The structure of rings whose quotient rings are primitive rings with minimal one sided ideals

By Manabu HARADA

(Received October 22, 1959)

Recently A. W. Goldie [2] has proved that the quotient ring of a prime ring with some ascending chain condition is a simple ring with minimal condition. In this note we shall show that we can obtain the properties of a ring whose quotient ring is a primitive ring with minimal one sided ideals (P.M.I.), which are analogous to those of a prime ring in [2]. The following example shows that there exists such a ring.

Let I be the ring of rational integers. Let R_n be a sub-ring of matrix ring with infinite degree over the ring of rational numbers such that

$$\begin{pmatrix} (a_{ij}) \\ 2m_1 \\ 2m_2 \\ \ddots \end{pmatrix} m_i \in I, \quad (a_{ij}) \in I_n.$$

Let $R = \bigcup_{n} R_n$, then if an element *a* of *R* is not zero divisor, *a* is the following form:

$$a=\left(egin{array}{c} (a_{ij}) & & \ & 2m_1 & \ & 2m_2 & \ & \ddots \end{array}
ight) |a_{ij}| \pm 0, \ m_i \pm 0.$$

Hence the right (and left) quotient ring of R is $Q = \bigcup Q_n$:

$$Q_n = \begin{pmatrix} (a_{ij}) \\ m_1 \\ m_2 \\ \ddots \end{pmatrix} (a_{ij}) \in Q_n \text{ and } m_i \in Q',$$

where Q' is the ring of rational numbers, and Q is P.M.I..

In this note there are many statements which overlap [2], but we shall repeat those for the sake of completeness.

1. Preliminaries.

Let R be a ring with the right and left quotient ring Q and we shall call non zero divisor elements regular elements. We shall denote one sided ideals of R by Roman and ones of Q by German.

We have the following statements.

Manabu HARADA

(1) If c_1, c_2, \dots, c_n are regular elements of R, then there exist regular elements d_1, d_2, \dots, d_n and c such that

$$c_i^{-1} = d_i c^{-1}$$

We can prove this by the induction with respect to n, cf. Asano [1], and [2] Lemma 4.2.

(2) If A is a right, left and two sided ideal respectively, then AQ, QA and QAQ consist of ac^{-1} , c^{-1} a and $d^{-1}ac^{-1}$, $a \in A$ and $c, d \in R$, respectively.

Cf. [2] Lemma 4.3.

(3) Let \mathfrak{r} be a non zero right ideal of Q, then $\mathfrak{r}_{\cap}R \neq (0)$.

Let S be a sub-set of Q. We shall define the following annihilators.

 $S_r = \{x | \in R, Sx = (0)\},$ $S_r^* = \{x | \in Q, Sx = (0)\}$ and $\tilde{S} = \{a | \in R, \text{ there exists a regular element b in } R \text{ such that }$ $b^{-1}a \in S\}^{\cup}(S_{\cap}R).$

(4) Let \mathfrak{r} be a right ideal of Q, then

$$\mathfrak{r} = (\mathfrak{r}_{\cap} R) Q.$$

It is clear $\mathfrak{r} \supseteq (\mathfrak{r} \cap R) Q$. If $x \in \mathfrak{r}$ then $x = ac^{-1} a$, $c \in R$ and $a = xc \in \mathfrak{r} \cap R$ Hence $x \in (\mathfrak{r} \cap R) Q$.

(5)
$$S_r = S_r *_{\bigcirc} R \quad and \quad S_r * = S_r Q.$$

It is clear that $S_r*\supseteq S_rQ$. If $a \in S_r*$ and $a=bc^{-1}$, $b, c \in R$, then $(0)=Sa=Sbc^{-1}$ hence $b \in S_r$.

We have clearly

(6)
$$S_r * = (\tilde{S})_r * \text{ and } (\tilde{S})_r = S_r *_{\cap} R.$$

Let i be a left ideal of Q, then

$$(7) \qquad (\mathfrak{l}_{\cap} R)_r = \mathfrak{l}_r *_{\cap} R.$$

By the definition $\tilde{\mathfrak{l}} = \mathfrak{l}_{\cap} R$ and by (6) we have $(\mathfrak{l}_{\cap} R)_r = \tilde{\mathfrak{l}}_r = \mathfrak{l}_r *_{\cap} R$.

(8) Let I_r be a maximal annihilator in R, then I_rQ is so in Q. Let $\mathfrak{l}_r *$ be a maximal annihilator in Q, then $\mathfrak{l}_r * \cap R$ is so in R.

