l}_{r} * \supseteqq I_{r} Q$, then $\left(\mathfrak{l}_{\cap} R\right)_{r}=\mathfrak{l}_{r} * \cap R \supseteqq I_{r} Q_{\cap} R \supseteqq I_{r}$. By (3) $\mathfrak{I}_{\cap} R \neq(0)$, and ($\left.\mathfrak{l}_{\cap} R\right)_{r} \neq R$, hence $\left(\mathfrak{l}_{\cap} R\right)_{r}=I_{r}$ and $\mathfrak{l}_{r} *=\left(\mathfrak{l}_{r} *_{\cap} R\right) Q=\left(\mathfrak{l}_{\cap} R\right)_{r} Q=I_{r} Q$. Conversely let \mathfrak{r} be a maximal annihilator, then $\mathfrak{r}_{\cap} R$ is an annihilator in R by (7). If $I_{r} \supseteqq \mathfrak{r}_{\cap} R$, by (4) we have

$$
\mathfrak{r}=\left(\mathfrak{r}_{\cap} R\right) Q \cong I_{r} Q=I_{r} * \text {, hence } \quad \mathfrak{r}=I_{r} * \supseteqq I_{r} \quad \text { and } \quad \mathfrak{r}_{\cap} R=I_{r} .
$$

Let $I(\neq(0))$ be a right ideal in R. We shall call maximal right ideals J with $J \cap I=(0)$ complements of I (denoted by $I^{c}, I^{c^{\prime}}, \cdots$).

Let I be a right ideal in R. For any complement I^{c} of I in R there exists a complement (IQ) ${ }^{c^{\prime}}$ of $I Q$ such that

$$
\begin{equation*}
I^{c} Q=(I Q)^{c^{\prime}}, \tag{9}
\end{equation*}
$$

and conversely for any complement $(I Q)^{c^{\prime}}$ of $I Q$ there exists a complement I^{c} of I satisfying (9).

If $x \in\left(I Q_{\cap} I^{c} Q\right)$, then $x=i c^{-1}=j d^{-1}, i \in I, j \in I^{c}$ and we have by (2) $c^{-1}=a f^{-1}$, $d^{-1}=b f^{-1}$, hence $i a=j b \in I_{\cap} I^{c}=(0)$ and $x=0$. If there exists a right ideal i such that $I^{c} Q \subseteq \dot{\mathrm{i}}$ and $\mathrm{i}_{\cap} I Q=(0)$, then $\mathfrak{i}_{\cap} R_{\cap} I \subseteq \mathfrak{i}_{\cap} I Q=(0)$, hence since $I^{c} \leqq \mathrm{i}_{\cap} R, I^{c}$ $=\mathrm{i}_{\cap} R$ and $I^{c} Q=\left(\mathrm{j}_{\cap} R\right) Q=\mathrm{i}$. Therefore $I^{c} Q$ is a complement of $I Q$. Conversely let $(I Q)^{c^{\prime}}$ be a complement, then from the fact (IQ) ${ }^{c^{\prime}} \cap R_{\cap} I=(0),(I Q)^{c^{\prime}} \cap R \subseteq I^{c}$ hence $(I Q)^{c^{\prime}}=\left((I Q)^{c^{\prime}} \cap R\right) Q \subseteq I^{c} Q$. From the above $I^{c} Q=(I Q)^{c^{\prime \prime}}$, hence $(I Q)^{c^{\prime}}$ $=(I Q)^{c^{\prime \prime}}=I^{c} Q$.

Let \mathfrak{i} be a right ideal in Q. For any complement \mathfrak{i}^{c} of \mathfrak{i} in Q there exists a complement $\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}}$ of $\left(\mathfrak{i}_{\cap} R\right)$ in R such that

$$
\begin{equation*}
\mathfrak{i}^{c} \cap R=(\mathfrak{i} \cap R)^{c^{\prime}} \tag{10}
\end{equation*}
$$

and conversely for any complement $\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}}$ there exists a complement right ideal \mathfrak{i}^{c} in Q satisfying (10).

