On $G L(2, K[x])$

By Hirosi Nagao

(Received May 1, 1959)

1. It was pointed out by D. Livingstone that the unit group of the total matrix ring of degree n over a polynomial ring $K[x]$ (denoted by $G L(n, K[x])$) is finitely generated if $n \geq 3$ and K is a finite field. In this note, we shall first prove that Livingstone's result can not be extended to the case $n=2$. Namely, we shall prove

Theorem 1^{11}. $G L(2, K[x])$ is not finitely generated if K is a field ${ }^{2)}$.
This theorem is an immediate consequence of the following theorem, in which a presentation of $G L(2, K[x])$ will be determined.

Theorem 2. Let A be the subgroup of $G L(2, K[x])$ consisting of the matrices of the form

$$
T(f)=\left(\begin{array}{cc}
1 & f(x) \\
0 & 1
\end{array}\right)
$$

with $f(x)$ satisfying $f(0)=0$, and denote by $T(\alpha, \beta, \gamma)$ the matrix

$$
\left(\begin{array}{ll}
\alpha & \gamma \\
0 & \beta
\end{array}\right)
$$

where α, β and γ are elements in K. Then $G L(2, K[x])$ is isomorphic to the factor group of the free product of $G L(2, K)$ and A by the normal subgroup generated by

$$
T(\alpha, \beta, \gamma) T(f) T(\alpha, \beta, \gamma)^{-1} T\left(-\frac{\alpha}{\beta} f\right) .
$$

Next, we shall prove the following theorem 3, by the same argument as in the proof of theorem 2, and then we will apply theorem 3 to the problems discussed in the joint paper [1] of Chang, Jennings and Ree.

Theorem 3. Let A be the subgroup as in theorem 2, and B be the subgroup consisting of the matrices of the form

[^0]\[

S(g)=\left($$
\begin{array}{cc}
1 & 0 \\
g(x) & 1
\end{array}
$$\right)
\]

with $g(x)$ any polynomial. Then the subgroup generated by A and B is isomorphic to the free product of A and B.

In [1], it was proved that

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)
$$

generate a free group if x is a transcendental complex number. This result can be generalized in the following way.

Theorem 4. Let K be a field of characteristic p and x be a transcendental element over K. Then for any $\alpha \neq 0$ in K,

$$
\left(\begin{array}{ll}
1 & 0 \\
\alpha & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

generate the free product of two cyclic groups of order p. (Here a cyclic group of order 0 means an infinite cyclic group.)

In [1], the authors also showed that the free product of two free abelian groups each of which has rank 2 has an isomorphic matrix representation of degree 2 over the complex number field, but they were not able to obtain a matrix representation of free products of free abelian groups whose ranks are greater than 2. The following theorem will give an answer to this problem.

Theorem 5. If A and B are two free abelian groups or any elementary abelian groups with the same exponent p, the free product of A and B has an isomorphic matrix representation of degree 2 over a suitable field.
2. To establish the theorems, we shall mention two evident facts as lemmas.

Lemma 1. Let

$$
\left(\begin{array}{ll}
h_{11}(x) & h_{12}(x) \\
h_{21}(x) & h_{22}(x)
\end{array}\right)\left(\begin{array}{cc}
f(x) & \alpha \\
\beta & 0
\end{array}\right)=\left(\begin{array}{ll}
h_{11}^{\prime}(x) & h_{12}^{\prime}(x) \\
h_{21}^{\prime}(x) & h_{22}^{\prime}(x)
\end{array}\right) .
$$

If $\operatorname{deg} h_{11}(x) \geq \operatorname{deg} h_{12}(x), \operatorname{deg} h_{11}(x) \geq n$ and $\operatorname{deg} f(x)>0$, then $\operatorname{deg} h_{11}^{\prime}(x)>\operatorname{deg} h_{12}^{\prime}(x)$ and $\operatorname{deg} h_{11}^{\prime}(x)>n$.

