Journal of the Institute of Polytechnics, Osaka City University, Vol. 10, No. 2, Series A

On homological theorems of algebras

By Manabu HARADA

(Received June 26, 1959)

Recently Rosenberg and Zelinsky [7], [8] have obtained a sufficient condition that an algebra is of finite degree over a field K. We shall show, in section 1, a some generalized sufficient (and necessary) condition of [8], Corollary to Theorem 3. In section 2 we shall consider the dimension of K[[x]]. Auslander and Buchsbaum [1] has shown if R is commutative Noetherian, then $gl. \dim R[[x_1, \dots, x_n]] = n + gl. \dim R$. We shall show, however, $K-\dim K[[x]] = \infty$ if K is an integral domain and that if further K is Noetherian, $K[[x]] \bigotimes_{K} K[[y]]$ can be identified with a proper sub-ring of K[[x, y]].

1. THEOREM 1. Let A be an algebra over a field K. If for the algebraic closure L_1 of K and the rational function L_2 in one indeterminant over K, $A \otimes L_i$'s satisfy the left minimum condition, then A is of finite degree over K and conversely.

Proof. From the assumption A satisfies the left minimum condition, hence A has the nilpotent radical $N(N^n-0)$ and $A/N=(D_1)_{n_1}\oplus\cdots\oplus(D_r)_{n_r}$ where $(D_i)_{n_i}$'s are the ring of total matrices over division rings D_i 's respectively. If we can show $[D:K] < \infty$, then $[A/N:K] < \infty$ and since N^i/N^{i+1} 's are A/Nmodules with finite composition length and $N^n = 0$, we can obtain $[A:K] < \infty$. Furthermore since $(D_i)_{n_i}$'s are homomorphic images of A, D_i 's satisfy the same conditions in Theorem 1. Therefore we may assume A is a division ring. Let Z be the center of A. We shall show Z is of finite degree over K. If $\alpha \in \mathbb{Z}$ is not algebraic over K, then $K(\alpha) \bigotimes K(\alpha)$ does not satisfy the minimum condition. But by the assumption $A \bigotimes K(\alpha)$ satisfies one and if $\{u_i\}$ is a right basis of A over $K(\alpha)$, then $\sum u_i \mathfrak{l}$ is a left ideal of $A \bigotimes K(\alpha)$ for any ideal \mathfrak{l} of $K(\alpha) \otimes K(\alpha)$. Hence we have a contradiction. Therefore since Z is algebraic over K, regarding Z as a sub-field of the algebraic closure L of K, we obtain $Z \bigotimes_{K} Z$ satisfies the minimum condition as above. Hence by [8] Theorem 3 $[Z:K] < \infty$. Furthere for an indeterminant x over K we have $A \bigotimes_{F} Z(x)$ $=(A \bigotimes_{K} K(x)) \bigotimes_{K(x)} Z(x)$ and observing $[Z(x): K(x)] < \infty$ we can easily obtain that $A \bigotimes Z(x)$ satisfies the left minimum condition. Hence we may assume that A is a central division algebra. By the same argument as above we can show A is algebraic over K. If L is an algebraic closure of K, $A \bigotimes_{F} L = (D)_{m}$ where D is a division ring. Let α' be an element of A. Then as above $K(\alpha') \bigotimes_{K} L$ has a finite composition length for left ideals, not exceeding m. Let N' be the radical of $K(\alpha') \bigotimes_{K} L$. $(K(\alpha') \bigotimes_{K} L)/N' = L_1 \oplus \cdots \oplus L_t$, $L_i \simeq L$. Therefore $[K(\alpha') : K] = [K(\alpha') \bigotimes_{K} L : L] =$ the composition length for left ideals of $K(\alpha') \bigotimes_{K} L$) $(\leq m)$. Hence, since A is a algebraic algebra of bounded degree by [5] Theorem 16, A is locally finite. Let $\alpha \in D$, $\alpha = \sum a_i \otimes l_i, a_i \in A$ and $l_i \in L$, then $\alpha \in K(\cdots = a_i \cdots) \bigotimes_{K} L$. Since $[K(\cdots = a_i \cdots) : K] < \infty$, $[L(\alpha) : L] < \infty$, hence $\alpha \in L$ and D = L. Therefore [A : K] = n.

REMARK. We shall give examples which show that if we drop one of the assumptions in Theorem 1, A is not necessarily of finite degree.

Let A be the rational function field in x, then $A \bigotimes_{K} L = L(x)$ satisfies the left minimum condition for the algebraic closure L of K.

If A is an algebraic field with $[A:K] = \infty$ and L a finitely generated field over $K; L = K(y_1, \dots, y_s, z_1, \dots, z_t)$ where y_i 's are independent indeterminantes over K and z_i 's are algebraic over $K(y_1, \dots, y_s)$, then $A \bigotimes_{K} L = (A \bigotimes_{K} K(y_1, \dots, y_s)) \bigotimes_{K(y_1, \dots, y_s)} L = A(y_1, \dots, y_s) \bigotimes_{K(y_1, \dots, y_s)} L$ satisfies the minimum condition.