From the fact $\mathfrak{i}_{\cap} R_{\cap} \mathfrak{i}^{c} \cap R=(0)$ we have $\mathfrak{i}^{c} \cap R \subseteq\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}} . \quad \mathfrak{i}^{c}=\left(\mathfrak{i}^{c} \cap R\right) Q \subseteq$ $\left(\mathfrak{i}_{\cap}^{\prime} R\right)^{c^{\prime}} Q=\left(\left(\mathfrak{i}_{\cap} R\right) Q\right)^{c^{\prime \prime}}=\mathfrak{i}^{c^{\prime \prime}}$ by (9). Hence $\mathfrak{i}^{c}=\mathfrak{i}^{c^{\prime \prime}}$ and $\mathfrak{i}^{c} \cap R=\mathfrak{i}^{c^{\prime \prime}} \cap R=\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}} Q_{\cap} R$ $\supseteq\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}}$. Conversely $\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}} \cap\left(\mathfrak{i}_{\cap} R\right)=(0)$, then $\mathfrak{i}_{\cap}\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}} Q=(0)$. Hence $\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}} Q \subseteq \mathfrak{i}^{c}$ for some complement I^{c} of I and $\mathfrak{i}^{c} \cap R \subseteq\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}}$. By the above $\mathfrak{i}^{c} \cap R=\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime \prime}} \supseteqq\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}}$, hence $\mathfrak{i}^{c} \cap R=\left(\mathfrak{i}_{\cap} R\right)^{c^{\prime}}$.

2. Uniform right ideals.

We can classify the right ideals in R as follows;
$I \equiv J$ if and only if there exist regular elements d, d^{\prime} in R such that for any elements $r \in I, r^{\prime} \in J, r d \in J$ and $r^{\prime} d^{\prime} \in I$.

It is clear that

$$
I \equiv J \text { if and only if } I Q=J Q
$$

We shall denote the class containing I by [I].
Proposition 1. The right ideals in Q are lattice isomorphic to $\{[I]\}$.
Proof. From the definition and (3) it is clear that this correspondence is onto and that $\left(I_{1 \cap} I_{2}\right) Q \subseteq I_{1} Q_{\cap} I_{2} Q$. If $x \in I_{1} Q_{\cap} I_{2} Q, x=r_{1} q_{1}^{-1}=r_{2} q_{2}^{-1}, r_{i} \in I_{i}$ and by (1) we have $x=r_{1} p_{1} t^{-1}=r_{2} p_{2} t^{-1}$, hence $r_{1} p_{1}=r_{2} p_{2} \in I_{1 \cap} I_{2}$ and $x \in\left(I_{1 \cap} I_{2}\right) Q$. We have clearly $\left(I_{1} \cup I_{2}\right) Q=I_{1} Q \cup I_{2} Q$.
$[I] Q_{\cap} R$ is the unique maximal right ideal in [I]. Since Q is P.M.I. there exist minimal right ideals and we call a right ideal in R which corresponds to a minimal right ideal in Q an uniform right ideal and the unique maximal right ideal in this class basic right ideal.

Proposition 2. If U is a uniform right ideal, then for any non zero right ideals $I, J(\subseteq U) I_{\cap} J \neq(0)$.

Proof. Since U is uniform, $U Q$ is irreducible, hence $I Q=J Q=U Q$. From Proposition $1 \quad I_{\cap} J \neq 0$.

Lemma 1. ${ }^{1)}$ Let Q be a P.M.I. ring. If a right ideal \mathfrak{r} is not minimal, then it contains at least two minimal right ideals.

Proof. Let \mathfrak{r} contain only one minimal right ideal \mathfrak{r}_{0}. Then $\mathfrak{r}_{\mathfrak{z}} \subset \mathfrak{r}_{\curvearrowright z}$ and $\mathfrak{r}_{\mathfrak{z}}=\mathfrak{r}_{0}=e Q$ where \mathfrak{z} is the socle of Q. Hence $\mathfrak{r}_{\mathfrak{z}}=e \mathfrak{r}_{\mathfrak{z}}$. For any elements $r \in \mathfrak{r}, z \in \mathfrak{z}$ we have $r z=e r z$ i.e. $(e r-r) z=0$. Therefore $e r-r \in_{z_{l}}=(0)$ and $e r=r$. Hence $e \mathfrak{r}=\mathfrak{r}=e Q$.

Proposition 3. Let U be a right ideal in R. If for any non zero right ideals I, J in $U I_{\cap} J \neq(0)$, then U is uniform.

Proof. If U is not uniform, there exist two minimal right ideals $\mathfrak{r}_{1}, \mathfrak{r}_{2}$ in $U Q$ by Lemma 1. Since $\mathfrak{r}_{1 \cap} U \neq(0), \mathfrak{r}_{2 \cap} U \neq(0)$ and $\mathfrak{r}_{1 \cap} U \mathfrak{r}_{2 \cap} U=(0)$, it is a contradiction.