It is clear that I_rQ is an annihilator. If there exists an annihilator \mathfrak{l}_r* such that $\mathfrak{l}_r*\supseteq I_rQ$, then $(\mathfrak{l}_{\cap}R)_r=\mathfrak{l}_r*_{\cap}R\supseteq I_rQ_{\cap}R\supseteq I_r$. By (3) $\mathfrak{l}_{\cap}R\neq(0)$, and $(\mathfrak{l}_{\cap}R)_r\neq R$, hence $(\mathfrak{l}_{\cap}R)_r=I_r$ and $\mathfrak{l}_r*=(\mathfrak{l}_r*_{\cap}R)Q=(\mathfrak{l}_{\cap}R)_rQ=I_rQ$. Conversely let \mathfrak{r} be a maximal annihilator, then $\mathfrak{r}_{\cap}R$ is an annihilator in R by (7). If $I_r\supseteq\mathfrak{r}_{\cap}R$, by (4) we have

 $\mathfrak{r} = (\mathfrak{r}_{\cap} R) Q \subseteq I_r Q = I_r *$, hence $\mathfrak{r} = I_r * \supseteq I_r$ and $\mathfrak{r}_{\cap} R = I_r$.

Let $I \ (\neq(0))$ be a right ideal in R. We shall call maximal right ideals J with $J_{\bigcirc}I=(0)$ complements of I (denoted by I^c , $I^{c'}$, ...).

Let I be a right ideal in R. For any complement I^c of I in R there exists a complement $(IQ)^{c'}$ of IQ such that

$$(9) I^c Q = (IQ)^{c'},$$

and conversely for any complement $(IQ)^{c'}$ of IQ there exists a complement I^c of I satisfying (9).

If $x \in (IQ_{\cap}I^{c}Q)$, then $x=ic^{-1}=jd^{-1}$, $i \in I$, $j \in I^{c}$ and we have by (2) $c^{-1}=af^{-1}$, $d^{-1}=bf^{-1}$, hence $ia=jb \in I_{\cap}I^{c}=(0)$ and x=0. If there exists a right ideal i such that $I^{c}Q\subseteq i$ and $i_{\cap}IQ=(0)$, then $i_{\cap}R_{\cap}I\subseteq i_{\cap}IQ=(0)$, hence since $I^{c}\subseteq i_{\cap}R$, $I^{c}=i_{\cap}R$ and $I^{c}Q=(i_{\cap}R)Q=i$. Therefore $I^{c}Q$ is a complement of IQ. Conversely let $(IQ)^{c'}$ be a complement, then from the fact $(IQ)^{c'}_{\cap}R_{\cap}I=(0)$, $(IQ)^{c'}_{\cap}R\subseteq I^{c}$ hence $(IQ)^{c'}=((IQ)^{c'}_{\cap}R)Q\subseteq I^{c}Q$. From the above $I^{c}Q=(IQ)^{c''}$, hence $(IQ)^{c''}=(IQ)^{c''}=I^{c}Q$.

Let i be a right ideal in Q. For any complement i^c of i in Q there exists a complement $(i_{\cap}R)^{c'}$ of $(i_{\cap}R)$ in R such that

(10)
$$\mathfrak{i}^c R = (\mathfrak{i} R)^{c'}$$

and conversely for any complement $(\mathfrak{i}_{\cap}R)^{c'}$ there exists a complement right ideal \mathfrak{i}^{c} in Q satisfying (10).

From the fact $i_{\cap}R_{\cap}i^{c}_{\cap}R=(0)$ we have $i^{c}_{\cap}R \subseteq (i_{\cap}R)^{c'}$. $i^{c}=(i^{c}_{\cap}R)Q \subseteq (i_{\cap}i^{c}R)^{c'}Q = ((i_{\cap}R)Q)^{c''}=i^{c''}$ by (9). Hence $i^{c}=i^{c''}$ and $i^{c}_{\cap}R=i^{c''}_{\cap}R=(i_{\cap}R)^{c'}Q_{\cap}R$ $\supseteq (i_{\cap}R)^{c'}$. Conversely $(i_{\cap}R)^{c'}_{\cap}(i_{\cap}R) = (0)$, then $i_{\cap}(i_{\cap}R)^{c'}Q = (0)$. Hence $(i_{\cap}R)^{c'}Q \subseteq i^{c}$ for some complement I^{c} of I and $i^{c}_{\cap}R \subseteq (i_{\cap}R)^{c'}$. By the above $i^{c}_{\cap}R = (i_{\cap}R)^{c''}$, hence $i^{c}_{\cap}R = (i_{\cap}R)^{c'}$.