It is clear that Theorem 1 implies Corallary to Theorem 3 of [8]. We shall show that Theorem 1 implies Theorem 1 of [2] in the special case where K is a field.

If K-dim A=0, L-dim $A \bigotimes_{K} L=0$ for any field $L(\supseteq K)$. Since L-dim $A \bigotimes_{K} L$ $\geq l. gl. \dim A \bigotimes_{K} L$, $A \bigotimes_{K} L$ satisfies minimum conditions, hence $[A:K] < \infty$.

2. We shall consider the dimension of the ring of formal power series in one variable x.

THEOREM 2. Let K be an integral domain. Then

 $\dim K[[x]] = w. \dim K[[x]] = \infty.$

Proof. Let Q and Q' be the rings of quotients of K and K[[x]] respectively. Then from [3] Theorem 5 we have

$$K$$
-dim $K[[x]] \ge K$ -dim Q' .

From Lemma 1 (below) there exist n algebraic independent element y_i 's for any integer n, hence we have

$$K-\dim K[[x]] \ge K-\dim Q' \ge K-\dim Q(y_1, \cdots, y_n).$$

If we can prove $Q(y_1, \dots, y_n) \bigotimes_Q Q(y_1, \dots, y_n) \approx Q(y_1, \dots, y_n) \bigotimes_K Q(y_1, \dots, y_n)$, since any $Q(y_1, \dots, y_n)$ module as Q-algebra is a $Q(y_1, \dots, y_n)$ module as K-algebra, we obtain

 $K-\dim Q(y_1, \cdots, y_n) \ge Q-\dim (y_1, \cdots, y_n) = n$

by [7] Theorem 7 and observing the standard complex of $Q(y_1, \dots, y_n)$ as

Q-algebra and *K*-algebra respectively. Since we have a natural epimorphism $\varphi: Q(y_1, \dots, y_n) \bigotimes_{K} Q(y_1, \dots, y_n) \to Q(y_1, \dots, y_n) \bigotimes_{Q} Q(y_1, \dots, y_n)$, it is enough to prove that φ is monomorphism. For the sake of brief we shall prove it in the case n=1. Let

$$\sum_{i=1}^{m} \frac{f_i(x)}{g_i(x)} \bigotimes_{Q} \frac{t_i(x)}{h_i(x)} = \frac{\sum_{i=1}^{m} f_i'(x) \otimes t_i'(x)}{\prod g_i(x) \otimes h_i(x)} = 0$$

where f_i , g_i , t_i , h_i , f'_i , and t'_i are in K[x]. If f'_1, \dots, f'_n are linearly independent over Q and

$$f'_{n+j}(x) = \sum_{s=1}^{n} f'_{s}(x) a_{s,j}, \quad a_{s,j} \in Q,$$

then we have

$$t'_s(x) + \sum_j a_{s,j} t_{n+j}(x) = 0$$
 for all s .

Hence if we take $\mu(\neq 0)$ in K such that $\mu \cdot a_{s,j} \in K$ for all s, then

$$\begin{split} \sum \frac{f_i(x)}{g_i(x)} & \bigotimes_{\kappa} \frac{t_i(x)}{h_i(x)} = \frac{1}{\Pi g_i(x) \otimes h_i(x)} \left(\sum f'_i(x) \bigotimes_{\kappa} t'_i(x) \right) \\ &= \frac{1}{(\mu \otimes 1) \left(\Pi g_i(x) \otimes h_i(x) \right)} \left(\sum \mu \cdot f'_i(x) \bigotimes_{\kappa} t'_i(x) \right) \\ &= \frac{1}{(\mu \otimes 1) \left(\Pi g_i(x) \otimes h_i(x) \right)} \left(\sum_{s=1}^n f'_s(x) \left(\mu \cdot t'_s(x) + \sum a_{s,j} \cdot \mu \cdot t_{n+j}(x) \right) \right) \\ &= 0 \,. \end{split}$$

By the same method as above and [4] we have the theorem for weak dimension.

LEMMA 1. Let K be a commutative ring. Then K[[x]] has infinite many mutually algebraic independent elements over K.

If K is a field with cardinal number $\leq \aleph_0$, we can prove this by the method of Cantor. We shall prove Lemma 1 by the elementary calculation.

Proof of Lemma 1. We shall show that $y_0 = \sum_n x^{n^n}$ is algebraic independent over K[x]. Assume that y_0 is algebraic over K[x]. Then there exists a non zero polynomial such that

(*)
$$f_0(x) + f_1(x)y_0 + \cdots + f_m(x)y_0^m = 0$$
, $f_m(x) \neq 0$, $f_i(x) \in K[x]$.