Proposition 4. Let I be a right ideal in R. I is uniform if and only if there exist elements y_{1}, y_{2} and regular elements $y_{1}^{\prime}, y_{2}^{\prime}$ in R such that for any elements $x, x^{\prime} \in I x y_{1}^{\prime}=x^{\prime} y_{1}, x^{\prime} y_{2}^{\prime}=x y_{2}$.

Proof. Let $x q^{-1}$ and $x^{\prime} q^{\prime-1}$ be elements in $I Q$. Then by the hypothesis $x^{\prime} y^{\prime}=x y$ with regular element y^{\prime}. Hence $x^{\prime} q^{\prime-1}=x y y^{\prime-1} q^{\prime-1}=x q^{-1} q y y^{\prime-1} q^{\prime-1} \in x Q$, therefore $I Q$ is irreducible. The converse is similar.

Proprsition 5. There exist mutually isomorphic uniform right ideals in any two classes which contain basic right ideals.

Proof. Let I_{1} and I_{2} be basic. Since Q is P.M.I. there exists a Q-isomorphism λ of $I_{1} Q$ to $I_{2} Q$. Let $I_{i} Q=e_{i} Q, e_{i}=r_{i} x_{i}^{-1}, r_{i} \in I_{i}, x_{i} \in R$ and $\lambda\left(e_{1}\right)=e_{2} q, q \in Q$. Then $\lambda\left(r_{1}\right)=\lambda\left(e_{1} x_{1}\right)=e_{2} q x_{1}$. If we put $x_{2} q x_{1}=y z^{-1}, y, z \in R$, we have $0 \neq \lambda\left(r_{1} z\right)=e_{2} q x_{1} z$ $=e_{2} x_{2}^{-1} x_{2} q x_{1} z=r_{2} y$. Since $I_{1} Q$ and $I_{2} Q$ are irreducible, $\left[r_{1} z R^{1}\right]^{2)}=\left[I_{1}\right]$ and $\left[r_{2} y R^{1}\right]$ $=\left[I_{2}\right]$. Hence λ sends $r_{1} z R^{1}$ isomorphically onto $r_{2} y R^{1}$.

If e is a primitive idempotent in R, then so is e in Q, hence $e R$ is basic. But basic right ideals are not always principal even if R has the unit. For example, let K be a field and x be an independent over K and R_{0} be the subring of elements in $K[x]$ without constant-term. If we put $R=E K+\cup\left(R_{0}\right)_{n}$ as in the first ex-

[^0]ample, then its quotient ring is $Q=E K+\cup K(x)_{n}$. Let $\mathfrak{r}=e_{11} Q$. If $\mathfrak{r}_{\cap} R$ is principal: $\mathfrak{r}_{\cap} R=\left(\begin{array}{cccc}f_{1}, f_{2} \cdots f_{n} \\ 0 \cdots & \cdots & \cdots & 0 \\ 0 \cdots & \cdots & \cdots & 0\end{array}\right) R$, there exist g_{1}, \cdots, g_{n} and $k \neq 0 \in K$ such that $f_{1}\left(k+g_{1}\right)+\cdots+f_{n} g_{n}=x$, hence min. degree of $f_{1}=1$. On the other hand there exist $g_{1}^{\prime}, \cdots, g_{n}^{\prime}$ and $k^{\prime} \neq 0 \in K$ such that $f_{1}\left(k_{1}^{\prime}+g_{1}^{\prime}\right)+\cdots+f_{n} g_{n}^{\prime}=0$, hence min. degree of $f_{1}(x) \geqq 2$. This is a contradiction. Next example shows that basic right ideals are not always mutually isomorphic. Let $R=\left(R_{0}\right)_{n}+e_{33} K+\cdots+e_{n n} K$. If an element x of R is not a zero-divisor in R then x is regular in $K(x)_{n}$, for the adjoint of x is in R. Let $\left(x_{i j}\right),\left(y_{i j}\right)$ be elements of R, and suppose that ($x_{i j}$) is non zero-divisor. Then $\left(x_{i j}\right)^{-1}\left(y_{i j}\right)\left|x_{i j}\right| E=a d j\left(x_{i j}\right) \cdot\left(y_{i j}\right)$ is in R, hence ($x_{i j}$)adj $\left(x_{i j}\right) \cdot\left(y_{i j}\right)=\left(y_{i j}\right)\left|x_{i j}\right| E$ and $\left|x_{i j}\right| E$ is a non zero divisor. Therefore R has the quotient ring $Q=K(x)_{n} . \quad e_{11} Q_{\cap} R$ is basic and not principal, because if $e_{11} Q_{\cap} R=\left(e_{11} \dot{f}_{1}+e_{12} f_{2}+\cdots+e_{1 n} f_{n}\right) R, f_{i} \in R_{0}$ then $x=\sum_{i=1}^{n} f_{i} g_{i}, g_{i} \in R_{0}$ which is a contradiction. On the other hand $e_{33} Q_{\cap} R=e_{33} R$ is basic and principal. Therefore $e_{11} Q_{\cap} R$ is not isomorphic to $e_{33} R$.