2. Uniform right ideals.

We can classify the right ideals in R as follows;

 $I \equiv J$ if and only if there exist regular elements d, d' in R such that for any elements $r \in I$, $r' \in J$, $rd \in J$ and $r'd' \in I$.

It is clear that

 $I \equiv J$ if and only if IQ = JQ.

We shall denote the class containing I by [I].

PROPOSITION 1. The right ideals in Q are lattice isomorphic to $\{[I]\}$.

Proof. From the definition and (3) it is clear that this correspondence is onto and that $(I_1 \cap I_2) Q \subseteq I_1 Q \cap I_2 Q$. If $x \in I_1 Q \cap I_2 Q$, $x = r_1 q_1^{-1} = r_2 q_2^{-1}$, $r_i \in I_i$ and by (1) we have $x = r_1 p_1 t^{-1} = r_2 p_2 t^{-1}$, hence $r_1 p_1 = r_2 p_2 \in I_1 \cap I_2$ and $x \in (I_1 \cap I_2) Q$. We have clearly $(I_1 \cup I_2) Q = I_1 Q \cup I_2 Q$.

 $[I]Q_{\cap}R$ is the unique maximal right ideal in [I]. Since Q is P.M.I. there exist minimal right ideals and we call a right ideal in R which corresponds to a minimal right ideal in Q an *uniform right ideal* and the unique maximal right ideal in this class *basic right ideal*.

PROPOSITION 2. If U is a uniform right ideal, then for any non zero right ideals I, $J \subseteq U$ $I_{\cap} J \neq (0)$.

Proof. Since U is uniform, UQ is irreducible, hence IQ=JQ=UQ. From Proposition 1 $I_{\bigcirc}J=0$.

LEMMA 1.¹⁾ Let Q be a P.M.I. ring. If a right ideal x is not minimal, then it contains at least two minimal right ideals.

Proof. Let r contain only one minimal right ideal r_0 . Then $r_3 \subset r_{\cap 3}$ and $r_3 = r_0 = eQ$ where \mathfrak{z} is the socle of Q. Hence $r_3 = er\mathfrak{z}$. For any elements $r \in \mathfrak{r}, \ \mathfrak{z} \in \mathfrak{z}$ we have $r\mathfrak{z} = er\mathfrak{z}$ i.e. $(er-r)\mathfrak{z} = 0$. Therefore $er - r \in \mathfrak{z}_l = (0)$ and er = r. Hence $e\mathfrak{r} = \mathfrak{r} = eQ$.

PROPOSITION 3. Let U be a right ideal in R. If for any non zero right ideals I, J in U $I_{\cap} J \neq (0)$, then U is uniform.

Proof. If U is not uniform, there exist two minimal right ideals \mathfrak{r}_1 , \mathfrak{r}_2 in UQ by Lemma 1. Since $\mathfrak{r}_{1\cap}U \neq (0)$, $\mathfrak{r}_{2\cap}U \neq (0)$ and $\mathfrak{r}_{1\cap}U \cap \mathfrak{r}_{2\cap}U = (0)$, it is a contradiction.

PROPOSITION 4. Let I be a right ideal in R. I is uniform if and only if there exist elements y_1 , y_2 and regular elements y'_1 , y'_2 in R such that for any elements x, $x' \in I xy'_1 = x'y_1$, $x'y'_2 = xy_2$.

Proof. Let xq^{-1} and $x'q'^{-1}$ be elements in *IQ*. Then by the hypothesis x'y'=xy with regular element y'. Hence $x'q'^{-1}=xyy'^{-1}q'^{-1}=xq^{-1}qyy'^{-1}q'^{-1}\in xQ$, therefore *IQ* is irreducible. The converse is similar.

PROPRSITION 5. There exist mutually isomorphic uniform right ideals in any two classes which contain basic right ideals.

Proof. Let I_1 and I_2 be basic. Since Q is P.M.I. there exists a Q-isomorphism λ of I_1Q to I_2Q . Let $I_iQ=e_iQ$, $e_i=r_ix_i^{-1}$, $r_i\in I_i$, $x_i\in R$ and $\lambda(e_1)=e_2q$, $q\in Q$. Then $\lambda(r_1)=\lambda(e_1x_1)=e_2qx_1$. If we put $x_2qx_1=yz^{-1}$, $y,z\in R$, we have $0 \Rightarrow \lambda(r_1z)=e_2qx_1z$ $=e_2x_2^{-1}x_2qx_1z=r_2y$. Since I_1Q and I_2Q are irreducible, $[r_1zR^1]^{2_1}=[I_1]$ and $[r_2yR^1]$ $=[I_2]$. Hence λ sends r_1zR^1 isomorphically onto r_2yR^1 .

