On GL(2, K[x])

By Hirosi NAGAO

(Received May 1, 1959)

1. It was pointed out by D. Livingstone that the unit group of the total matrix ring of degree n over a polynomial ring K[x] (denoted by GL(n, K[x])) is finitely generated if $n \ge 3$ and K is a finite field. In this note, we shall first prove that Livingstone's result can not be extended to the case n=2. Namely, we shall prove

THEOREM 11. GL(2, K[x]) is not finitely generated if K is a field2.

This theorem is an immediate consequence of the following theorem, in which a presentation of GL(2, K[x]) will be determined.

Theorem 2. Let A be the subgroup of GL(2, K[x]) consisting of the matrices of the form

$$T(f) = \begin{pmatrix} 1 & f(x) \\ 0 & 1 \end{pmatrix}$$

with f(x) satisfying f(0) = 0, and denote by $T(\alpha, \beta, \gamma)$ the matrix

$$\begin{pmatrix} \alpha & \gamma \\ 0 & \beta \end{pmatrix}$$
,

where α , β and γ are elements in K. Then GL(2, K[x]) is isomorphic to the factor group of the free product of GL(2, K) and A by the normal subgroup generated by

$$T(\alpha, \beta, \gamma) T(f) T(\alpha, \beta, \gamma)^{-1} T\left(-\frac{\alpha}{\beta}f\right).$$

Next, we shall prove the following theorem 3, by the same argument as in the proof of theorem 2, and then we will apply theorem 3 to the problems discussed in the joint paper [1] of Chang, Jennings and Ree.

Theorem 3. Let A be the subgroup as in theorem 2, and B be the subgroup consisting of the matrices of the form

This question was suggested to me by Professor D. G. Higman and Professor J. E. McLaughlin. I express here my hearty thanks to them. Also I would like to express my gratitude to Professor R. M. Thrall who gave me the opportunity to work at the University of Michigan during 1958-1959.

²⁾ If K is an infinite field, then the theorem is trivial. In the following theorem K is assumed to be any (commutative) field.

$$S(g) = \begin{pmatrix} 1 & 0 \\ g(x) & 1 \end{pmatrix}$$

with g(x) any polynomial. Then the subgroup generated by A and B is isomorphic to the free product of A and B.

In [1], it was proved that

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$

generate a free group if x is a transcendental complex number. This result can be generalized in the following way.

THEOREM 4. Let K be a field of characteristic p and x be a transcendental element over K. Then for any $\alpha \neq 0$ in K,

$$\begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$

generate the free product of two cyclic groups of order p. (Here a cyclic group of order 0 means an infinite cyclic group.)

In [1], the authors also showed that the free product of two free abelian groups each of which has rank 2 has an isomorphic matrix representation of degree 2 over the complex number field, but they were not able to obtain a matrix representation of free products of free abelian groups whose ranks are greater than 2. The following theorem will give an answer to this problem.

Theorem 5. If A and B are two free abelian groups or any elementary abelian groups with the same exponent p, the free product of A and B has an isomorphic matrix representation of degree 2 over a suitable field.

2. To establish the theorems, we shall mention two evident facts as lemmas.

LEMMA 1. Let

$$\begin{pmatrix} h_{11}(x) & h_{12}(x) \\ h_{21}(x) & h_{22}(x) \end{pmatrix} \begin{pmatrix} f(x) & \alpha \\ \beta & 0 \end{pmatrix} = \begin{pmatrix} h'_{11}(x) & h'_{12}(x) \\ h'_{21}(x) & h'_{22}(x) \end{pmatrix}.$$

If $deg h_{11}(x) \ge deg h_{12}(x)$, $deg h_{11}(x) \ge n$ and deg f(x) > 0, then $deg h'_{11}(x) > deg h'_{12}(x)$ and $deg h'_{11}(x) > n$.

Proof. This is immediate from

$$h'_{11}(x) = h_{11}(x) f(x) + \beta h_{12}(x),$$

 $h'_{12}(x) = \alpha h_{11}(x).$

Lemma 2. Let

$$\begin{pmatrix} h_{11}(x) & h_{12}(x) \\ h_{21}(x) & h_{22}(x) \end{pmatrix} \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \begin{pmatrix} h'_{11}(x) & h'_{12}(x) \\ h'_{21}(x) & h'_{22}(x) \end{pmatrix}.$$

If $deg h_{11}(x) > deg h_{12}(x)$, $deg h_{11}(x) \ge n$ and $\alpha_{11} \ne 0$, then $deg h'_{11}(x) \ge deg h'_{12}(x)$ and $deg h'_{11}(x) \ge n$.

Proof. This is evident from

$$h_{11}'(x)=lpha_{11}h_{11}(x)+lpha_{21}h_{12}(x)$$
 , $h_{12}'(x)=lpha_{12}h_{11}(x)+lpha_{22}h_{12}(x)$.

Proof of Theorem 2. Denote by W the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

anb by $T(\alpha, \beta, \gamma)$ a triangular matrix

$$\begin{pmatrix} \alpha & \gamma \\ 0 & \beta \end{pmatrix}$$
.

