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Recently Rosenberg and Zelinsky [7], [8] have obtained a sufficient condition 

that an algebra is of finite degree over a field K. We shall show, in section 1, 

a sorne generalized sufficient (and necessary) condition of [8], Corollary to 

Theo rem 3. In section 2 we shaH consider the dimension of K[[x ]]. Auslander 

and Buchsbaum [1] has shown if R is commutative Noetherian, then 

gl. dim R [[x1 , • · • , Xn]J = n + gl. dim R. W e shall show, however, K -dim K[[x ]] = oo 

if K is an integral domain and that if further K is Noetherian, K[[x]]®K[[y]] 
K; 

can be identified with a proper sub-ring of K[[x, y]]. 

1. THEOREM 1. Let A be an algebra over a field K. lf for the algebraic closure 

L1 of K and the rational function L2 in one indeterminant over K, A® L/ s satisfy 

the left minimum condition, then A is of finite degree over K and conversely. 

Proof. From the assumption A satisfies the left minimum condition, hence 

A has the nilpotent radical N (Nn-0) and AIN= (Dl)n1 EB ··· EB CDr)nr where 

(D;)n/s are the ring of total matrices over division rings D/s respectively. If 

we can show [D: K]< oo, then [AIN: KJ< oo and since NiiNi+Ps are AIN

modules with finite composition length and Nn=O, we can obtain [A: K]< oo, 

Furthermore sin ce (D;) n/s are homomorphie images of A, D/s satisfy the same 

conditions in Theorem 1. Therefore we may assume A is a division ring. Let 

Z be the center of A. We shall show Z is of fini te degree over K. If a:( E Z) 

is not algebraic over K, then K(a:) ®K(a:) does not satisfy the minimum con-
K 

dition. But by the assumption A®K(a) satisfies one and if {u;} is a right basis 
K; 

of A over K(a:), then 2.Ju;{ is a left ideal of A®K(a) for any ideal { of 
I< 

K(a) ®K(a:). Renee we have a contradiction. Therefore since Z is algebraic 

over K, regarding Z as a sub-field of the algebraic closure L of K, we obtain 

Z®Z satisfies the minimum condition as above. Renee by [8] Theorem 3 
K 

[Z: K]< 00 • Furthere for an indeterminant x over K we have A®Z(x) 
K 

= CA®K(x)) ® Z(x) and observing [Z(x): K(x)J< oo we can easily obtain that 
K K.Cx) 

A®Z(x) satisfies the left minimum condition. Renee we may assume that A is 
Ji.-

a central division algebra. By the same argument as above we can show A is 

algebraic over K. If Lis an algebraic closure of K, A®L=CD)m where Dis a 
K 
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division ring. Let a' be an element of A. Then as above K(a') ®L has a finite 
K 

composition length for left ideals, not exceeding m. Let N' be the radical of 

K(a') ®L. (K(a') ®L)/N' =L1 (B ··· ffiLt, L;=L. Therefore [K(a'): K]=-[K(a') ® 
K K K 

L: L]=the composition length for left ideals of K(a') ®L) (<m). Hence, since A 
K 

is a algebraic algebra of boundedi degree by [5] Theorem 16, A is locally 

finite. Let a E D, a=~ a;&;;l;,a; E A and l; EL, then a E K( ... a; ... ) ®L. Since 
K 

[K(--· a; ... ): KJ< oo, [L(a): LJ< oo, bence a EL and D=L. Therefore [A: K]=n. 

RE MARK. W e shall give examples which show that if we drop one of the 

assumptions in Theorem 1, A is not necessarily of finite degree. 

Let A be the rational function field in x, then A®L =L(x) satisfies the left 
K 

minimum condition for the algebraic closure L of K. 

If A is an algebraic field with [A: K]= oo and L a finitely generated field 

over K; L=K(y1, ... ,ys, z17 ... , Zt) where y/sare independent indeterminantes over 

K and z/s are algebraic over K( Y1, ... , Ys), then A®L= (A®K(y1, ... ,ys)) ® 
K K K(Y 1 , ... ,Ys) 

L=A(y1, ... , Ys) ® L satisfies the minimum condition. 
K(Y 1' ... 'ys) 

It is clear that Theo rem 1 implies Corallary to Theorem 3 of [8]. W e shall 

show that Theorem 1 implies Theorem 1 of [2] in the special case where K is 

a field. 

If K-dimA=O, L-dimA®L=O for any field L(2K). Since L-dimA®L 
K K 

>l.gl. dim A®L, A®L satisfies minimum conditions, bence [A: KJ< oo. 
K K 

2. W e shall consider the dimension of the ring of formai power series in one 

variable x. 

THEOREM 2. Let K be an integral domain. Then 

dim K[[x ]] = w. dim K[[ or]] = oo • 

Proof. Let Q and Q' be the rings of quotients of K and K[[x]] respectively. 
Then from [3] Theorem 5 we have 

K-dim K[[x]] > K-dim Q'. 

From Lemma 1 (below) there exist n algebraic independent element y;'s for any 

integer n, bence we have 

K-dim K[[x ]] > K-dim Q' > K-dim Q(yl, ... , Yn) . 