Proof. This is immediate from

$$
\begin{aligned}
& h_{11}^{\prime}(x)=h_{11}(x) f(x)+\beta h_{12}(x), \\
& h_{12}^{\prime}(x)=\alpha h_{11}(x) .
\end{aligned}
$$

Lemma 2. Let

$$
\left(\begin{array}{ll}
h_{11}(x) & h_{12}(x) \\
h_{21}(x) & h_{22}(x)
\end{array}\right)\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right)==\left(\begin{array}{ll}
h_{11}^{\prime}(x) & h_{12}^{\prime}(x) \\
h_{21}^{\prime}(x) & h_{22}^{\prime}(x)
\end{array}\right) .
$$

If $\operatorname{deg} h_{11}(x)>\operatorname{deg} h_{12}(x)$, $\operatorname{deg} h_{11}(x) \geqq n$ and $\alpha_{11} \neq 0$, then $\operatorname{deg} h_{11}^{\prime}(x) \geq \operatorname{deg} h_{12}^{\prime}(x)$ and $\operatorname{deg} h_{11}^{\prime}(x) \geq n$.

Proof. This is evident from

$$
\begin{aligned}
& h_{11}^{\prime}(x)=\alpha_{11} h_{11}(x)+\alpha_{21} h_{12}(x), \\
& h_{12}^{\prime}(x)=\alpha_{12} h_{11}(x)+\alpha_{22} h_{12}(x) .
\end{aligned}
$$

Proof of Theorem 2. Denote by W the matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

anb by $T(\alpha, \beta, \gamma)$ a triangular matrix

$$
\left(\begin{array}{ll}
\alpha & \gamma \\
0 & \beta
\end{array}\right) .
$$

Any constant matrix C can be written as a product of the form

$$
\begin{align*}
& W T(\alpha, \beta, \gamma) \tag{1}\\
& W T\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) W T\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)
\end{align*}
$$

(2) or
accoording as the $(1,1)$ element of C is equal to 0 or not. Namely

$$
\left(\begin{array}{ll}
0 & \gamma \\
\delta & \beta
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
\delta & \beta \\
0 & \gamma
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
\alpha & \gamma \\
\delta & \beta
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\beta-\frac{\gamma \hat{\delta}}{\alpha} & \delta \\
0 & \alpha
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{\gamma}{\alpha} \\
0 & 1
\end{array}\right)
$$

if $\alpha \neq 0$. If the (1, 1) element of $T\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) W$ in (2), namely γ_{1}, is 0 , then

$$
T\left(\alpha_{1}, \beta_{1}, 0\right) W=W T\left(\beta_{1}, \alpha_{1}, 0\right) .
$$

Therefore $C=T\left(\beta_{1}, \alpha_{1}, 0\right) T\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$ is a triangular matrix.
Denote by E the identity matrix and suppose that a relation between elements in $G L(2, K)$ and elements in A

$$
\begin{equation*}
T\left(f_{1}\right) C_{1} T\left(f_{2}\right) C_{2} \cdots T\left(f_{r}\right) C_{r}=E \tag{3}
\end{equation*}
$$

with $C_{i} \neq E(i=1,2, \cdots, r-1)$ is given. We shall first show that some of $C_{i}, i=1,2, \cdots, r-1$ must be triangular matrices of the form $T(\alpha, \beta, \gamma)$. Suppose that any $C_{i}(1 \leq i<r)$ is not a triangular matrix, and dencte by R_{j} a matrix of the form

$$
\left(\begin{array}{cc}
f(x) & \alpha \\
\beta & 0
\end{array}\right)=\left(\begin{array}{cc}
\alpha & f(x) \\
0 & \beta
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where $f(x)$ may be a constant or a polynomial of degree greater than 0 . Then from the remark above it is easy to see that (3) can be written as

$$
\begin{equation*}
R_{1} R_{2} \cdots R_{s}=C, \tag{4}
\end{equation*}
$$

where

$$
R_{1}=T\left(f_{1}\right) W=\left(\begin{array}{cc}
f_{1}(x) & 1 \\
1 & 0
\end{array}\right)
$$