Proposition 6. Any right ideal I in R contains a uniform right ideal in R.
Proof. Since Q is P.M.I., $I Q$ contains a minimal right ideal \mathfrak{r} in Q, and further (0) $\neq I_{\cap} \mathfrak{r}=I_{\cap} \mathfrak{r}_{\cap} R$ and $\left(I_{\cap} \mathfrak{r}_{\cap} R\right) Q=\mathfrak{r}$, hence $I_{\cap} \mathfrak{r}_{\cap} R$ is uniform.

Proposition 7. Let U be a uniform right ideal in R. Then

$$
U_{l}=\left\{x \mid \in R, x_{r \cap} U \neq(0)\right\} .
$$

Proof. If $x u=0$ for any $u \in U$, then since $U Q$ is irreducible, $U Q=u Q$, hence $x U Q=x u Q=(0)$. Therefore $x \in U_{l}$.

An element u in R is called right uniform if $u R^{1}$ is a uniform right ideal (equivalently if $u R$ is uniform ($R_{l}=R_{r}=(0)$)).

We can define similarly left uniform elements. But the left uniform elements coincide with the right uniform elements, because if u is left uniform, then $Q u=Q e$ is irreducible where e is a primitive idempotent, since Q is P.M.I., $e Q$ is irreducible, hence $u Q=u e Q$ is also irreducible. Therefore u is right uniform, and the coverse is similar. Hence we may call right (left) uniform elements simply uniform elements.

Proposition 8. Let I be a right ideal in R. If there exists some uniform element u such that $u_{r \cap} I=(0)$, then I is uniform. Furthermore if R is prime, then the converse is true.

Proof. If $u_{r} \sqcap I=(0)$, for any element $a q^{-1} \in u_{r}{ }^{*} \cap I Q, a \in I$ we have $u a=0$, hence $a \in I_{\cap} u_{r}=(0)$ and so $u_{r}{ }^{*} \cap I Q=(0)$. Let θ be a mapping: $q \rightarrow u q$. Since $\theta^{-1}(0) \cap I Q=(0)$, we have a isomorphism $I Q \approx u Q$, hence I is uniform. Let R be prime and I be uniform. If $u_{r \curvearrowright} I \neq(0)$ for all element u in I, then $I^{2}=0$ by Proposition 7. This is a contradiction.

From the definition $x U$ is uniform if U is so, hence the sum R_{0} of all uniform right ideals is two sided ideal and R_{0} is the sum of all uniform elements. Therefore R_{0} coincides with the sum of all left uniform ideals. Furthermore $R_{0} Q$ is the socle \bar{z} of $Q . \quad R_{0} Q \leqq_{\bar{z}}$ and since $\left(\mathfrak{r}_{i \cap} R\right) Q=\mathfrak{r}_{i}$, for $x \in_{z}, x \in \Sigma \mathfrak{r}_{i}$ and $x \in R_{0} Q$.

Theorem 1. The cardinal numbers of the maximal length of direct-sums of basic right ideals are equal. Further if Q is a sub-P.M I. ring of $\mathfrak{R}_{\mathfrak{m}}(\mathfrak{m})$ with Δ-dim $\mathfrak{m}=\Delta$-dim \mathfrak{m}^{\prime}, then the cardinal numbers for basic left ideals coincide with ones for basic right ideals, where $\mathfrak{L}_{\mathfrak{m}^{\prime}}(\mathfrak{m})$ is the ring of continuous endomorphisms of \mathfrak{m}, topologized by \mathfrak{m}^{\prime}-topology, and Δ is the division ring of $\mathfrak{L}_{\mathfrak{m}}(\mathfrak{m})$-endomorphisms of \mathfrak{m}.