Let N be the highest degree of $f_i(x)$'s. We can find n such that $mn^n < (n+1)^{n+1}$ and $n^n - (n-1)^{n-1} > N$. If $f_m(x) = a_0 + a_1x + \cdots + a_tx^t$, $a_i \in K$, $a_i \neq 0$, then the coefficient of x of degree $\{(m-1)n^n + (n-1)^{n-1} + t\}$ in the left side of (*) is not zero. Hence we have a contradiction. Let $K_1 = K[x]^{1}$, then $y_1 = \sum y_0^{n^n}$ is algebraic independent over $K_1[y_0]$ as above. Hence we can prove Lemma 1 by induction.

¹⁾ My first proof was more complicated, but this method was kindly pointed out to me by Prof. Asano and Dr. Nobusawa.

Next we shall study the identification of $K[[x]] \otimes K[[y]]$ with a sub-ring of K[[x, y]].

LEMMA 2. Let K be a field and K[[x]] the ring of formal power series in x. Then

$$0 \longrightarrow K[[x]] \underset{K}{\otimes} K[[y]] \xrightarrow{\varphi} K[[x, y]]$$

is exact, where $\varphi(\sum a_i x^i \otimes \sum b_j y^j) = \sum a_i b_j x^i y^j$, a_i , $b_j \in K$.

It is clear.

LEMMA 3. Let K be a Noetherian and commutative integral ring. Then

$$0 \longrightarrow K[[x]] \bigotimes_{\kappa} K[[y]] \xrightarrow{\varphi} K[[x, y]]$$

is exact, where φ is the same as in Lemma 2.

We can easily prove Lemma 3 by using the same method as in the proof of Theorem 2 and the fact that $w.\dim K[[x]]=0$, (see [2] II Exer. 2).

THEOREM 3. Let K be a Noetherian and commutative integral ring. Then

$$0 \longrightarrow K[[x]] \bigotimes_{k} K[[y]] \xrightarrow{\psi} K[[x, y]]$$

is exact, but not epimorphic, where $\varphi(\sum a_i x^i \otimes \sum b_j y^j) = \sum a_i b_i x^i y^j$.

We can easily show that $\sum_{i} x^{i} y^{i}$ is not contained in $\varphi(K[[x]] \otimes K[[y]])$. For if $\sum x^{i} y^{i} = \varphi(\sum_{k} f_{k}(x) \otimes g_{k}(y))$, $f_{k}(x) = \sum_{i} a_{k,i} x^{i}$, $g_{k}(y) = \sum_{i} b_{k,i} y^{i}$, then $\sum_{k=1}^{m} a_{k,i} \cdot b_{k,j} = \delta_{i,j}$ for all i, j ($\delta_{i,j}$ Kronecker delta). From the well known theorem we have no solutions of them.

REMARK. If K is a field, $\mathfrak{m} = (x) \otimes K[[y]] + K[[x]] \otimes (y)$ is a maximal ideal of $K[[x]] \otimes K[[y]]$ and $\bigcap_{n} \mathfrak{m}^{n} = \bigcap_{n} ((x)^{\left\lfloor \frac{n}{2} \right\rfloor^{2}} \otimes K[[y]] + K[[x]] \otimes (y)^{\left\lfloor \frac{n}{2} \right\rfloor})$. By Lemma 2 the intersection is mapped isomorphically into $\bigcap_{n} (x, y)^{\left\lfloor \frac{n}{2} \right\rfloor}$ by φ . By the well known theorem (cf. [6] III Th. 3) we have $\bigcap_{n} (x, y)^{\left\lfloor \frac{n}{2} \right\rfloor} = 0$, hence $\bigcap_{n} \mathfrak{m}^{n} = 0$. We can easily see by observing an element $\sum_{i=1}^{n} x^{i} \cdot y^{i}$ that $K[[x]] \otimes$ K[[y]] is neither a local ring nor a complete ring in the topological space induced by \mathfrak{m} . Therefore in general $K[[x]] \otimes K[[y]]$ is neither ring-isomorphic nor homeomorphic onto K[[x, y]] in this sense.

Bibliography

- M. Auslander and D. A. Buchsbaum, Homological dimension in Noetherian rings II, Trans. Amer. Math. Soc., vol. 88 (1958), 194-206.
- [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton Press, 1956.
- 2) $\left[\frac{n}{2}\right]$ means the largest integer $\leq \frac{n}{2}$.

126

- [3] S. Eilenberg, A. Rosenberg and D. Zelinsky, On the dimension of modules and algebras, Nagoya Math. J., vol. 12 (1957), 71-94.
- [4] M. Harada, The weak dimension of algebras and its applications, J. Inst. Polyt. Osaka City Univ., vol. 9 (1958), 47-58.
- [5] N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. Math., vol. 46 (1945), 695-707.
- [6] D. G. Northcott, Ideal theory, Cambridge Tracts, 42 (1953).
- [7] A. Rosenberg and D. Zelinsky, *Cohomology of infinite algebras*, Trans. Amer. Math. Soc., vol. 82 (1956), 85–98.
- [8] _____, Tensor products of semiprimary algebras, Duke Math. J., vol. 24 (1957), 555-560.