If *e* is a primitive idempotent in *R*, then so is *e* in *Q*, hence *eR* is basic. But basic right ideals are not always principal even if *R* has the unit. For example, let *K* be a field and *x* be an independent over *K* and R_0 be the subring of elements in K[x] without constant-term. If we put $R=EK+\bigcup (R_0)_n$ as in the first ex-

¹⁾ Mr. Kanzaki kindly pointed out to me this proof.

²⁾ aR^1 means the right ideal in R generated by a.

ample, then its quotient ring is $Q = EK + \bigcup K(x)_n$. Let $r = e_{11}Q$. If $r \cap R$ is principal: $r \cap R = \begin{pmatrix} f_1, f_2 \cdots f_n \\ 0 \cdots 0 \cdots 0 \\ 0 \cdots 0 \cdots 0 \end{pmatrix} R$, there exist g_1, \cdots, g_n and $k \neq 0 \in K$ such that $f_1(k+g_1) + \cdots + f_n g_n = x$, hence min. degree of $f_1 = 1$. On the other hand there exist g'_1, \cdots, g'_n and $k' \neq 0 \in K$ such that $f_1(k'_1 + g'_1) + \cdots + f_n g'_n = 0$, hence min. degree of $f_1(x) \ge 2$. This is a contradiction. Next example shows that basic right ideals are not always mutually isomorphic. Let $R = (R_0)_n + e_{33}K + \cdots + e_{nn}K$. If an element x of R is not a zero-divisor in R then x is regular in $K(x)_n$, for the adjoint of x is in R. Let $(x_{ij}), (y_{ij})$ be elements of R, and suppose that (x_{ij}) is non zero-divisor. Then $(x_{ij})^{-1}(y_{ij})|x_{ij}|E = adj (x_{ij}) \cdot (y_{ij})$ is in R, hence $(x_{ij}) adj (x_{ij}) \cdot (y_{ij}) = (y_{ij})|x_{ij}|E$ and $|x_{ij}|E$ is a non zero divisor. Therefore R has the quotient ring $Q = K(x)_n$. $e_{11}Q \cap R$ is basic and not principal, because if $e_{11}Q \cap R = (e_{11}f_1 + e_{12}f_2 + \cdots + e_{1n}f_n)R$, $f_i \in R_0$ then $x = \sum_{i=1}^n f_i g_i$, $g_i \in R_0$ which is a contradiction. On the other hand $e_{33}Q \cap R = e_{33}R$ is basic and principal. Therefore $e_{11}Q \cap R$ is not isomorphic to $e_{33}R$.

PROPOSITION 6. Any right ideal I in R contains a uniform right ideal in R.

Proof. Since Q is P.M.I., IQ contains a minimal right ideal r in Q, and further $(0) \neq I_{\bigcirc} r = I_{\bigcirc} r_{\bigcirc} R$ and $(I_{\bigcirc} r_{\bigcirc} R) Q = r$, hence $I_{\bigcirc} r_{\bigcirc} R$ is uniform.

PROPOSITION 7. Let U be a uniform right ideal in R. Then

$$U_l = \{x \mid \in R, x_{r \cap} U \neq (0)\}.$$

Proof. If xu=0 for any $u \in U$, then since UQ is irreducible, UQ=uQ, hence xUQ=xuQ=(0). Therefore $x \in U_I$.

An element u in R is called right uniform if uR^1 is a uniform right ideal (equivalently if uR is uniform $(R_l = R_r = (0)))$.

We can define similarly left uniform elements. But the left uniform elements coincide with the right uniform elements, because if u is left uniform, then Qu = Qe is irreducible where e is a primitive idempotent, since Q is P.M.I., eQ is irreducible, hence uQ = ueQ is also irreducible. Therefore u is right uniform, and the coverse is similar. Hence we may call right (left) uniform elements simply uniform elements.

PROPOSITION 8. Let I be a right ideal in R. If there exists some uniform element u such that $u_{r} I=(0)$, then I is uniform. Furthermore if R is prime, then the converse is true.