If we can prove Q(yl, ... ,yn) ®Q(yl, ... , Yn) =Q(yl, ... ,yn) éi9Q(y1, ... ,yn), since 
Q K 

any Q(yl, ... ,yn) module as Q-algebra is a Q(y1, ... ,yn) module as K-algebra, 

we obtain 

K-dim Q(y1 , ... ,yn) > Q-dim (y1 , ... ,yn) = n 

by [7] Theorem 7 and observing the standard complex of Q(y1, ... ,yn) as 
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Q-algebra and K-algebra respectively. Sinee we have a natural epimorphism 

ip: Q(y,, ···, Yn) @Q(y,, ···, Yn) -> Q(y,, ··· ,yn)®Q(y1 , •·• ,yn), it is enough to prove 
K Q 

that 1p is monomorphism. For the sake of brief we shall prove it in the case 

n=l. Let 

fJ /;(x) t;(x) __ ~f!(x)@ti(x) __ 
-_,--®----- -0 
•- g;(x) Q h;(x) II g;(x) 0h;(x) 

where j;, g;, t;, h;, IL and t; are in K[x]. If fj_, ··· ,J~ are linearly independ

ent over Q and 

then we have 
ti(x) + 2j as,jfn+j(x) ~ 0 for ali s. 

J 

Renee if we take .u(=f=O) in K such that was,j E K for all s, then 

:Ljf;(x) ® t;(x) __ 1 C''f'( ) rv.t'( )) 
g;(x) K: h;(x) -II g;(x)@h;(x) L.J ; x Ji! ; x 

C.u®l) (II g:(x) @h;(x)) ŒJ wfi(x) Qj)ti(x)) 

= (.u@l)(II g~(x)@h;(x)) C'fJiCx)(wti(x)+ ~as,j"Wfn+j(x)) 
=o. 

By the same method as above and [4] we have the theorem for weak dimension. 

LEM MA 1. Let K be a commutative ring. Then K[[x ]] has infinite many 

mutually algebraic independent elements over K. 

If K is a field with cardinal number < ~0 , we can prove this by the method 

of Cantor. We shall prove Lemma 1 by the elementary calculation. 

Proof of Lemma 1. We shall show that Yo~- 2Jxnn is algebraic independent 
n 

over K[x]. Assume that Yo is algebraic over K[x]. Then there exists a non 

zero polynomial such that 

(*) fo(x)+j,(x)yo+ ··· +fm(x)yO'=O, fm(x)=PO, J;(x)EK[x]. 

Let N be the highest degree of J;(x)'s. We can find n such that mnn< (n+l)n+l 

and nn-(n-l)n-'>N. If fm(X)=a0+a,x+ ··· +atxt, a;EK, at=PO, then the coeffi

cient of x of degree { (m-1) nn+ (n-l)n-'+t} in the left side of (*) is not zero. 

Renee we have a contradiction. Let K, = K[x] 'J, _then y, =o 2J yan is algebraic 

in dependent over K,[ Yo] as above. Henee we can prove Lemma 1 by induction. 

1) My first proof was more complicated, but this method was kindly pointed out to me by 
Prof. Asano and Dr. Nobusawa. 
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Next we shall study the identification of K[[x]] @K[[y ]J with a sub-ring 

of K[[x, y]]. 

LEMMA 2. Let K be a field and K[[x]] the ring of forma! power series in x. 

Then 
cp 

0 -----')- K[[x]J@K[[y]] ~ K[[x, y]] 
K 

It is clear. 

LEMMA 3. Let K be a Noetherian and commutative integral ring. Then 

0-----')- K[[x]J@K[[y]] ~ K[[x, y]] 
K 

is exact, where cp is the same as in Lemma 2. 

W e can easily prove Lemma 3 by using the same method as in the proof 

of Theorem 2 and the fact that w. dimK[[x]]=O, (see [2] II Exer. 2). 

THEOREM 3. Let K be a Noetherian and commutative integral ring. Then 

0 -3> K[[x]]@K[[y]] ~ K[[x, y]] 
K 

We can easily show that L;xiyi is not contained in q>(K[[x]]@K[[y]]). 

For if L;xiyi = ~J?(l.J/k(x) @gk(y)), fk(x) = :8ak, ;xi, gk(y) = :Ebk, ;yi, then 
k 1 1 

:;8 ak. ;·bk.j=o;.j for all i, j (à;,j Kronecker delta). From the weil known theorem 
k=l 

we have no solutions of them. 

REMARK. If K is a field, m =(x) @K[[y ]]+ K[[x]]@ (y) is a maximal ideal 

of K[[x]J@K[[y]] and n mn= n ((x)[~] 2)@K[[y]]+K[[x]]@ (y)GJ). By 

Lemma 2 the intersection i~ map;ed isomorphically into n (x, y)[~] by 1/?. By 

the weil known theorem (cf. [6] III Th. 3) we have n (x, y)GJ=o, hence 
n 

nmn=O. We can easily see by observing an element 2..jxi·yi that K[[x]]@ 
n i=l 

K[[y ]J is neither a local ring nor a complete ring in the topological space 

induced by m. Therefore in general K[[x ]] @K[[ y]] is neither ring-isomorphic 

nor homeomor;phic onto K[[x, y]] in this sense. 
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