Proof. Let $B=\left\{B_{\alpha}\right\}$ be the set of basic right ideals. We can order directsums $S_{j}=\sum_{\alpha \in j} \oplus B_{\alpha}$ of elements B_{α} of B as follows:
$S_{i}>S_{j}$ if and only if $S_{i}=S_{j} \oplus_{\alpha \in i-j} \sum_{\alpha}$. By the Zorn's Lemma there exists a maximal element S_{0} in this order. Then S_{0} meets all basic right ideals. If $S_{0} Q \subsetneq z$ there exists a minimal right ideal \mathfrak{r}_{0} such that $\mathfrak{r}_{0 \cap \cap} S_{0} Q=(0)$. Hence (0) $=R_{\cap \mathfrak{x}_{0} \cap S_{0} Q \supseteqq R_{\cap} \mathfrak{x}_{0} \cap S_{0} \text { and since } R_{\cap} \mathfrak{r}_{0} \text { is basic, it is a contradction. There- }}^{\text {. }}$ fore $S_{0} Q=\mathfrak{z}$. Since Q is P.M.I. the right dimension of z is constant. It is also true for left basic ideals. Further if Q is as in Theorem, then the left dimension coincides with the right one.

Theorem 2. Let U be a uniform right ideal in R and $\varepsilon(U)$ be the R-endomorphism ring of U. Then non zero element of $\varepsilon(U)$ is non singular. $\varepsilon(U)$ has the right quotient division ring which is the Q-endomorphism ring of Q-irreducible module.

Proof. If $\phi \in \varepsilon(U)$, then ϕ can be extended to a Q-endomorphism of $U Q$. Because if $u q^{-1}=u^{\prime} q^{\prime-1} \in U Q$, then there exist p, s, d by (1) such that $q^{-1}=p d^{-1}, q^{\prime-1}$ $=s d^{-1}$, hence $\quad \phi\left(u q^{-1}\right)=\phi(u) q^{-1}=\phi(u) p d^{-1}=\phi(u p) d^{-1}=\phi\left(u^{\prime} s\right) d^{-1}=\phi\left(u^{\prime}\right) s d^{-1}$ $=\phi\left(u^{\prime}\right) q^{\prime-1}$. Since $U Q$ is irreducible, the Q-endomorphism ring of $U Q$ is a division ring. Hence if ϕ is not zero, then ϕ is non singular. Let ψ be any Q-endomorphism of $U Q$. Then there exists y in $U Q$ such that $\psi(y)=u \in U ; y=u^{\prime} x^{-1}, u^{\prime} \in U$ and for any element w in $U \psi \lambda_{n^{\prime}} w=\psi\left(u^{\prime} w\right)=\psi(y x w)=u x w=\lambda_{n x} w$ where $\lambda_{a}: x \rightarrow a x$, $x \in R$. Hence $\psi=\lambda_{u x} \lambda_{u \prime}{ }^{-1}$.

3. Complements and annihilators.

Theorem 3. Let B be basic then $B=B_{l r}$. A right ideal B in R is basic if and only if B is a minimal annihilator. A right ideal M in R is a maximal annihilator if and only if $M=u_{r}$ where u is a uniform element.

Proof. Let B be basic, then $B=B Q_{\cap} R$ and $B Q=e Q, e=e^{2}$. By (7) $B_{l r}$ $=\left(B Q_{\cap} R\right)_{l_{r}}=B Q_{l r \cap} R=e Q_{l r^{\prime} \cap} R=e Q_{\cap} R=B$. If $B \supseteqq L_{r}$ then $\quad(Q L)_{r}=L_{r} Q \leqq B Q$. Since $B Q$ is irreducible $B Q=(Q L)_{r}$. Hence $B=B Q_{\cap} R=(Q L)_{r} R R=L_{r}$. Therefore
B is a minimal annihilator. Let $I=L_{r}$ be a minimal annihilator. If $L_{r} Q \supseteqq L_{r}^{\prime *}$ for some subset L^{\prime} in Q, then $L_{r}=L_{r} Q_{\cap} R \supseteqq L_{r}^{\prime}{ }^{*} \cap R=\tilde{L}_{r}^{\prime}$ by (6). Hence $L_{r}=\tilde{L}_{r}^{\prime}$ and $L_{r} Q=\tilde{L}_{r}^{\prime} Q=L_{r}^{\prime} *$. Therefore $L_{r} Q$ is also a minimal annihilator. Let $\mathfrak{r}=e Q$ be an irreducible right ideal in Q contained in $L_{r} Q$. Then $e Q=\left(Q_{(1-e)}\right)_{r}$ and since $L_{r} Q$ is a minimal annihilator, $e Q=L_{r} Q$, hence $L_{r}=L_{r} Q_{\cap} R$ is basic. Let M be a maximal annihilator. By (8) $M Q=\mathfrak{r}_{r} *$ is so in Q. Let r_{0} be an irreducible left ideal contained in \mathfrak{l}, then $Q \neq \mathfrak{l}_{0 r} * \supseteq \mathfrak{l}_{r} *$, hence $\mathfrak{l}_{o r} *=\mathfrak{l}_{r} *=M Q$. Therefore $M \subseteq \mathrm{I}_{0 r}{ }^{*} \cap R=\left(\mathrm{I}_{0 \cap} \cap R\right)_{r}=B_{r}$ and B is basic. From Proposition 7 we have $B_{r}=u_{r}$ for any element u in B. Conversely if u is a uniform element, then $Q u$ is irreducible, hence $(Q u)_{r^{*}}=u_{r}^{*}$ is a maximal right ideal. By (8) $u_{r}=u_{r}{ }^{*} R R$ is a maximal annihilator.