Proof. If $u_r \cap I = (0)$, for any element $aq^{-1} \in u_r * \cap IQ$, $a \in I$ we have ua = 0, hence $a \in I_{\cap} u_r = (0)$ and so $u_r * \cap IQ = (0)$. Let θ be a mapping: $q \to uq$. Since $\theta^{-1}(0) \cap IQ = (0)$, we have a isomorphism $IQ \approx uQ$, hence I is uniform. Let R be prime and I be uniform. If $u_r \cap I \neq (0)$ for all element u in I, then $I^2 = 0$ by Proposition 7. This is a contradiction.

From the definition xU is uniform if U is so, hence the sum R_0 of all uniform right ideals is two sided ideal and R_0 is the sum of all uniform elements. Therefore R_0 coincides with the sum of all left uniform ideals. Furthermore R_0Q is the socle $\frac{1}{2}$ of Q. $R_0Q \subseteq \frac{1}{2}$ and since $(\mathfrak{r}_{i} \cap R)Q = \mathfrak{r}_i$, for $x \in \mathfrak{z}$, $x \in \mathfrak{Tr}_i$ and $x \in R_0Q$.

THEOREM 1. The cardinal numbers of the maximal length of direct-sums of basic right ideals are equal. Further if Q is a sub-P.M.I. ring of $\mathfrak{L}_{\mathfrak{M}'}(\mathfrak{m})$ with Δ -dimm = Δ -dim \mathfrak{m}' , then the cardinal numbers for basic left ideals coincide with ones for basic right ideals, where $\mathfrak{L}_{\mathfrak{M}'}(\mathfrak{m})$ is the ring of continuous endomorphisms of \mathfrak{m} , topologized by \mathfrak{m}' -topology, and Δ is the division ring of $\mathfrak{L}_{\mathfrak{M}'}(\mathfrak{m})$ -endomorphisms of \mathfrak{m} .

Proof. Let $B = \{B_{\alpha}\}$ be the set of basic right ideals. We can order directsums $S_j = \sum_{\alpha \in j} \bigoplus B_{\alpha}$ of elements B_{α} of B as follows: $S_i > S_j$ if and only if $S_i = S_j \bigoplus_{\alpha \in i-j} B_{\alpha}$. By the Zorn's Lemma there exists a maximal element S_0 in this order. Then S_0 meets all basic right ideals. If $S_0 Q \subseteq_j$ there exists a minimal right ideal r_0 such that $r_0 \supset S_0 Q = (0)$. Hence

 $(0) = R_{\bigcirc} r_{0 \bigcirc} S_0 Q \supseteq R_{\bigcirc} r_{0 \bigcirc} S_0$ and since $R_{\bigcirc} r_0$ is basic, it is a contradiction. Therefore $S_0 Q = \mathfrak{z}$. Since Q is P.M.I. the right dimension of \mathfrak{z} is constant. It is also true for left basic ideals. Further if Q is as in Theorem, then the left dimension coincides with the right one.

THEOREM 2. Let U be a uniform right ideal in R and $\varepsilon(U)$ be the R-endomorphism ring of U. Then non zero element of $\varepsilon(U)$ is non singular. $\varepsilon(U)$ has the right quotient division ring which is the Q-endomorphism ring of Q-irreducible module.

Proof. If $\phi \in \varepsilon(U)$, then ϕ can be extended to a *Q*-endomorphism of *UQ*. Because if $uq^{-1} = u'q'^{-1} \in UQ$, then there exist *p*, *s*, *d* by (1) such that $q^{-1} = pd^{-1}$, $q'^{-1} = sd^{-1}$, hence $\phi(uq^{-1}) = \phi(u)q^{-1} = \phi(u)pd^{-1} = \phi(up)d^{-1} = \phi(u's)d^{-1} = \phi(u')sd^{-1} = \phi(u')g'^{-1}$. Since *UQ* is irreducible, the *Q*-endomorphism ring of *UQ* is a division ring. Hence if ϕ is not zero, then ϕ is non singular. Let ψ be any *Q*-endomorphism of *UQ*. Then there exists *y* in *UQ* such that $\psi(y) = u \in U$; $y = u'x^{-1}$, $u' \in U$ and for any element *w* in $U \ \psi \lambda_{n'} w = \psi(u'w) = \psi(yxw) = uxw = \lambda_{nx}w$ where $\lambda_a : x \to ax$, $x \in R$. Hence $\psi = \lambda_{ux} \lambda_{u'}^{-1}$.

3. Complements and annihilators.

THEOREM 3. Let B be basic then $B=B_{lr}$. A right ideal B in R is basic if and only if B is a minimal annihilator. A right ideal M in R is a maximal annihilator if and only if $M=u_r$ where u is a uniform element.