C is some constant matrix, and if R_{i} is constant its (1,1) element is not 0 . Applying lemmas 1 and 2 repeatedly we see that the (1,1) element of the left hand side in (4) has a degree greater than 0 . This is a contradiction. Thus some $C_{i}(1 \leq i<\gamma)$ is a triangular matrix $T(\alpha, \beta, \gamma)$. Then using the relation

$$
\begin{equation*}
T(\alpha, \beta, \gamma) T\left(f_{i+1}\right) T(\alpha, \beta, \gamma)^{-1} T\left(-\frac{\alpha}{\beta} f_{i+1}\right)=E \tag{5}
\end{equation*}
$$

we have a relation

$$
T\left(f_{1}\right) C_{1} \cdots C_{i-1} T\left(f_{i}+\frac{\alpha}{\beta} f_{i+1}\right)\left(C_{i} C_{i+1}\right) \cdots C_{r}=E .
$$

In this way we can make the length of the relation shorter. Thus by using relations such as (5) the relation (3) can be reduced to a relation of the form

$$
T\left(f_{1}\right) C_{1} T\left(f_{2}\right) C_{2}=E
$$

and C_{1} must be a triangular metrix. Then C_{2} is also a triangular matrix and, as is easily seen, this is a relation of the form (5). This shows that relations between the elements in $G L(2, K)$ and the elements in A are generated by the relations of the form (5).

Proof of Theorem 1. $G L(2, K[x])$ is generated by constant matrices and matrices of the form

$$
T\left(x^{r}\right)=\left(\begin{array}{cc}
1 & x^{r} \\
0 & 1
\end{array}\right), \quad r=1,2, \cdots \cdots
$$

If $G L(2, K[x])$ is finitely generated, then there is an n such that $G L(2, K[x])$ is generated by certain constant matrices and matrices $T\left(x^{r}\right), r=1,2, \cdots, n-1$. Since $T\left(x^{n}\right)$ must be a product of constant matrices and matrices $T\left(x^{r}\right), r=1,2$, $\cdots, n-1$, we have a relation

$$
T\left(f_{1}\right) C_{1} T\left(f_{2}\right) C_{2} \cdots T\left(f_{t}\right) C_{t}=E
$$

such that $f_{i}(0)=0$ for $1 \leq i \leq t, \operatorname{deg} f_{1}=n, 0<\operatorname{deg} f_{i}<n$ for $i \neq 1$ and $C_{i} \neq E$ for $i \neq t$. On the other hand, it is an immediate consequence of theorem 2 that the number of $T\left(f_{i}\right)$ with $\operatorname{deg} f_{i}=n$ must be even. This is a contradiction.

Proof of Theorem 3. Suppose that there is a relation of the form

$$
T\left(f_{1}\right) S\left(g_{1}\right) T\left(f_{2}\right) S\left(g_{2}\right) \cdots T\left(f_{r}\right) S\left(g_{r}\right)=E,
$$

where $g_{i} \neq 0$ for $i=1,2, \cdots, r-1$. Denote by $R(f)$ the matrix

$$
\left(\begin{array}{cc}
f(x) & 1 \\
1 & 0
\end{array}\right)=T(f) W
$$

Since $S\left(g_{i}\right)=W T\left(g_{i}\right) W$, we have

$$
R\left(f_{1}\right) R\left(g_{1}\right) \cdots R\left(f_{r}\right) R\left(g_{r}\right)=E .
$$

Since $g_{i} \neq 0$ for $1 \leq i<r$, we see, by applying lemmas 1 and 2 repeatedly, that the $(1,1)$ element or the $(1,2)$ element of the left hand side has a degree greater than 0 according as $g_{r} \neq 0$ or $g_{r}=0$.

Proof of Theorems 4 and 5. Theorem 4 is immediate from theorem 3, and theorem 5 is also easily seen from theorem 5 and the fact that A and B are both isomorphic to the additive group of $K[x]$.

Reference

[1] B. Chang, S. A. Jennings and R. Ree: On certain pairs of matrices which generate free groups, Can. J. of Math. 10 (1958), 279-284.

[^0]: 1) This question was suggested to me by Professor D. G. Higman and Professor J. E. McLaughlin. I express here my hearty thanks to them. Also I would like to express my gratitude to Professor R. M. Thrall who gave me the opportunity to work at the University of Michigan during 1958-1959.
 2) If K is an infinite field, then the theorem is trivial. In the following theorem K is assumed to be any (commutative) field.