Theorem 4. Let M be a right ideal in $R . M$ is a maximal complement in R if and only if $M Q$ is a maximal one of right ideals \mathfrak{r} with $(\mathfrak{r}: Q)_{r}=(0)$ and $M Q \quad R=M$ or if and only if $M=B^{c}$ where B is basic. Let M be a maximal complement in R. Then (1) for any basic right ideal $B M \supseteqq B$ or $M_{\cap} B=(0)$, (2) M is minimal irreducible ${ }^{3}$, (3) if M_{0} is of the maximal length of direct-sum of basic right ideals contained in M, then there exists a basic right ideal B such that $M \oplus B$ is of the maximal length of direct-sum of basic right ideals in R and (4) M^{c} is basic. Maximal annihilators are maximal complements.

Proof. Let M be a maximal complement in $R ; M=I^{c}$. By (9) $M Q=(I Q)^{c^{\prime}}$. Let $M Q \equiv \mathrm{i}^{c}$. Since $(\mathrm{i} \cap R)^{c^{\prime}}=\mathrm{j}^{c} \cap R \supseteqq M, M Q=\left(\mathrm{i}^{c} \cap R\right) Q=\mathrm{j}^{c}$, hence $M Q$ is a maximal complement in Q, and $M Q_{\cap} R=M$. Let \mathfrak{r} be a right ideal with ($\left.\mathfrak{r}: Q\right)_{r}=(0)$ and $\mathfrak{r} \supseteq M Q$. Then since $\mathfrak{r} \searrow_{\mathfrak{z}}$ there exists a minimal right ideal \mathfrak{r}_{0} such that $\mathfrak{r}_{\cap} \mathfrak{r}_{0}=(0)$. Hence r is contained in a maximal complement. Therefore $r=M Q$. Conversely if $M Q$ satisfies the property mentioned in Theorem, then $M Q \perp_{\mathfrak{z}}$ and $M Q_{\cap} \mathfrak{x}_{0}=(0)$; \mathfrak{r}_{0} a minimal right ideal, and $M Q \subseteq \mathfrak{r}_{0}^{c}$. Since $\left(\mathfrak{r}_{0}^{c}: Q\right)=(0), M Q=\mathfrak{r}_{0}^{c}$. If $M Q \subset \mathfrak{r}^{c}$, then $\left(\mathfrak{r}^{c}: Q\right)_{r}=(0)$. By (10) $M=M Q_{\cap} R=\left(\mathfrak{r}_{0}^{c} \cap R\right)=\left(\mathfrak{r}_{0} \cap R\right)^{c^{\prime}}$. Further if $M \subseteq I^{c}$ then $M Q \subseteq I^{c} Q=(I Q)^{c^{\prime}}$, hence $M Q=I^{c} Q$. Therefore $M=I^{c}$, and M is a maximal complement. Let M be a maximal complement in R, then $M Q$ is so in Q. Hence there exists a minimal right ideal \mathfrak{r}_{0} such that $\mathfrak{r}_{0} \cap M Q=(0)$ and $M Q=\mathfrak{r}_{0}^{c} . M=M Q_{\cap} R$ $=\mathfrak{r}_{0}^{c} \cap R=\left(\mathfrak{r}_{0} \cap R\right)^{c^{\prime}}$ by (10) and $\left.\mathfrak{r}_{0}\right\urcorner R$ is basic. Conversely let $M=B^{c}$. $M Q=B^{c} Q$ $=(B Q)^{c^{\prime}}$ and $B Q$ is minimal. If $z=\left(B Q^{c} \cap z\right) \oplus B Q \oplus \mathfrak{r}_{1}$, where z is the socle of Q, then for $y\left(\in\left(B Q^{c^{\prime}} \oplus \mathfrak{r}_{1}\right) \cap B Q\right)=x_{1}+x_{2}, x_{1} \in B Q^{c^{\prime}}, x_{2} \in \mathfrak{r}_{1}$, we have $x_{1}=y-x_{2} \in(B Q \oplus$ $\left.\left.\mathfrak{r}_{1}\right) \cap B Q^{c^{\prime}} \subseteq{ }_{\mathrm{z}}\right\urcorner(B Q)^{c^{\prime}}$. Hence $\left((B Q)^{c^{\prime}} \oplus \mathfrak{r}_{1}\right) \cap B Q=(0)$ and $\mathfrak{r}_{1}=(0)$. If $M Q \subseteq \mathfrak{r}^{c}$, then $r^{c}>_{\text {子 }}$ hence $\mathfrak{r}^{c} \cap B Q=(0)$ and $r^{c}=M Q$. Therefore $M Q$ is a maximal complement in Q and further $B^{c}=M \cong M Q-R=(B Q)^{c^{\prime}} \cdot R=(B Q \cap R)^{c^{\prime \prime}}=B^{c^{\prime \prime}}$ and we have $M=M Q \cap R$. 1). Let B be basic. Since $B Q$ is a minimal right ideal, $B Q \subseteq M Q$ or