Proof. Let B be basic, then $B=BQ_{\cap}R$ and BQ=eQ, $e=e^2$. By (7) $B_{lr} = (BQ_{\cap}R)_{lr} = BQ_{lr} \cap R = eQ_{\cap}R = B$. If $B \supseteq L_r$ then $(QL)_r = L_r Q \subseteq BQ$. Since BQ is irreducible $BQ = (QL)_r$. Hence $B=BQ_{\cap}R = (QL)_{r \cap}R = L_r$. Therefore *B* is a minimal annihilator. Let $I=L_r$ be a minimal annihilator. If $L_r Q \supseteq L'_r *$ for some subset L' in Q, then $L_r = L_r Q \cap R \supseteq L'_r * \cap R = \tilde{L}'_r$ by (6). Hence $L_r = \tilde{L}'_r$ and $L_r Q = \tilde{L}'_r Q = L'_r *$. Therefore $L_r Q$ is also a minimal annihilator. Let r = eQ be an irreducible right ideal in Q contained in $L_r Q$. Then $eQ = (Q_{(1-e)})_r$ and since $L_r Q$ is a minimal annihilator, $eQ = L_r Q$, hence $L_r = L_r Q \cap R$ is basic. Let M be a maximal annihilator. By (8) $MQ = \mathfrak{l}_r *$ is so in Q. Let \mathfrak{l}_0 be an irreducible left ideal contained in \mathfrak{l} , then $Q \neq \mathfrak{l}_{0r} * \supseteq \mathfrak{l}_r *$, hence $\mathfrak{l}_{0r} * \mathfrak{l}_r * = MQ$. Therefore $M \subseteq \mathfrak{l}_{0r} * \cap R = (\mathfrak{l}_0 \cap R)_r = B_r$ and B is basic. From Proposition 7 we have $B_r = u_r$ for any element u in B. Conversely if u is a uniform element, then Qu is irreducible, hence $(Qu)_r * = u_r *$ is a maximal right ideal. By (8) $u_r = u_r * \cap R$ is a maximal annihilator.

THEOREM 4. Let M be a right ideal in R. M is a maximal complement in R if and only if MQ is a maximal one of right ideals \mathfrak{r} with $(\mathfrak{r}:Q)_r=(0)$ and MQ R=M or if and only if $M=B^c$ where B is basic. Let M be a maximal complement in R. Then (1) for any basic right ideal B $M \supseteq B$ or $M_{\bigcirc}B=(0)$, (2) M is minimal irreducible³, (3) if M_0 is of the maximal length of direct-sum of basic right ideals contained in M, then there exists a basic right ideal B such that $M \oplus B$ is of the maximal length of direct-sum of basic right ideals in R and (4) M^c is basic. Maximal annihilators are maximal complements.