Any constant matrix C can be written as a product of the form

(1)
$$WT(\alpha, \beta, \gamma)$$

(2) or
$$WT(\alpha_1, \beta_1, \gamma_1)WT(\alpha_2, \beta_2, \gamma_2)$$

according as the (1,1) element of C is equal to 0 or not. Namely

$$\begin{pmatrix} 0 & \gamma \\ \delta & \beta \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \delta & \beta \\ 0 & \gamma \end{pmatrix}$$

and

$$\begin{pmatrix} \alpha & \gamma \\ \delta & \beta \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \beta - \frac{\gamma \delta}{\alpha} & \delta \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \frac{\gamma}{\alpha} \\ 0 & 1 \end{pmatrix}$$

if $\alpha \neq 0$. If the (1,1) element of $T(\alpha_1, \beta_1, \gamma_1)$ W in (2), namely γ_1 , is 0, then

$$T(\alpha_1, \beta_1, 0) W = WT(\beta_1, \alpha_1, 0)$$
.

Therefore $C = T(\beta_1, \alpha_1, 0)$ $T(\alpha_2, \beta_2, \gamma_2)$ is a triangular matrix.

Denote by E the identity matrix and suppose that a relation between elements in GL(2, K) and elements in A

(3)
$$T(f_1) C_1 T(f_2) C_2 \cdots T(f_r) C_r = E$$

with $C_i \neq E$ $(i=1,2,\dots,r-1)$ is given. We shall first show that some of C_i , $i=1,2,\dots,r-1$ must be triangular matrices of the form $T(\alpha,\beta,\gamma)$. Suppose that any C_i $(1 \leq i < r)$ is not a triangular matrix, and denote by R_j a matrix of the form

$$\begin{pmatrix} f(x) & \alpha \\ \beta & 0 \end{pmatrix} = \begin{pmatrix} \alpha & f(x) \\ 0 & \beta \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

where f(x) may be a constant or a polynomial of degree greater than 0. Then from the remark above it is easy to see that (3) can be written as

$$(4) R_1 R_2 \cdots R_s = C,$$

where

$$R_1 = T(f_1) W = \begin{pmatrix} f_1(x) & 1 \\ 1 & 0 \end{pmatrix},$$

C is some constant matrix, and if R_i is constant its (1,1) element is not 0. Applying lemmas 1 and 2 repeatedly we see that the (1,1) element of the left hand side in (4) has a degree greater than 0. This is a contradiction. Thus some C_i $(1 \le i < r)$ is a triangular matrix $T(\alpha, \beta, \gamma)$. Then using the relation

(5)
$$T(\alpha,\beta,\gamma) T(f_{i+1}) T(\alpha,\beta,\gamma)^{-1} T\left(-\frac{\alpha}{\beta}f_{i+1}\right) = E$$

we have a relation

$$T(f_1) C_1 \cdots C_{i-1} T \left(f_i + \frac{\alpha}{\beta} f_{i+1} \right) (C_i C_{i+1}) \cdots C_r = E$$
.

In this way we can make the length of the relation shorter. Thus by using relations such as (5) the relation (3) can be reduced to a relation of the form

$$T(f_1) C_1 T(f_2) C_2 = E$$

and C_1 must be a triangular metrix. Then C_2 is also a triangular matrix and, as is easily seen, this is a relation of the form (5). This shows that relations between the elements in GL(2, K) and the elements in A are generated by the relations of the form (5).

Proof of Theorem 1. GL(2, K[x]) is generated by constant matrices and matrices of the form

$$T(x^r) = \begin{pmatrix} 1 & x^r \\ 0 & 1 \end{pmatrix}, \quad r = 1, 2, \dots$$

If GL(2, K[x]) is finitely generated, then there is an n such that GL(2, K[x]) is generated by certain constant matrices and matrices $T(x^r)$, $r=1, 2, \cdots, n-1$. Since $T(x^n)$ must be a product of constant matrices and matrices $T(x^r)$, $r=1, 2, \cdots, n-1$, we have a relation

$$T(f_1) C_1 T(f_2) C_2 \cdots T(f_t) C_t = E$$
.

such that $f_i(0)=0$ for $1 \le i \le t$, $\deg f_i=n$, $0 < \deg f_i < n$ for $i \ne 1$ and $C_i \ne E$ for $i \ne t$. On the other hand, it is an immediate consequence of theorem 2 that the number of $T(f_i)$ with $\deg f_i=n$ must be even. This is a contradiction.

Proof of Theorem 3. Suppose that there is a relation of the form

$$T(f_1) \ S(g_1) \ T(f_2) \ S(g_2) \cdots \ T(f_r) \ S(g_r) = E$$
,

where $g_i \neq 0$ for $i=1, 2, \dots, r-1$. Denote by R(f) the matrix

$$\begin{pmatrix} f(x) & 1 \\ 1 & 0 \end{pmatrix} = T(f) W.$$

Since $S(g_i) = WT(g_i) W$, we have

$$R(f_1) R(g_1) \cdots R(f_r) R(g_r) = E$$
.

Since $g_i \neq 0$ for $1 \leq i < r$, we see, by applying lemmas 1 and 2 repeatedly, that the (1,1) element or the (1,2) element of the left hand side has a degree greater than 0 according as $g_r \neq 0$ or $g_r = 0$.

Proof of Theorems 4 and 5. Theorem 4 is immediate from theorem 3, and theorem 5 is also easily seen from theorem 5 and the fact that A and B are both isomorphic to the additive group of K[x].

Reference

[1] B. Chang, S. A. Jennings and R. Ree: On certain pairs of matrices which generate free groups, Can. J. of Math. 10 (1958), 279-284.

Osaka City University and University of Michigan