[^1]$B Q_{\cap} M Q=(0)$. Hence $B \subseteq M Q_{\cap} R=M$ or $M_{\cap} B=(0)$. 2). If $M \subseteq N, M \subseteq S$, and $M=N_{\cap} S$, then $M Q \subseteq S Q$ for $M Q=S Q$ implies ' $M=S$. Hence $S Q \supseteqq \delta$ and $N Q \supseteq{ }_{\gamma}$. Therefore $N Q_{\cap} S Q \supseteq 子$ and this is a contradiction. If $M_{0} \subseteq M$, then $M_{0}=\left(M_{0} \oplus\right.$ $\left.M^{c}\right) \cap M$, hence M is minimal irreducible. From the above argument and the fact that $M Q_{\cap} R=M, M$ is a maximal complement. Let $M Q_{\cap \mathfrak{r}_{0}}=(0)$ for a minimal right ideal \mathfrak{r}_{0}. Since $M Q \oplus \mathfrak{r}_{0} \supseteq M Q, M Q \oplus \mathfrak{r}_{0} \supseteq$. We define the right ideal
$\dot{\mathrm{i}}=\left\{j \mid \in M Q\right.$, there exists an element $z \in_{\mathfrak{z}}$ such that $\left.z=j+r, r \in \mathfrak{x}_{0}\right\}$.
 $M Q_{\cap} R \supseteqq \mathfrak{i}_{\cap} R=\Sigma \mathfrak{r}_{i \cap} R$. If (MQ) ${ }^{c}$ is not minimal, then it contains two minimal right ideals, $\mathfrak{r}_{1}, \mathfrak{r}_{2}$ by Lemma 1. Hence $M Q_{\cap}\left(\mathfrak{r}_{1} \oplus \mathfrak{r}_{2}\right)=(0)$ and $\left(M Q \oplus \mathfrak{r}_{1}\right) \mathfrak{r}_{2}=(0)$. Therefore since $(M Q)^{c}$ is minimal and $(M Q)^{c}=M^{c^{\prime}} Q, M^{c^{\prime}}$ is uniform and by (1) $M^{c^{\prime}}$ is basic. Let M^{\prime} be a maximal annihilator. By (8) $M^{\prime} Q=\mathfrak{r}_{r} *$ is so in Q. If $\mathfrak{r}_{0}=Q e$ is a minimal left ideal in \mathfrak{r}, then $\mathfrak{r}_{r} *=\mathfrak{r}_{o r} *=(1-e) Q$ and $\mathfrak{r}_{r} *_{\cap} e Q=(0)$. Since $\mathfrak{r}_{r} *$ is maximal, $\mathfrak{r}_{r} *$ is a maximal complement.