Proof. Let M be a maximal complement in $R; M=I^c$. By (9) $MQ=(IQ)^{c'}$. Let $MQ \cong i^c$. Since $(j \cap R)^{c'} = j^c \cap R \supseteq M$, $MQ = (j^c \cap R)Q = j^c$, hence MQ is a maximal complement in Q, and $MQ_{\bigcirc}R=M$. Let r be a right ideal with $(r:Q)_r=(0)$ and $\mathfrak{r} \supseteq MQ$. Then since $\mathfrak{r} \supset \mathfrak{z}$ there exists a minimal right ideal \mathfrak{r}_0 such that $\mathfrak{r}_{\cap} \mathfrak{r}_0 = (0)$. Hence r is contained in a maximal complement. Therefore r=MQ. Conversely if MQ satisfies the property mentioned in Theorem, then $MQ \supset i$ and $MQ \supset r_0 = (0)$; \mathfrak{r}_0 a minimal right ideal, and $MQ \subseteq \mathfrak{r}_0^{\mathfrak{c}}$. Since $(\mathfrak{r}_0^{\mathfrak{c}}:Q) = (0)$, $MQ = \mathfrak{r}_0^{\mathfrak{c}}$. If $MQ \subset \mathfrak{r}^{\mathfrak{c}}$, then $(\mathfrak{r}^{\mathfrak{c}}:Q)_{\mathfrak{r}}=(0)$. By (10) $M=MQ_{\mathbb{C}}R=(\mathfrak{r}_{0}^{\mathfrak{c}}\cap R)=(\mathfrak{r}_{0}\cap R)^{\mathfrak{c}'}$. Further if $M\subseteq I^{\mathfrak{c}}$ then $MQ \subseteq I^{c}Q = (IQ)^{c'}$, hence $MQ = I^{c}Q$. Therefore $M = I^{c}$, and M is a maximal complement. Let M be a maximal complement in R, then MQ is so in Q. Hence there exists a minimal right ideal \mathfrak{r}_0 such that $\mathfrak{r}_0 MQ = (0)$ and $MQ = \mathfrak{r}_0^c$. $M = MQ \cap R$ $=\mathfrak{r}_{0}^{c} \cap R = (\mathfrak{r}_{0} \cap R)^{c'}$ by (10) and $\mathfrak{r}_{0} \cap R$ is basic. Conversely let $M = B^{c}$. $MQ = B^{c}Q$ $=(BQ)^{c'}$ and BQ is minimal. If $\mathfrak{z}=(BQ^c \cap \mathfrak{z})\oplus BQ\oplus\mathfrak{r}_1$, where \mathfrak{z} is the socle of Q, then for $y \in (BQ^{c'} \oplus \mathfrak{r}_1) \cap BQ) = x_1 + x_2$, $x_1 \in BQ^{c'}$, $x_2 \in \mathfrak{r}_1$, we have $x_1 = y - x_2 \in (BQ \oplus Q)$ $\mathfrak{r}_1 \cap BQ^{\mathfrak{c}'} \subseteq \mathfrak{z} \cap (BQ)^{\mathfrak{c}'}$. Hence $((BQ)^{\mathfrak{c}'} \oplus \mathfrak{r}_1) \cap BQ = (0)$ and $\mathfrak{r}_1 = (0)$. If $MQ \subseteq \mathfrak{r}^{\mathfrak{c}}$, then $r^{c} \gg_{\delta}$ hence $r^{c} \cap BQ = (0)$ and $r^{c} = MQ$. Therefore MQ is a maximal complement in Q and further $B^c = M \subseteq MQ - R = (BQ)^{c'} \cap R = (BQ \cap R)^{c''} = B^{c''}$ and we have $M = MQ \cap R$. 1). Let B be basic. Since BQ is a minimal right ideal, $BQ \subseteq MQ$ or

³⁾ From this theorem a right ideal I is called irreducible if $I=M \cap N$ implies I=M or I=N.

Manabu HARADA

 $BQ_{\frown}MQ=(0)$. Hence $B \subseteq MQ_{\frown}R=M$ or $M_{\bigcirc}B=(0)$. 2). If $M \subseteq N$, $M \subseteq S$, and $M=N_{\bigcirc}S$, then $MQ \subseteq SQ$ for MQ=SQ implies M=S. Hence $SQ \supseteq_{\mathfrak{F}}$ and $NQ \supseteq_{\mathfrak{F}}$. Therefore $NQ_{\bigcirc}SQ \supseteq_{\mathfrak{F}}$ and this is a contradiction. If $M_{0}\subseteq M$, then $M_{0}=(M_{0}\oplus M^{c})_{\bigcirc}M$, hence M is minimal irreducible. From the above argument and the fact that $MQ_{\bigcirc}R=M$, M is a maximal complement. Let $MQ_{\bigcirc}r_{0}=(0)$ for a minimal right ideal r_{0} . Since $MQ \oplus r_{0} \supseteq MQ$, $MQ \oplus r_{0} \supseteq_{\mathfrak{F}}$. We define the right ideal

 $\mathfrak{z} = \{ j \mid \in MQ, \text{ there exists an element } z \in \mathfrak{z} \text{ such that } z = j + r, r \in \mathfrak{r}_0 \}.$

Then $i \subseteq \mathfrak{f}_{\cap} MQ$ and $\mathfrak{f} = \mathfrak{j} + \mathfrak{r}_0$, $\mathfrak{j} = \Sigma \oplus \mathfrak{r}_i$, \mathfrak{r}_i 's are minimal ideals. $M = MQ_{\cap} R \supseteq \mathfrak{f}_{\cap} MQ_{\cap} R \supseteq \mathfrak{f}_{\cap} R = \Sigma \mathfrak{r}_{i \cap} R$. If $(MQ)^c$ is not minimal, then it contains two minimal right ideals, \mathfrak{r}_1 , \mathfrak{r}_2 by Lemma 1. Hence $MQ_{\cap}(\mathfrak{r}_1 \oplus \mathfrak{r}_2) = (0)$ and $(MQ \oplus \mathfrak{r}_1)_{\cap} \mathfrak{r}_2 = (0)$. Therefore since $(MQ)^c$ is minimal and $(MQ)^c = M^{c'}Q$, $M^{c'}$ is uniform and by (1) $M^{c'}$ is basic. Let M' be a maximal annihilator. By (8) $M'Q = \mathfrak{l}_r *$ is so in Q. If $\mathfrak{l}_0 = Qe$ is a minimal left ideal in \mathfrak{l} , then $\mathfrak{l}_r * = \mathfrak{l}_{0r} * = (1-e)Q$ and $\mathfrak{l}_r *_{\cap} eQ = (0)$. Since $\mathfrak{l}_r *$ is maximal, $\mathfrak{l}_r *$ is a maximal complement.