The following example with field Q / z analogous to the first one in this note shows that a maximal complement is not always a maximal annihilator. Let \mathfrak{r} be the right ideal generated by elements $e_{11}+e_{21}, e_{22}+e_{32}, \cdots$. Since $(\mathfrak{m} / \mathfrak{r m}: \Delta)=1$, \mathfrak{r} is a maximal right ideal contained in \mathfrak{z}, where \mathfrak{m} is an irreducible Q-module and Δ is its Q-endomorphism ring. If $\mathfrak{r}^{*} \supseteqq \mathfrak{r}$ then an element x of $\mathfrak{r}^{*}-\mathfrak{r}$ is of the following from

$$
x=x_{1}+\alpha E, \quad \alpha \in \Delta \quad \text { and } x_{1} \in_{\mathfrak{z}} .
$$

If $\alpha \neq 0$, then $x e_{i i}=\alpha e_{i i} \in r^{*}$ for a sufficiently large i. Hence $r^{*} \supseteq_{\}}$. If $\alpha=0$, then $x \in_{\mathcal{J}}$. Therefore $\mathfrak{r}^{*} \supseteq_{\mathfrak{\gamma}}$. From Theorem $4 R_{\cap} \mathfrak{r}$ is a maximal complement but not a maximal annihilator since r is not maximal. Furthermore in this ring R if a right ideal M is minimal irreducible and $M=M Q_{\cap} R$, then M is maximal complement. Because if M is minimal irreducible then $M Q$ is so in Q. Since \mathfrak{r} is minimal irreducible $M Q \supset_{\mathfrak{z}}$, hence $M Q \subseteq \mathfrak{r}_{0}^{c}$ for some minimal right ideal \mathfrak{r}_{0}. If $\mathfrak{r}_{0}^{c} \supsetneq M Q$ then $M Q=\mathfrak{r}_{0}^{\mathfrak{c}} \cap\left(M Q \oplus \mathfrak{r}_{0}\right)$ is not irreducible. Hence $M Q=\mathfrak{r}_{0}^{c}$ and by the first mention in the proof $M Q$ is a maximal complent.

Theorem 5. If Q satisfies the minimal conditions, then the complement right ideals coincide with the annihilator right ideals. A right ideal M is a maximal complement if and only if M is minimal irreducible and M conatins no regular elements.

Proof. Let $I=J^{c}$ be a complement right ideal. $I Q=J^{c} Q=(J Q)^{c^{\prime}}=(e Q)^{c^{\prime}}$ $=(1-e) Q=(Q e)_{r}$ where $e^{2}=e, J Q=e Q$, because Q is a simple ring with minimal conditions. On the other hand if $I Q_{\ulcorner } \cdot R=I^{\prime} \supseteqq I$ then $I^{\prime}\left\ulcorner J \neq(0)\right.$, hence $(0) \neq I^{\prime} Q_{\cap}$ $J Q$ which is a contradiction. Therefore $I=J^{c}=J^{c} Q_{\cap} R=(Q e)_{r} \cap R=(Q e \cap R)_{r}$. Conversely if $I=J_{r}$ then $J_{r}=J_{r^{*}} \cap R=(e Q)^{c} \cap R$ where $J_{r^{*}}=(1-e) Q$. By (10)
$J_{r}=J_{r}{ }^{*} \cap R=(e Q)^{c} \cap R=\left(e Q_{\cap} R\right)^{c}$. Let M be a minimal irreducible right ideal with $M Q \neq Q$. Then there exists a maximal right ideal \mathfrak{r} which contains $M Q, \mathfrak{r}_{\cap} R \supseteqq M$ and since from Theorem $4 \mathfrak{r}_{\cap} R$ is minimal irreducible, $M=\mathfrak{r}_{\cap} R$ is a maximal complement.

Bibliography

[1] K. Asano, Über die Quotientenbildung von Schiefringen, Journ. of Math. Soc. of Japan, vol. 1 (1947).
[2] A. W. Goldie, The structure of prime ring under ascending chain conditions, Proc. London Math. Soc., vol. 8 (1958), 590-608.
[3] N. Jacobson, Structure of rings, Amer. Math. Soc., Press (1956).

[^0]: 1) Mr. Kanzaki kindly pointed out to me this proof.
 2) $a R^{1}$ means the right ideal in R generated by a.
[^1]: 3) From this theorem a right ideal l is called irreducible if $I=M \cap N$ implies $I=M$ or $I=N$.