The following example with field $Q/_{3}$ analogous to the first one in this note shows that a maximal complement is not always a maximal annihilator. Let r be the right ideal generated by elements $e_{11}+e_{21}$, $e_{22}+e_{32}$, \cdots . Since $(\mathfrak{m/rm}: \mathcal{A})=1$, r is a maximal right ideal contained in \mathfrak{z} , where m is an irreducible Q-module and \mathcal{A} is its Q-endomorphism ring. If $\mathfrak{r}^* \supseteq \mathfrak{r}$ then an element x of $\mathfrak{r}^* - \mathfrak{r}$ is of the following from

$$x = x_1 + \alpha E$$
, $\alpha \in \mathcal{A}$ and $x_1 \in \mathfrak{z}$.

If $\alpha \neq 0$, then $xe_{ii} = \alpha e_{ii} \in \mathfrak{r}^*$ for a sufficiently large *i*. Hence $\mathfrak{r}^* \supseteq_{\mathfrak{z}}$. If $\alpha = 0$, then $x \in \mathfrak{z}$. Therefore $\mathfrak{r}^* \supseteq_{\mathfrak{z}}$. From Theorem 4 $R_{\cap}\mathfrak{r}$ is a maximal complement but not a maximal annihilator since \mathfrak{r} is not maximal. Furthermore in this ring R if a right ideal M is minimal irreducible and $M = MQ_{\cap}R$, then M is maximal complement. Because if M is minimal irreducible then MQ is so in Q. Since \mathfrak{r} is minimal irreducible $MQ \supseteq \mathfrak{r}_0^{\mathfrak{c}}$ for some minimal right ideal \mathfrak{r}_0 . If $\mathfrak{r}_0^{\mathfrak{c}} \supseteq MQ$ then $MQ = \mathfrak{r}_0^{\mathfrak{c}} \cap (MQ \oplus \mathfrak{r}_0)$ is not irreducible. Hence $MQ = \mathfrak{r}_0^{\mathfrak{c}}$ and by the first mention in the proof MQ is a maximal complet.

THEOREM 5. If Q satisfies the minimal conditions, then the complement right ideals coincide with the annihilator right ideals. A right ideal M is a maximal complement if and only if M is minimal irreducible and M conatins no regular elements.

Proof. Let $I=J^c$ be a complement right ideal. $IQ=J^cQ=(JQ)^{c'}=(eQ)^{c'}$ = $(1-e)Q=(Qe)_r$ where $e^2=e$, JQ=eQ, because Q is a simple ring with minimal conditions. On the other hand if $IQ_{\cap}R=I'\cong I$ then $I'_{\cap}J=(0)$, hence $(0)=I'Q_{\cap}JQ$ which is a contradiction. Therefore $I=J^c=J^cQ_{\cap}R=(Qe)_{r\cap}R=(Qe_{\cap}R)_r$. Conversely if $I=J_r$ then $J_r=J_{r*}_{\cap}R=(eQ)_{r\cap}^c R$ where $J_{r*}=(1-e)Q$. By (10) $J_r = J_{r^* \cap} R = (eQ)^c \cap R = (eQ \cap R)^c$. Let M be a minimal irreducible right ideal with $MQ \neq Q$. Then there exists a maximal right ideal \mathfrak{r} which contains MQ, $\mathfrak{r} \cap R \supseteq M$ and since from Theorem 4 $\mathfrak{r} \cap R$ is minimal irreducible, $M = \mathfrak{r} \cap R$ is a maximal complement.

Bibliography

- K. Asano, Über die Quotientenbildung von Schiefringen, Journ. of Math. Soc. of Japan, vol. 1 (1947).
- [2] A. W. Goldie, The structure of prime ring under ascending chain conditions, Proc. London Math. Soc., vol. 8 (1958), 590-608.
- [3] N. Jacobson, Structure of rings, Amer. Math. Soc., Press (1956).